Constituents of Fennel. X. New Chromanone and Phenylethanoid Glycosides, and *threo*-Epoxyanethole

Junichi Кіталма,^{*, a} Toru Isнікаwa,^a Yasuko Tanaka,^a and Yoshiteru Ida^b

Showa College of Pharmaceutical Sciences,^a Higashi-Tamagawagakuen 3, Machida, Tokyo 194–8543 Japan, and School of Pharmaceutical Sciences, Showa University,^b Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan. Received May 24, 1999; accepted July 5, 1999

From the water-soluble portion of the methanol extract of the herbal medicine fennel, a new chromanone glycoside and a new phenylethanoid glycoside were isolated, and their structures were determined by spectral methods. An optical isomeric mixture of *threo*-epoxyanethole was obtained from the ether-soluble portion, and it was considered to be an auto-oxidation product of *trans*-anethole.

Key words fennel; *Foeniculum vulgare* fruit; chromanone glycoside; *thero*-epoxyanethole; phenylethanoid glycoside; auto-oxidation product

We have exhaustively investigated the constituents of the water-soluble portion of fennel, the fruit of *Foeniculum vulgare* MILLER (Umbelliferae), and reported the isolation and characterization of alkyl glycosides,¹⁾ aromatic compound glycosides,²⁾ monoterpenoid glycosides of various types,³⁾ glucides and nucleosides.⁴⁾ Herein, we describe the isolation and structure elucidation of chromanone derivative and phenylethanoid glycosides from the water-soluble fraction. We also examined the constituents of the ether-soluble portion, and a *threo*-epoxyanethole was obtained together with sterols and a triterpenoid.

The methanolic extract of commercial fennel was treated as described in the Experimental section, and from the watersoluble portion, glycosides 1 to 6 were isolated.

Glycoside 1 ($C_{20}H_{26}O_{10}$, an amorphous powder, $[\alpha]_D^{22}$ -68.0°) showed $[M+K]^+$, $[M+Na]^+$, $[M+H]^+$ and $[M-K]^+$ $C_6H_{10}O_5+H]^+$ ion peaks at m/z 465, 449, 427 and 265 in the positive FAB-MS, and acid hydrolysis of 1 gave D-glucose as a sugar component. The ¹H-, ¹³C- and ¹³C-¹H correlation spectroscopy (COSY) NMR spectral data (Tables 1 and 2) showed the presence of one β -D-glucopyranosyl, 1,2,4,5tetrasubstituted benzene, gem-dimethyl groups, three methylenes, one carboxyl group, and one carbonyl carbon. The analysis of heteronuclear multiple-bond correlation (HMBC) spectral and ¹H-¹H COSY spectral data (Fig. 1, shown in heavy lines and dotted line) suggested that the aglycone of 1 was a chromanone derivative having two tert-methyls at C-2, a carboxyethyl group at C-6 and a hydroxyl group at C-7. The location of the glucosyl unit was determined to be C-7 by correlation between C-7 and the glucosyl H-1 signals in the HMBC spectrum. Therefore, 1 was characterized as 6carboxyethyl-7-hydroxy-2,2-dimethylchromanone $7-O-\beta$ -Dglucopyranoside.

Glycoside **2** ($C_{17}H_{20}O_9$, an amorphous powder, $[\alpha]_D^{22}$ –44.0°) was identified as cnidioside A by direct comparison

Fig. 1. Partial Structure of 1 Solved by HMBC and ¹H-¹H COSY Spectra

with an authentic sample.⁵⁾

Glycoside 3 ($C_{16}H_{24}O_9$, an amorphous powder, $[\alpha]_D^{22}$ -87.0°) showed $[M+H]^+$ and $[M-C_6H_{12}O_6+H]^+$ ion peaks at m/z 361 and 181 in the positive FAB-MS. The NMR revealed 3 to have one β -D-glucopyranosyl, one 1,3,4-trisubstituted benzene ring, one dihydroxyethyl and two methoxyl groups. Since the nuclear Overhauser enhancement and exchange spectroscopy (NOESY) spectrum showed the following cross-peaks: H-1'/H-2, H-1'/H-6, and H-1'/glucosyl H-1 (Fig. 2), 3 was suggested to be 1'-(3,4-dimethoxyphenyl)ethane-1',2'-diol 1'-O- β -D-glucopyranoside. The absolute configuration at C-1' was deduced to be R from its $[M]_{D}$ value (-313°) , which was negative as was $(1R')-1'-(3-1)^{\circ}$ hydroxy-4-methoxyphenyl)ethane-1',2'-diol $(-42^{\circ})^{2a}$ when calculated using the value for methyl β -D-glucopyranoside $(-62^\circ, 3-\text{methyl }\beta\text{-}\text{D-glucopyranoside}=-251^\circ)$.⁶⁾ Comparison of the chemical shift of glucosyl C-1 of 3 (δ 101.85) with those of *erythro*-anethole glycol 1'-O- β -D-glucopyranosides (1*R* form, δ 101.46 and 1*S* form, δ 105.07)^{2b)} also supported this conclusion. From these facts, 3 was characterized as (1'R)-1'-(3,4-dimethoxyphenyl)ethane-1',2'-diol 1'-O- β -D-glucopyranoside.

Glycoside **4** (an amorphous powder, $[\alpha]_D^{24} - 45.0^\circ$), **5** (an amorphous powder, $[\alpha]_D^{22} - 43.5^\circ$) and **6** (an amorphous

Fig. 2. Structures of 1—4 and 7, and NOE Interactions Observed in the NOESY Spectra of 3 and 7

© 1999 Pharmaceutical Society of Japan

Chart 1. Auto-oxidation Process of trans-Anethole

Table 1. ¹H-NMR Chemical Shifts of 1, 3, 4 and 7 (at 500 MHz)

	1 ^{<i>a</i>)}		$3^{b)}$	$4^{b)}$	$7^{c)}$
H ₂ -3	2.67 d (1.5)	Н-2	7.59 ^{<i>d</i>})	7.37 d (2.0)	7.33 d (8.5)
H-5	7.61 s	H-3			6.90 d (8.5)
H-8	6.64 s	H-5	6.90 d (8.0)	6.95 d (8.5)	7.01 d (8.0)
CH ₃	1.41 s	H-6	7.24 dd (2.0, 8.0)	7.24 dd (2.0, 8.5)	6.90 d (8.5)
5	1.42 s	H-1'	5.58 dd (4.5, 7.0)	5.39 dd (3.5, 8.5)	4.27 d (9.0)
H ₂ -1′	2.88 m	H-2'	4.15 dd (4.5, 11.5)	4.30 dd (3.5, 11.0)	3.73 dq (6.0, 9.0)
H ₂ -2'	2.37 ddd (6.0, 12.0, 12.0)		4.31 dd (7.0, 11.5)	4.46 dd (8.5, 11.0)	_
2	2.44 ddd (6.0, 12.0, 12.0)	H ₃ -3′	_	_	1.00 d (6.0)
Glc-1	4.95 d (7.5)	3-OCH ₃	3.76 s	3.74 s	_ ``
		4-OCH ₂	3.76 s	3.72 s	3.80 s
		Glc-1	5.01 d (7.5)	5.08 d (7.5)	

 δ in ppm from TMS [coupling constants (J) in Hz are given in parentheses]. Measured in a) CD₃OD, b) pyridine- d_5 , c) CDCl₃. d) Signal is overlapped with pyridine- d_5 .

powder, $[\alpha]_{\rm D}^{22} - 49.0^{\circ}$) were identified as 1'-(3,4-dimethoxyphenyl)ethane-1',2'-diol 2'-*O*- β -D-glucopyranoside,⁷⁾ β -sitosteryl β -D-glucopyranoside and stigmasteryl β -D-glucopyranoside from the results of NMR analysis (Tables 1 and 2). The absolute configuration at C-1' of **4** was shown to be *R* for the same reason as described for **3** ([*M*]_D value of **4**-methyl β -D-glucopyranoside=-100°).

We also investigated the ether-soluble portion of the fruit in the hope of isolating anethole related compounds, and compounds 7 to 11 were obtained as described in Experimental.

Compound 7 ($C_{10}H_{12}O_2$, mp 182—184 °C, $[\alpha]_D^{21}$ 0°) showed $[M+H]^+$ ion peaks at m/z 165 in the positive FAB-MS and chemical ionization (CI)-MS spectra. Comparison of the ¹H- and ¹³C-NMR (Tables 1 and 2) with those of *erythro*and *threo*-anethole (**12** and **13**),^{2b)} and the molecular formula revealed that 7 is an oxidation product of anethole with an epoxy ring between C-1' and C-2'. The following NOE interactions were observed: H-1'/H-6, H-2'/H-2 and H-1'/H₃-3' in the NOESY spectrum (Fig. 2), suggesting that the stereochemical relation between C-1' and C-2' of 7 should be *threo*. Thus, 7 was characterized as *threo*-epoxyanethole. As 7 has no optical rotation, it was considered to be an equivalent mixture of optical isomers the same as **12** and **13**.

Compound **8** (C₈H₈O₃, mp 185—186 °C, $[\alpha]_D^{21}$ 0°), **9** (C₂₉H₅₀O, mp 137—139 °C, $[\alpha]_D^{22}$ -31.0°), **10** (C₂₉H₄₈O, mp 167—169 °C, $[\alpha]_D^{22}$ -47.0°) and **11** (C₃₀H₄₈O₃, mp >300 °C, $[\alpha]_D^{21}$ +85.0°) were identified as *p*-anisic acid, β -sitosterol, stigmasterol and oleanolic acid, respectively.

Fennel contains 3—8% essential oil comprising 57—82% anethole and 6—27% *p*-ansaldehyde (14),⁸⁾ and 14 is regarded as a compound of an auto-oxidation product of anethole while the fennel is preserved.⁹⁾ Thus, the composition of 14 is believed useful for characterizing the quality of medicine.¹⁰⁾ As compounds 7, 8, 12 and 13, which were obtained as anethole-related constituents of fennel,¹¹⁾ are also regarded

Table 2. ¹³C-NMR Chemical Shifts of 1, 3, 4 and 7 (at 125 MHz)

	1 ^{<i>a</i>)}	3 ^{b)}	4 ^{b)}	7 ^{c)}
C-1	_	132.98	135.15	131.18
C-2	80.68	111.99	111.19	128.75
C-3	49.29	149.43 ^d	149.18^{d}	113.87
C-4	193.75	150.02^{d}	149.44^{d}	159.53
C-5	128.08	112.26	112.34	113.87
C-6	126.35	120.54	119.18	128.75
C-7	163.75	_		
C-8	104.17	_		
C-9	115.68	_	_	
C-10	162.10	_		_
CH ₃	26.70	_	_	
	26.84	_	_	
C-1′	28.13	81.10	72.71	84.11
C-2'	39.8 (br)	67.81	76.80	76.83
C-3′	182.5 (br)			17.27
3-OCH ₃		55.72	55.79	
4-OCH ₃		55.93	55.98	56.06
Glc-1	101.92	101.85	104.97	
Glc-2	74.62	75.36	75.21	
Glc-3	78.29	78.60	78.78	
Glc-4	71.23	71.75	71.66	
Glc-5	77.74	78.60	78.60	
Glc-6	62.46	62.65	62.69	

 δ in ppm from TMS. Measured in *a*) CD₃OD, *b*) pyridine-*d*₅, *c*) CDCl₃. *d*) Assignments may be interchanged in each column.

as auto-oxidation products of anethole, the oxidation process is proposed as shown in Chart 1.

Experimental

Alumina column chromatography was carried out using neutral aluminum oxide (grade III, Woelm). CI-MS was taken on a JEOL JMS D-300 spectrometer. The other instruments used and the experimental conditions for obtaining spectral data and for chromatography were the same as described in the preceding paper.¹⁾

Extraction and Isolation of 1 to 13 As reported in the previous paper, commercial fennel (2.0 kg) was extracted with methanol. The methanol extract (329.4 g) was partitioned into ether–water, then ethyl acetate–water,

and the thus-obtained aqueous portion was subjected to Amberlite XAD-II (H₂O \rightarrow MeOH). The methanol eluate (29.5 g) was chromatographed over Sephadex LH-20 (MeOH) to give seven fractions (frs. A-G). Fraction C (16.9 g) was chromatographed over silica gel [CHCl3-MeOH-H2O $(4:1:0.1) \rightarrow MeOH$ to give fifteen fractions (frs. $C_1 - C_{15}$). Fraction C_2 (1.1 g) was treated with MeOH-H₂O (1:1), and a part of the insoluble portion $(230 \rightarrow 20 \text{ mg})$ was subjected to HPLC [symmetryprep C₈, MeOH] to give 6 (8 mg) and 5 (12 mg). Fraction C_7 (0.7 g) was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:10 \rightarrow 3:17)] to give nine fractions (frs. C7-1-C7-9). Fraction C7-5 was subjected to HPLC [carbohydrate analysis, $CH_{3}CN-H_{2}O$ (19:1)] to give three fractions (frs. $C_{7-5-1}-C_{7-5-3}$). Fraction C7-5-3 was acetylated with Ac2O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C18, CH3CN-H2O (9:11)] to give two fractions. Each fraction was deacetylated by heating with 20% NH4OH-MeOH for 2 h in a water bath to give 3 (5 mg) and 4 (2 mg) in pure form. Fraction D (1.9 g) was chromatographed over Sephadex LH-20 (MeOH) to give six fractions (frs. $D_1 - D_6$). Fraction D_4 (0.1 g) was subjected to a Lobar RP-8 column [MeOH-H₂O (1:4)] and HPLC [ODS, MeOH-H₂O (1:4)] to give 1 (22 mg). Fraction D₅ (0.1 g) was subjected to a Lobar RP-8 column [MeOH-H₂O (3:17)] to give 2 (10 mg). The ether-soluble portion (74.3 g in 225.6 g) was chromatographed over silica gel [hexane-→hexane-EtOAc $(9:1\rightarrow 4:1\rightarrow 3:2)\rightarrow$ acetone \rightarrow MeOH] to give fourteen fractions (frs. N₁-N14). Fraction N4 (2.0 g) was chromatographed over silica gel [CHCl3-CHCl₃-MeOH (9:1)] to give five fractions (frs. N₄₋₁-N₄₋₅). Fractions N₄₋₃ (0.3 g) and N_{4.4} (0.9 g) were individually chromatographed over aluminum oxide [hexane–EtOAc (9:1)] to give 8 (30 mg) from fr. N_{4-3} , and 7 (45 mg) from fr. N₄₋₄. Fraction N₇ (2.7 g) was chromatographed over silica gel [hexane-EtOAc $(4:1\rightarrow7:3)\rightarrow$ EtOAc] and HPLC [symmetryprep C₈, MeOH] to give 10 (40 mg) and 9 (30 mg). Fraction N_{10} (3.9 g) was chromatographed over silica gel [CHCl₃ \rightarrow CHCl₃-MeOH (9:1)] and Sephadex LH-20 [MeOH] to give 11 (90 mg). The ethyl acetate-soluble portion (2.8 g) was chromatographed over silica gel [CHCl₃-MeOH-H₂O (9:1:0.1) \rightarrow MeOH] to give five fractions (frs. $O_1 - O_5$). Fraction O_2 (0.6 g) was subjected to a Lobar RP-8 column [MeOH-H₂O (1:1)] and HPLC [symmetryprep C₈, MeOH-H₂O (1:1)] to give 13 (60 mg) and 12 (140 mg). Fraction O_3 (0.3 g) was treated with MeOH-H₂O (1:1), and a part of the insoluble portion (120 \rightarrow 12 mg) was subjected to HPLC [symmetryprep C₈, MeOH] to give 6 (5 mg) and 5 (7 mg).

The following compounds were identified by comparison with authentic compounds.

Cnidioside A (2), β -sitosteryl β -D-glucopyranoside (5), stigmasteryl β -D-glucopyranoside (6), *p*-anisic acid (8), β -sitosterol (9), stigmasterol (10), oleanolic acid (11), *threo*-anethole glycol (12), and *erythro*-anethole glycol (13).

6-Carboxyethyl-7-hydroxy-2,2-dimethylchromanone 7-*O*-β-D-Glucopyranoside (1) An amorphous powder, $[\alpha]_D^{22} - 68.0^\circ$ (*c*=0.8, MeOH). Positive FAB-MS *m/z*: 465 [M+K]⁺, 449.1458 [M+Na]⁺ (Calcd for C₂₀H₂₆NaO₁₀: 449.1424), 427.1612 [M+H]⁺ (Calcd for C₂₀H₂₇O₁₀: 427.1604), 265 [M-C₆H₁₀O₅+H]⁺ (base). HMBC (in CD₃OD, 500 MHz): H₂-3/C-2, -4, <u>C</u>H₃a, <u>C</u>H₃b; H-5/C-4, -7, -10, -1'; H-8/C-6, -7, -9, -10; <u>C</u>H₃a/C-2, -3, -<u>C</u>H₃b; <u>C</u>H₃b/C-2, -3, -<u>C</u>H₃a; H₂-1'/C-5, -6, -7, -2'; H-Glc-1/C-7.

Acid Hydrolysis of 1 Glycoside 1 (8 mg) was dissolved in aq. $2 \times H_2SO_4$ and heated in a water bath for 3 h. The reaction mixture of hydrolysate was neutralized with NaHCO₃, the salt was filtered off, and the filtrate was chromatographed over silica gel [CHCl₃-MeOH-H₂O (7:3:0.5)].

The sugar fraction was subjected to HPLC [column, carbohydrate analysis (Waters, size, 3.9×300 mm); detector, JASCO RI-930 detector; solv., CH₃CN-H₂O (17:3), 2 ml/min; $t_{\rm R}$ 4.5 min (same location as that of D-glucose)].

(1'*R*)-1'-(3,4-Dimethoxyphenyl)ethane-1',2'-diol 1'-*O*-β-D-Glucopyranoside (3) An amorphous powder, $[α]_D^{24} - 87.0^\circ (c=0.1, \text{ MeOH})$. Positive FAB-MS m/z: 453 $[M+H+92 \text{ (glycerol)}]^+$, 361.1512 $[M+H]^+$ (Calcd for C₁₆H₂₅O₆: 361.1499), 181 $[M-C_6H_{12}O_6+H]^+$ (base).

(1'*R*)-1'-(3,4-Dimethoxyphenyl)ethane-1',2'-diol 2'-*O*-β-D-Glucopyranoside (4) An amorphous powder, $[α]_D^{24} - 45.0^\circ (c=0.1, \text{ MeOH})$. Positive FAB-MS m/z: 453 [M+H+92 (glycerol)]⁺, 383.1329 [M+Na]⁺ (Calcd for C₁₆H₂₄NaO₉: 383.1318), 181 [M-C₆H₁₂O₆+H]⁺ (base).

threo-Epoxyanethole (7) Colorless needles, mp 182—184 °C, $[\alpha]_{D1}^{21}$ 0° (*c*=1.8, CHCl₃). Positive FAB-MS *m/z*: 329 [2M+H]⁺, 187 [M+Na]⁺, 165.0904 [M+H]⁺ (base, Calcd for C₁₀H₁₂O₂: 165.0916). CI-MS *m/z*: 329 [2M+H]⁺, 165 [M+H]⁺ (base).

Acknowledgments The authors thank Messrs. Y. Takase and H. Suzuki of the Central Analytical Department of this college for NMR and MS measurements.

References and Notes

- Kitajima J., Ishikawa T., Tanaka Y., Chem. Pharm. Bull., 46, 1643– 1646 (1998).
- a) Kitajima J., Ishikawa T., Tanaka T., Ono M., Ito Y., Nohara T., *Chem. Pharm. Bull.*, 46, 1587—1590 (1998); b) Kitajima J., Ishikawa T., Tanaka Y., *ibid.*, 46, 1591—1594 (1998).
- Ono M. Ito Y., Ishikawa T., Kitajima J., Tanaka Y., Niiho Y., Nohara T., Chem. Pharm. Bull., 44, 337–342 (1996); Ishikawa T., Kitajima J., Tanaka Y., *ibid.*, 46, 1599–1602 (1998); *idem, ibid.*, 46, 1603–1606 (1998); *idem, ibid.*, 46, 1748–1751 (1998); Ishikawa T., Kitajima J., Tanaka Y., Ono M., Ito Y., Nohara T., *ibid.*, 46, 1738–1742 (1998); Ishikawa T., Tanaka Y., Kitajima J., Ida Y., *ibid.*, 47, 805–808 (1999).
- Kitajima J., Ishikawa T., Tanaka Y., Ida Y., Chem. Pharm. Bull., 47, 988—992 (1999).
- Yahara S., Sugimura C., Nohara T., Niiho Y., Nakajima Y., Ito H., Shouyakugaku Zasshi, 47, 74–78 (1993).
- Klyne W. "Determination of Organic Structure by Physical Methods," ed. by Braude E. A., Nachod F. C., Academic Press, New York, 1975, p. 73; *idem, Biochem. J.*, 47, XIi—XIii (1950).
- Nishibe S., Okabe K., Tsukamoto H., Sakushima A., Hisada S., Baba H., Akisada T., *Chem. Pharm. Bull.*, **30**, 4548–4553 (1982); Tommasi N. D., Rastrelli L., Cumanda J., Speranza G., Pizza C., *Phytochemistry*, **42**, 163–167 (1996).
- Betts T. J., J. Pharm. Pharmacol., 20, 469–472 (1968); idem, ibid.,
 20, supplement, 61s-64s (1968); Tóth L. V., Planta Med., 15, 157– 172 (1967); idem, ibid., 15, 371–389 (1967); Karlsen J., Svendsen A. B., Chingova B, Zolotovitch G., ibid., 17, 281–293 (1969).
- 9) Ravid U., Putievsky E., Snir N., J. Nat. Prod., 46, 848-851 (1983).
- Noro S., Hisada Y., Abstracts of Papers, 26th Annual Meeting of the Japanese Society of Pharmacognosy, Tokyo, October, 1979, p. 40.
- 11) Fennel used in this experiment (purchased from Kinokuniya Chinese Medicine Pharmacy, Ltd., lot. No. AOCJOD28J) contained 3.8% of essential oil, and the ratio of anethole and 14 was 17:3 by HPLC analysis; Curro P., Micali G., Lauzza F., J. Chromatogr., 404, 273– 278 (1987).