Structures of Clausamine-A, -B, -C, Three Novel Carbazole Alkaloids from Clausena anisata¹⁾

Chihiro Ito,*,a Shinya Katsuno,a Nijsiri Ruangrungsi,b and Hiroshi Furukawa

Faculty of Pharmacy, Meijo University,^a Tempaku, Nagoya 468, Japan and Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University,^b Bankok 10330, Thailand.

Received July 28, 1997; accepted October 2, 1997

Three novel carbazole alkaloids, named clausamine-A (1), -B (2), and -C (3) were isolated from *Clausena anisata* (Rutaceae) collected in Thailand, and their structures were elucidated by means of spectroscopic analyses. All these novel carbazoles have 1-oxygenated 3,4-disubstituted structures with a lactone moiety. This is the first report of the isolation of lactonic carbazole alkaloids from a natural source.

Key words Clausena anisata; carbazole alkaloid; clausamine; lactone; Rutaceae

Our phytochemical studies of the constituents of the plants of the genus *Clausena* have resulted in the isolation of various coumarins and carbazole alkaloids.^{2,3)} In this paper we wish to describe the isolation and structure elucidation of three novel carbazole alkaloids, clausamine-A (1), -B (2), and -C (3), from the branches of *Clausena anisata* (WILLD.) OLIV. collected in Thailand.

Results and Discussion

The dried branches of *C. anisata* were extracted with acetone at room temperature. The acetone extract was fractionated by a combination of silica gel column chromatography and preparative TLC to give three novel carbazole alkaloids, along with known carbazoles.

Structure of Clausamine-A (1) Clausamine-A (1) was obtained as a pale yellow powder, $[\alpha]_D 0^\circ$. The molecular formula was determined as C₁₈H₁₅NO₃ by high-resolution (HR)-MS. The UV spectrum [λ_{max} : 204, 222, 238, 248, 269, 278 (sh), 310 (sh), 322, 335 nm] was similar to that of clausine-F (4),4) which had previously been isolated by us from this plant. The ${}^{1}H$ -, ${}^{13}C$ -NMR (acetone- d_6) and IR spectra suggested the presence of an imino group $[\delta_{\rm H} \ 10.94 \ (1 \, {\rm H, \ br \, s}), \ v_{\rm max} \ 3462 \, {\rm cm}^{-1}], \ a \ {\rm hydroxyl \ group}$ $[v_{\text{max}} 3329 \text{ (br) cm}^{-1}]$, and a lactone carbonyl group $[\delta_{\text{C}}]$ 166.03 (s), v_{max} 1697 cm⁻¹]. The ¹H-NMR spectrum revealed a set of four-spin protons at $\delta_{\rm H}$ 8.19 (1H, d, J=8.1 Hz, H-5), 7.25 (1H, t, J=8.1 Hz, H-6), 7.45 (1H, t, J = 8.1 Hz, H-7), and 7.66 (1H, d, J = 8.1 Hz, H-8), as well as a lone singlet at $\delta_{\rm H}$ 7.55 (1H, s, H-2). These spectral data suggested the presence of a 1-hydroxy-3-substituted carbazole skeleton having no substituent in the A-ring.^{5 – 7)} Further, the ¹H- and ¹³C-NMR spectra showed signals

assignable to a vinyl methyl group [$\delta_{\rm H}$ 1.98 (3H, s); $\delta_{\rm C}$ 18.57 (q)], a vinyl methylene [$\delta_{\rm H}$ 5.26 and 5.07; $\delta_{\rm C}$ 113.58], a methine [$\delta_{\rm H}$ 5.12 (1H, dd, J = 3.7, 11.4 Hz); $\delta_{\rm C}$ 81.18 (d)] on a carbon bearing an oxygen atom, a methylene $[\delta_H]$ 3.71 (1H, dd, J=3.7, 16.5 Hz), 3.52 (1H, dd, J=11.4, 16.5 Hz); $\delta_{\rm C}$ 29.80 (t)], and a quaternary vinyl carbon [$\delta_{\rm C}$ 144.82 (s)] in addition to signals due to the carbazole nucleus. In ¹H-detected heteronuclear multiple bond connectivity (HMBC) spectroscopy (Fig. 1), C-H three-bond correlations were detected between the carbon signal at $\delta_{\rm C}$ 81.18 (C-2') and a vinyl methyl group at $\delta_{\rm H}$ 1.98 (3'-CH₃), and between the carbon signal at $\delta_{\rm C}$ 81.18 (C-2') and methylene protons at $\delta_{\rm H}$ 5.26, 5.07 (3'-CH₂). This led to the following structure of the side chain: -CH₂CH(OR)- CCH_3 (= CH_2). The presence of a lactone carbonyl group at C-3 was suggested by a significant C-H three-bond correlation between a carbonyl carbon at $\delta_{\rm C}$ 166.03 (C=O) and a lone singlet at $\delta_{\rm H}$ 7.55 (H-2), which was also related to the quarternary carbon (C-9a, $\delta_{\rm C}$ 134.40) bearing a nitrogen atom. Further, the presence of a C₅ unit at C-4 in this compound was indicated by the following results of HMBC and nuclear Overhauser effect (NOE) experiments: a) the observations of C-H three- or two-bond correlation between a lone singlet (H-2, $\delta_{\rm H}$ 7.55) and a carbon at $\delta_{\rm C}$ 128.54 (C-4), which was also related to the methylene protons (H-1', $\delta_{\rm H}$ 3.71, 3.52); b) the methylene protons (H-1', $\delta_{\rm H}$ 3.71, 3.52) showed long-range correlations with the carbon signals at $\delta_{\rm C}$ 117.05 (C-4a); c) an NOE enhancement between the H-5 (δ 8.19) and H-1' (δ 3.71) signals was observed.

On the basis of these spectral data, coupled with MS fragmentations (Fig. 2), we assigned the structure 1 to

Chart 1

© 1998 Pharmaceutical Society of Japan

^{*} To whom correspondence should be addressed.

February 1998 345

clausamine-A.

Structure of Clausamine-B (2) Clausamine-B (2) was isolated as a colorless oil, $[\alpha]_D 0^\circ$. The molecular formula

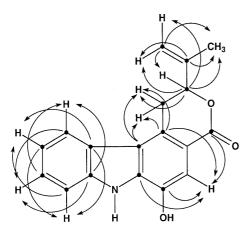


Fig. 1. C–H Three-Bond Long-Range Correlations in the HMBC Spectrum of Clausamine-A (1) in Acetone- d_6

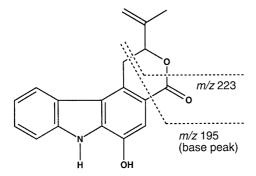


Fig. 2. MS Fragmentations of Clausamine-A (1)

 $C_{19}H_{17}NO_3$, a difference of CH_2 compared with 1, was established by HR-MS. The UV spectrum (see Experimental) was similar to that of 1. The ¹H-NMR spectrum (Table 1) also showed a similar signal pattern to that of 1, except for the additional 3H singlet at δ 4.07. In NOE experiments, irradiation of the methoxy group at δ 4.07 resulted in a 20% area increase of the signal at δ 7.66 (H-2). These spectral data, together with the results of the HMBC spectrum (Fig. 3), indicated the presence of a methoxy group at C-1 on 2, instead of a hydroxyl group on 1. These spectral data let us to assign the structure 2 to clausamine-B.

Structure of Clausamine-C (3) Clausamine-C (3) was obtained as a pale yellow oil, $[\alpha]_D 0^\circ$. The HR-MS analysis indicated the molecular formula to be C₁₉H₁₉NO₄. The UV spectrum showed bands at λ_{max} 204, 223, 238, 249, 270, 278 (sh), 312 (sh), 322, 336 nm, which were similar to those of 1 and 2. The IR spectrum exhibited bands at v_{max} 3464, 3400 (br), and 1703 cm⁻¹ due to imino, hydroxyl, and lactone carbonyl groups, respectively. In the ¹H-NMR spectrum, the appearance of a four-spin system in the aromatic proton region (Table 1) indicated that one of the rings on the carbazole nucleus was unsubstituted. The ¹H-NMR spectrum revealed a 3H singlet at δ 4.07 (OCH₃) and a lone 1H singlet at δ 7.63, in addition to a broad singlet at δ 8.66 (NH). In the NOE experiment, an NOE enhancement between the 3H singlet $(\delta 4.07)$ and the 1H singlet at $\delta 7.63$ was observed. Further, ABC-type signals at δ 3.67 (1H, dd, J = 3.3, 16.1 Hz, H-1'), 3.47 (1H, dd, J = 12.8, 16.1 Hz, H-1'), and 4.47 (1H, dd, J=3.7, 12.8 Hz, H-2'), and two 3H singlets at δ 1.50 and 1.47 assignable to two methyls attached to a carbon atom bearing an oxygen function were seen. Based on the

Table 1. ¹H- and ¹³C-NMR Spectral Data for the Novel Carbazole Alkaloids in CDCl₃

	1 a)		2		3	
	$\delta_{ extbf{H}}$	$\delta_{ m C}$	$\delta_{ extbf{H}}$	$\delta_{ m C}$	$\delta_{ extsf{H}}$	$\delta_{ m C}$
1		142.86 (s)		144.60 (s)	_	144.59 (s)
1-OCH ₃	- AMERICANA		4.07 (3H, s)	55.94 (q)	4.07 (3H, s)	55.92 (q
2	7.55 (s)	110.89 (d)	7.66 (s)	106.55 (d)	7.63 (s)	105.40 (d
3		121.56 (s)	<u> </u>	116.38 (s)	_	119.79 (s)
4	_	128.54 (s)	_	128.70 (s)	_	128.90 (s)
4a		117.05 (s)	Weightidah	120.27 (s)	Baddhama.	116.02 (s)
4b		124.30 (s)	enderma.	123.43 (s)	moreover.	123.41 (s)
5	8.19 (d, 8.1)	122.93 (d)	8.10 (d, 7.7)	121.95 (d)	8.09 (d, 7.7)	121.95 (d
6	7.25 (t, 8.1)	120.75 (d)	7.31 (t, 7.7)	120.63 (d)	7.33 (t, 7.7)	120.69 (d
7	7.45 (t, 8.1)	126.66 (d)	7.49 (t, 7.7)	126.22 (d)	7.50 (t, 7.7)	126.24 (d
8	7.66 (d, 8.1)	112.66 (d)	7.55 (d, 7.7)	111.58 (d)	7.55 (d, 7.7)	111.58 (d
8a		141.40 (s)	_	139.45 (s)	_ _	139.45 (s)
9a	2000	134.40 (s)		133.50 (s)		133.65 (s
NH	10.94 (br s)	_	8.64 (br s)		8.66 (br s)	
C = O		166.03 (s)		166.58 (s)	***************************************	166.38 (s)
l'	3.71 (dd, 3.7, 16.5)	$29.8 (t)^{b}$	3.66 (dd, 4.0, 16.5)	29.70 (t)	3.67 (dd, 3.3, 16.1)	25.49 (t)
	3.52 (dd, 11.4, 16.5)		3.54 (dd, 11.4, 16.5)		3.47 (dd, 12.8, 16.1)	
2'	5.12 (dd, 3.7, 11.4)	81.18 (d)	5.10 (dd, 4.0, 11.4)	80.88 (d)	4.47 (dd, 3.3, 12.8)	83.98 (d
3'		144.22 (s)	abrogathan	142.28 (s)		71.39 (s
3'-CH ₃	1.98 (3H, s)	18.57 (q)	2.00 (3H, s)	18.39 (q)	1.50 (3H, s)	25.99 (q
					1.47 (3H, s)	24.81 (q
3'-CH ₂	5.26 (br s)	113.58 (t)	5.25 (br s)	114.08 (t)	_	
	5.07 (d, 1.1)		5.10 (br s)			

Values in $(\delta_H$ and $\delta_C)$ ppm. The coupling constants (J) in parentheses are in Hz. All signals correspond to 1H, and were observed as singlets, unless otherwise stated. a) Spectra were taken in acetone- d_6 . b) Overlapped with the solvent.

346 Vol. 46, No. 2

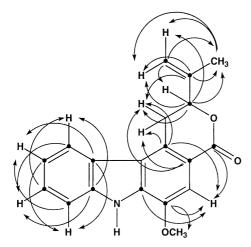


Fig. 3. C-H Three-Bond Long-Range Correlations in the HMBC Spectrum of Clausamine-B (2) in CDCl₃

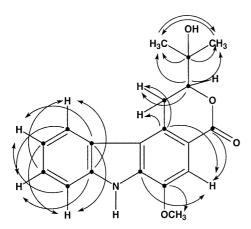


Fig. 4. C–H Three-Bond Long-Range Correlations in the HMBC Spectrum of Clausamine-C (3) in CDCl₃

aforementioned results, coupled with a significant mass fragment ion at m/z 267 [M⁺ - ·C(CH₃)₂-OH + ·H] in the EI-MS and the HMBC results shown by arrows in Fig. 4, the structure of clausamine-C was concluded to be 3.

These alkaloids contain a lactone moiety in the molecule, and are the first examples of lactonic carbazole alkaloids to be found in nature. Other compounds isolated from the acetone extract were characterized as ekeberginine, ⁸⁾ methyl carbazole-3-carboxylate, ⁹⁾ clausine-F (4), ⁴⁾ clausine-E, ¹⁰⁾ and *O*-demethylmurrayanine, ¹¹⁾ by comparisons of the ¹H-NMR, IR, UV, and MS data with those reported in the literature. ^{4,8-11)}

Experimental

 $^{\rm I}$ H- and 13 C-NMR, NOE, $^{\rm I}$ H-detected heteronuclear multiple quantum coherence (HMQC), and HMBC ($J=8\,{\rm Hz}$) spectra were recorded on an A-400 or A-600 (JEOL) spectrometer, in CDCl₃. Chemical shifts are shown in δ values (ppm) with tetramethylsilane (TMS) as an internal reference. All mass spectra were taken under electron impact (EI) conditions, unless otherwise stated, using an M-80 (Hitachi) spectrometer having a direct inlet system. UV spectra were recorded on a UVIDEC-610C double-beam spectrophotometer (Jasco) in MeOH, IR spectra on an IR-230 (Jasco) in CHCl₃, optical rotations on a DIP-370 (Jasco) in CHCl₃ at 25 °C, and CD spectra on a J-600 (Jasco) in MeOH. Preparative TLC was done on Kieselgel 60 F₂₅₄ (Merck).

Plant Materials The plant materials used in this study, *Clausena anisata* (WILLD.) OLIV., were collected during January–February 1996 in Kanchanaburi province, Thailand. Authentication was achieved by

comparison with the herbarium specimen at the Royal Forest Department, Ministry of Agriculture and Cooperative, Thailand. A voucher specimen has been deposited in the Faculty of Pharmaceutical Sciences, Chulalongkorn University.

Extraction and Isolation The dried branches (120 g) of C. anisata were extracted with acetone (800 ml × 3) at room temperature. The acetone extract (1.02 g) was subjected to silica gel column chromatography eluted with hexane, hexane-acetone (9:1, 4:1, 3:1, 3:2, 1:1), acetone, CHCl₃-MeOH (3:1), MeOH, successively, to give 9 fractions. The hexane-acetone (4:1) eluate was subjected to preparative silica gel TLC (PTLC) developed with hexane-CHCl₃ (3:7) to afford ekeberginine (0.3 mg) and methyl carbazole-3-carboxylate (0.5 mg). The hexane-acetone (3:1) eluate was subjected to PTLC developed with CHCl₃ to afford clausamine-B (2) (1.1 mg) and clausine-F (4) (27.6 mg). The hexane-acetone (3:2) eluate was subjected to PTLC developed with CH₂Cl₂-acetone (9:1) to afford six fractions 1—6. Fraction 4 was also subjected to PTLC developed with CHCl₃-MeOH (99:1) to give clausine-E (3.7 mg). Fraction 5 was subjected to PTLC developed with CHCl₃-MeOH (49:1) to give clausamine-C (3) (1.0 mg) and O-demethylmurrayanine (1.6 mg). Fraction 6 was subjected to PTLC developed with iso-Pr₂O-MeOH (19:1) to afford clausamine-A (1) (1.0 mg).

Clausamine-A (1): Pale yellow powder. $[\alpha]_D$ 0° (c=0.072). CD (MeOH, 200—400 nm): no absorption. UV $\lambda_{\rm max}$ nm: 204, 222, 238, 248, 269, 278 (sh), 310 (sh), 322, 335. IR $\nu_{\rm max}$ cm⁻¹: 3462, 3329 (br), 1697, 1589, 1508. EI-MS m/z (%): 293 (M⁺, 42), 249 (22), 234 (32), 223 (27), 195 (100), 167 (34), 151 (17). NOE: irradiation of H-5 (δ 8.19) gave 7% NOE at H-1' (δ 3.71); irradiation of H-1' (δ 3.71) gave 14% NOE at H-5 (δ 8.19), 25% NOE at H-1" (δ 3.52) and 8% NOE at H-2" (δ 5.12). HR-MS Calcd for $C_{18}H_{15}NO_3$: 293.1050. Found: 293.1050.

Clausamine-B (2): Colorless oil. $[\alpha]_D$ 0° (c=0.082). CD (MeOH, 200—400 nm): no absorption. UV $\lambda_{\rm max}$ nm: 205, 222, 237, 248, 269, 278 (sh), 310 (sh), 321, 334. IR $\nu_{\rm max}$ cm $^{-1}$: 3464, 1699, 1603. EI-MS m/z (%): 307 (M $^+$, 100), 263 (30), 248 (28), 237 (26), 209 (73), 194 (12), 180 (14), 166 (12). NOE: irradiation of 1-OCH $_3$ (δ 4.07) gave 20% NOE at H-2 (δ 7.66); irradiation of H-5 (δ 8.09) gave 7% NOE at H-1′ (δ 3.66). HR-MS Calcd for $C_{19}H_{17}NO_3$: 307.1207. Found: 307.1209.

Clausamine-C (3): Pale yellow oil. $[\alpha]_D$ 0° (c=0.037). CD (MeOH, 200—400 nm): no absorption. UV $\lambda_{\rm max}$ nm: 204, 223, 238, 249, 270, 278 (sh), 312 (sh), 322, 336. IR $\nu_{\rm max}$ cm $^{-1}$: 3464, 3400 (br), 1703, 1587, 1510. EI-MS m/z (%): 325 (M $^+$, 57), 307 (11), 292 (7), 278 (7), 267 (58), 252 (7), 250 (8), 238 (100), 224 (9), 222 (16), 210 (21), 206 (7). 195 (42). NOE: irradiation of I-OCH $_3$ (δ 4.07) gave 16% NOE at H-2 (δ 7.63); irradiation of H-5 (δ 8.09) gave 8% NOE at H-1′ (δ 3.67). HR-MS Calcd for C $_{19}$ H $_{19}$ NO $_4$: 325.1313. Found: 325.1317.

Acknowledgements This work was supported in part by a Grantin-Aid (H. F., 1997) for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- A part of this paper was presented at the 43th Annual Meeting, Toukai Branch of the Pharmaceutical Society of Japan, Gifu, July 1997.
- Ito C., Ohta H., Tan H. T.-W., Furukawa H., Chem. Pharm. Bull., 44, 2231—2235 (1996).
- Ito C., Katsuno S., Ohta H., Omura M., Kajiura I., Furukawa H., Chem. Pharm. Bull., 45, 48—52 (1997).
- 4) Wu T.-S., Huang S.-C., Chem. Pharm. Bull., **40**, 1069—1071 (1992).
- Chakraborty D. P., "Progress in the Chemistry of Organic Natural Products," Vol. 34, ed by Herz W., Grisebach H., Kirby G. W., Springer-Verlag, New York, 1977, pp. 299—371.
- Bhattacharyya P., Chakraborty D. P., "Progress in the Chemistry of Organic Natural Products," Vol. 52, ed by Herz W., Grisebach H., Kirby G. W., Springer-Verlag, New York, 1987, pp. 159—209.
- Chakraborty D. P., Roy S., "Progress in the Chemistry of Organic Natural Products," Vol. 57, ed by Herz W., Grisebach H., Kirby G. W., Springer-Verlag, New York, 1991, pp. 71—152.
- Lontsi D., Ayafor J. F., Sondengam B. L., Connolly J. D., Rycroft D. S., *Tetrahedron Lett.*, 26, 4249—4252 (1985).
- Li W.-S., McChesney J. D., El-Feraly F. S., *Phytochemistry*, 30, 343—346 (1991).
- Wu T.-S., Huang S.-C., Wu P.-L., Teng C.-M., Phytochemistry, 43, 133—140 (1996).
- Ngadjui B. T., Ayafor J. F., Sondengan B. L., Connolly J. D., *Phytochemistry*, 28, 1517—1519 (1989).