A NOVEL TRISNORLUPANE, DIOSPYROLIDE, FROM DIOSPYROS MARITIMA

Yueh-Hsiung KUO,* A Chi-I CHANG, and Yao-Haur KUO

Department of Chemistry, National Taiwan University, ^a Taipei, Taiwan, R. O. C. and National Research Institute of Chinese Medicine, ^b Taipei, Taiwan, R. O. C.

A novel trisnorlupane, diospyrolide, was isolated from the stem of *Diospyros maritima* Blume. The structure was elucidated by 2D NMR experiments and X-ray analysis.

KEY WORDS Diospyros maritima; trisnorlupane; diospyrolide; Ebenaceae; X-ray analysis

Thirteen species of *Diospyros* (Ebenaceae) are indigenous to Taiwan. Chemical studies of some species have been described, $^{1-6)}$ and they contain triterpenes, lignans, steroids, benzoquinones, and naphthoquinones. The stems of *D. maritima* are usually used to treat rheumatic diseases, and it led us to study the chemical constituents. In a previous paper we reported four new naphthoquinone derivatives. The further investigation of this extract led to the isolation of a novel trisnorlupane derivative, diospyrolide (1), together with two lupane derivatives, lupeol and lupenone. This paper deals with the structural elucidation of 1.

Diospyrolide (1), mp 265~267°C, $[\alpha]_{b}^{5} = +30.8^{\circ}$ (c=0.25, CHCl₃), has the molecular formula $C_{27}H_{42}O_{3}$ on the basis of the exact mass of HRFABMS [(M+H)⁺ m/z 415.3212, calcd M⁺ m/z 414.3136]. The IR absorption of hydroxyl and γ-lactone groups appeared at 3388 and 1764 cm⁻¹, respectively. The ¹H-NMR spectrum (Table 1) showed some readily assignable signals such as five methyl singlets (δ 0.98, 0.74, 0.82, 0.92 and 0.84), a carbinyl proton [δ 3.17 (dd, J=10.9, 5.3 Hz)], a methylene group [δ 1.88 (2H, t, J=7.0 Hz, H-20)], and a γ-H of lactone (δ 4.60, s). By comparison of the ¹³C-NMR data with methyl betulinate, ⁸⁾ compound 1 was considered to have a lupane skeleton with elimination of an isopropenyl moiety and with a γ-lactone group linked between C-17 and C-19. The EIMS fragmentation ion peaks of 1 at m/z 396 (M⁺-H₂O, 100%), 381 (M⁺-H₂O-CH₃,12%), 207 (52%), and 189 (82%) are typical of a lupane skeleton. ⁹⁾ Detailed analysis of the ¹H-¹H COSY, HMQC, and HMBC spectra led to the assignment of 1. NOESY correlations between H-3 and H-22, H-5 and H-22, Hβ-6 and H-24, Hα-7 and H-26, Hα-9 and H-26, Hβ-11 and H-25, H-13 and H-25, and Hβ-15 and H-20 were observed. The relative configuration of 1 was established by X-ray

1

ORTEP drawing of 1

analysis. Compound 1 was crystallized in triclinic space group P1 with cell dimensions a=6.5045(20), b=7.185(3), c=28.143(6) Å, V=1178.8(7) Å³, Z=2, F(000)=467, Dcalcd=1.193 g cm⁻³, $\mu=5.607$ cm⁻¹, $2\theta_{max}=120.0$, total measurement 3518 reflections, and crystal size 0.02, 0.25, and 0.50 mm. The crystal structure was solved by direct methods and was refined with the full-matrix least-square method.

Table 1 NMR data for 1 (¹H: 400 MHz and ¹³C: 100 MHz in CDCl₃)

No.	δн	δс	НМВС	No.	δн	δс	HMBC
1	0.92,1.70	38.9	H-2,H-5,H-24	15	1.24,1.5	28.2	H-13,H-16,H-26
2	1.12,1.60	27.3	H-1,H-3	16	1.61	28.2	H-18,H-21
3	3.17	79.0	H-1,H-2,H-22,H-23	17		51.1	H-13,H-15,H-16,H-18,H-19,
4		39.0	H-2,H-6,H-22,H-23				H-20,H-21
5	0.68	55.4	H-6,H-7,H-22,H-23,H-24	18	1.52	55.0	H-12,H-13,H-16,H-20
6	1.38,1.52	18.2	H-5,H-7	19	4.60	79.2	H-13,H-18,H-20,H-21
7	1.39,1.41	34.1	H-5,H-6,H-9,H-25	20	1.88	29.6	H-19,H-21
8		40.6	H-6,H-9,H-11,H-13,H-25,	21	1.67	28.9	H-16,H-20
			H-26	22	0.98	28.0	H-23
9	1.28	51.0	H-1,H-11,H-12,H-25	23	0.74	15.3	H-3,H-5,H-22
10		37.3	H-1,H-2,H-5,H-24	24	0.82	16.4	H-1,H-9
11	1.29,1.49	20.6	H-9	25	0.92	15.6	H-7,H-9
12	1.50,2.05	22.2	H-11,H-13,H-18	26	0.84	13.1	H-13,H-15
13	1.51	34.2	H-11,H-12,H-15,H-18,H-26	27		179.5	H-16,H-18,H-19,H-21
14		40.6	H-9,H-12,H-13,H-15,H-18,				
			H-25,H-26				

ACKNOWLEDGMENTS This work was supported by the National Science Council of the R. O. C.

REFERENCES AND NOTES

- 1) Chou C. J., Ann. Rep. Natl. Res. Inst. Chin. Med., 1984, 117-140.
- 2) Chen C. C., Yu H. J., Huang Y. L., Chin. Pharm. J., 44, 229-233 (1992).
- 3) Chen C. C., Yu H. J., Ou J. C., Pan T. M., J. Chin. Chem. Soc., 41, 195-198 (1994).
- 4) Lee T. J., Shih T. S., Lin Y. M., Chen, F. C., Formosan Sci., 38, 147-151 (1984).
- 5) Chen H. C., Lin Y. M., Shih T. S., Chen F. C., Formosan Sci., 41, 46-52 (1987).
- 6) Chen H. K., Chen K. J., Lin Y. S., Chen F. C., Formosan Sci., 44, 63-71 (1991).
- 7) Kuo Y. H., Chang C. I, Kuo Y. H., J. Chin. Chem. Soc., 43, 511-514 (1996).
- 8) Wenkert E., Baddeley G. V., Burfitt I. R., Moreno L. N., Org. Magn. Reson., 11, 337-343 (1978).
- 9) Budzikiewicz H., Wilson J. M., Djerassi Carl, J. Am. Chem. Soc., 85, 3688-3699 (1963).