Constituents of Fennel. X. New Chromanone and Phenylethanoid Glycosides, and *threo***-Epoxyanethole**

Junichi Kitajima,^{*,*a*} Toru Ishikawa,^{*a*} Yasuko Tanaka,^{*a*} and Yoshiteru Ida^b

Showa College of Pharmaceutical Sciences,^a Higashi-Tamagawagakuen 3, Machida, Tokyo 194–8543 Japan, and School of Pharmaceutical Sciences, Showa University,b Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan. Received May 24, 1999; accepted July 5, 1999

From the water-soluble portion of the methanol extract of the herbal medicine fennel, a new chromanone glycoside and a new phenylethanoid glycoside were isolated, and their structures were determined by spectral methods. An optical isomeric mixture of *threo***-epoxyanethole was obtained from the ether-soluble portion, and it was considered to be an auto-oxidation product of** *trans***-anethole.**

Key words fennel; *Foeniculum vulgare* fruit; chromanone glycoside; *thero*-epoxyanethole; phenylethanoid glycoside; auto-oxidation product

We have exhaustively investigated the constituents of the water-soluble portion of fennel, the fruit of *Foeniculum vulgare* MILLER (Umbelliferae), and reported the isolation and characterization of alkyl glycosides,¹⁾ aromatic compound glycosides, 2 ⁾ monoterpenoid glycosides of various types, 3) glucides and nucleosides.4) Herein, we describe the isolation and structure elucidation of chromanone derivative and phenylethanoid glycosides from the water-soluble fraction. We also examined the constituents of the ether-soluble portion, and a *threo*-epoxyanethole was obtained together with sterols and a triterpenoid.

The methanolic extract of commercial fennel was treated as described in the Experimental section, and from the watersoluble portion, glycosides **1** to **6** were isolated.

Glycoside 1 ($C_{20}H_{26}O_{10}$, an amorphous powder, $[\alpha]_D^{22}$ -68.0°) showed $[M+\text{K}]^+$, $[M+\text{Na}]^+$, $[M+\text{H}]^+$ and $[M-\text{K}]^+$ $C_6H_{10}O_5 + H$ ⁺ ion peaks at *m/z* 465, 449, 427 and 265 in the positive FAB-MS, and acid hydrolysis of **1** gave D-glucose as a sugar component. The ${}^{1}H_{7}$, ${}^{13}C_{7}$ and ${}^{13}C_{7}{}^{1}H_{7}$ correlation spectroscopy (COSY) NMR spectral data (Tables 1 and 2) showed the presence of one β -D-glucopyranosyl, 1,2,4,5tetrasubstituted benzene, gem-dimethyl groups, three methylenes, one carboxyl group, and one carbonyl carbon. The analysis of heteronuclear multiple-bond correlation (HMBC) spectral and ${}^{1}H-{}^{1}H$ COSY spectral data (Fig. 1, shown in heavy lines and dotted line) suggested that the aglycone of **1** was a chromanone derivative having two *tert*-methyls at C-2, a carboxyethyl group at C-6 and a hydroxyl group at C-7. The location of the glucosyl unit was determined to be C-7 by correlation between C-7 and the glucosyl H-1 signals in the HMBC spectrum. Therefore, **1** was characterized as 6 carboxyethyl-7-hydroxy-2,2-dimethylchromanone 7 -O- β -Dglucopyranoside.

Glycoside 2 ($C_{17}H_{20}O_9$, an amorphous powder, $[\alpha]_D^{22}$ -44.0°) was identified as cnidioside A by direct comparison

Fig. 1. Partial Structure of 1 Solved by HMBC and ¹H-¹H COSY Spectra

with an authentic sample.⁵⁾

Glycoside **3** (C₁₆H₂₄O₉, an amorphous powder, $[\alpha]_D^{22}$ -87.0°) showed [M+H]⁺ and [M-C₆H₁₂O₆+H]⁺ ion peaks at *m*/*z* 361 and 181 in the positive FAB-MS. The NMR revealed **3** to have one β -D-glucopyranosyl, one 1,3,4-trisubstituted benzene ring, one dihydroxyethyl and two methoxyl groups. Since the nuclear Overhauser enhancement and exchange spectroscopy (NOESY) spectrum showed the following cross-peaks: $H-1'/H-2$, $H-1'/H-6$, and $H-1'/glucosyl H-1$ (Fig. 2), **3** was suggested to be $1'$ -(3,4-dimethoxyphenyl)ethane-1',2'-diol $1'$ -*O*- β -D-glucopyranoside. The absolute configuration at C-1' was deduced to be *R* from its $[M]_D$ value (-313°) , which was negative as was $(1R^{\prime})$ -1'- $(3$ hydroxy-4-methoxyphenyl)ethane-1',2'-diol $(-42°)^{2a}$ when calculated using the value for methyl β -D-glucopyranoside $(-62^{\circ}, 3$ -methyl β -D-glucopyranoside= -251°).⁶⁾ Comparison of the chemical shift of glucosyl C-1 of 3 (δ 101.85) with those of *erythro*-anethole glycol 1'-*O*-β-D-glucopyranosides (1*R* form, δ 101.46 and 1*S* form, δ 105.07)^{2*b*)} also supported this conclusion. From these facts, **3** was characterized as $(1/R)-1'$ - $(3,4$ -dimethoxyphenyl)ethane-1',2'-diol 1'- O - β -D-glucopyranoside.

Glycoside **4** (an amorphous powder, $[\alpha]_D^{24}$ -45.0°), **5** (an amorphous powder, $[\alpha]_D^{22}$ -43.5°) and **6** (an amorphous

Fig. 2. Structures of **1**—**4** and **7**, and NOE Interactions Observed in the NOESY Spectra of **3** and **7**

Chart 1. Auto-oxidation Process of *trans*-Anethole

Table 1. ¹H-NMR Chemical Shifts of **1**, **3**, **4** and **7** (at 500 MHz)

	1 ^a		3 ^b	$4^{b)}$	7°
$H_2 - 3$	2.67 d(1.5)	$H-2$	7.59^{d}	7.37 d (2.0)	7.33 d (8.5)
$H-5$	7.61 s	$H-3$			6.90 d(8.5)
$H-8$	6.64 s	$H-5$	6.90 d(8.0)	6.95 d(8.5)	7.01 d(8.0)
CH ₃	1.41 s	H-6	7.24 dd $(2.0, 8.0)$	7.24 dd $(2.0, 8.5)$	6.90 d (8.5)
	1.42 s	$H-1'$	5.58 dd $(4.5, 7.0)$	5.39 dd (3.5, 8.5)	4.27 d (9.0)
$H_2 - 1'$	2.88 _m	$H-2'$	4.15 dd $(4.5, 11.5)$	4.30 dd $(3.5, 11.0)$	$3.73 \text{ dq } (6.0, 9.0)$
$H_2 - 2'$	2.37 ddd $(6.0, 12.0, 12.0)$		4.31 dd $(7.0, 11.5)$	4.46 dd $(8.5, 11.0)$	-
	2.44 ddd $(6.0, 12.0, 12.0)$	$H_3 - 3'$			1.00 d(6.0)
$Glc-1$	4.95 d (7.5)	$3-OCH3$	3.76 s	3.74 s	_
		$4-OCH3$	3.76 s	3.72 s	3.80 s
		Glc-1	5.01 d (7.5)	5.08 d (7.5)	

 δ in ppm from TMS [coupling constants (*J*) in Hz are given in parentheses]. Measured in *a*) CD₃OD, *b*) pyridine-*d₅*, *c*) CDCl₃. *d*) Signal is overlapped with pyridine-*d₅*

powder, $[\alpha]_D^{22}$ -49.0°) were identified as 1'-(3,4-dimethoxyphenyl)ethane-1',2'-diol 2'-O- β -D-glucopyranoside,⁷⁾ β sitosteryl β -D-glucopyranoside and stigmasteryl β -D-glucopyranoside from the results of NMR analysis (Tables 1 and 2). The absolute configuration at C-19 of **4** was shown to be *R* for the same reason as described for **3** ($[M]_D$ value of **4** – methyl β -D-glucopyranoside= -100°).

We also investigated the ether-soluble portion of the fruit in the hope of isolating anethole related compounds, and compounds **7** to **11** were obtained as described in Experimental.

Compound **7** (C₁₀H₁₂O₂, mp 182—184 °C, [α]_D²¹ 0°) showed $[M+H]$ ⁺ ion peaks at m/z 165 in the positive FAB-MS and chemical ionization (CI)-MS spectra. Comparison of the ¹ H- and 13C-NMR (Tables 1 and 2) with those of *erythro*and *threo*-anethole $(12 \text{ and } 13)$,^{2*b*)} and the molecular formula revealed that **7** is an oxidation product of anethole with an epoxy ring between $C-1'$ and $C-2'$. The following NOE interactions were observed: H-1'/H-6, H-2'/H-2 and H-1'/H₃-3' in the NOESY spectrum (Fig. 2), suggesting that the stereochemical relation between C-1' and C-2' of 7 should be *threo*. Thus, **7** was characterized as *threo*-epoxyanethole. As **7** has no optical rotation, it was considered to be an equivalent mixture of optical isomers the same as **12** and **13**.

Compound **8** ($C_8H_8O_3$, mp 185—186 °C, $[\alpha]_D^{21}$ 0°), 9 $(C_{29}H_{50}O, mp 137 - 139 \degree C, [\alpha]_D^{22} - 31.0 \degree)$, **10** $(C_{29}H_{48}O, mp)$ $167 - 169$ °C, $[\alpha]_D^{22}$ –47.0°) and **11** (C₃₀H₄₈O₃, mp > 300 °C, $[\alpha]_D^{21}$ +85.0°) were identified as *p*-anisic acid, *β*-sitosterol, stigmasterol and oleanolic acid, respectively.

Fennel contains 3—8% essential oil comprising 57—82% anethole and $6\rightarrow 27\%$ *p*-ansaldehyde (14) , (8) and 14 is regarded as a compound of an auto-oxidation product of anethole while the fennel is preserved.⁹⁾ Thus, the composition of **14** is believed useful for characterizing the quality of medicine.10) As compounds **7**, **8**, **12** and **13**, which were obtained as anethole-related constituents of fennel, 11 are also regarded

Table 2. 13C-NMR Chemical Shifts of **1**, **3**, **4** and **7** (at 125 MHz)

	1 ^(a)	3 ^b	4 ^b	7 ^c
$C-1$		132.98	135.15	131.18
$C-2$	80.68	111.99	111.19	128.75
$C-3$	49.29	149.43^{d}	149.18^{d}	113.87
$C-4$	193.75	150.02^{d}	149.44^{d}	159.53
$C-5$	128.08	112.26	112.34	113.87
$C-6$	126.35	120.54	119.18	128.75
$C-7$	163.75			
$C-8$	104.17			
$C-9$	115.68			
$C-10$	162.10			
CH ₃	26.70			
	26.84			
$C-1'$	28.13	81.10	72.71	84.11
$C-2'$	39.8 (br)	67.81	76.80	76.83
$C-3'$	182.5 (br)			17.27
$3-OCH3$		55.72	55.79	
$4-OCH3$		55.93	55.98	56.06
$Glc-1$	101.92	101.85	104.97	
$Glc-2$	74.62	75.36	75.21	
$Glc-3$	78.29	78.60	78.78	
$Glc-4$	71.23	71.75	71.66	
Glc-5	77.74	78.60	78.60	
Glc-6	62.46	62.65	62.69	

 δ in ppm from TMS. Measured in *a*) CD₃OD, *b*) pyridine- d_5 , *c*) CDCl₃. *d*) Assignments may be interchanged in each column.

as auto-oxidation products of anethole, the oxidation process is proposed as shown in Chart 1.

Experimental

Alumina column chromatography was carried out using neutral aluminum oxide (grade III, Woelm). CI-MS was taken on a JEOL JMS D-300 spectrometer. The other instruments used and the experimental conditions for obtaining spectral data and for chromatography were the same as described in the preceding paper.¹⁾

Extraction and Isolation of 1 to 13 As reported in the previous paper, commercial fennel (2.0 kg) was extracted with methanol. The methanol extract (329.4 g) was partitioned into ether–water, then ethyl acetate–water,

and the thus-obtained aqueous portion was subjected to Amberlite XAD-II $(H, O \rightarrow MeOH)$. The methanol eluate (29.5 g) was chromatographed over Sephadex LH-20 (MeOH) to give seven fractions (frs. A—G). Fraction C (16.9 g) was chromatographed over silica gel [CHCl₃–MeOH–H₂O $(4:1:0.1) \rightarrow \text{MeOH}$] to give fifteen fractions (frs. C₁—C₁₅). Fraction C₂ (1.1 g) was treated with MeOH–H₂O (1 : 1), and a part of the insoluble portion (230 \rightarrow 20 mg) was subjected to HPLC [symmetryprep C₈, MeOH] to give **6** (8 mg) and **5** (12 mg). Fraction C_7 (0.7 g) was subjected to a Lobar RP-8 column $[CH_3CN-H_2O (1:10 \rightarrow 3:17)]$ to give nine fractions (frs. C_{7-1} — C_{7-9}). Fraction C_{7-5} was subjected to HPLC [carbohydrate analysis, CH₃CN–H₂O (19:1)] to give three fractions (frs. C₇₋₅₋₁–C₇₋₅₋₃). Fraction C_{7-5-3} was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C_{18} , CH₃CN–H₂O (9:11)] to give two fractions. Each fraction was deacetylated by heating with 20% NH₄OH– MeOH for 2 h in a water bath to give **3** (5 mg) and **4** (2 mg) in pure form. Fraction D (1.9 g) was chromatographed over Sephadex LH-20 (MeOH) to give six fractions (frs. D_1-D_6). Fraction D_4 (0.1 g) was subjected to a Lobar RP-8 column [MeOH–H₂O $(1:4)$] and HPLC [ODS, MeOH–H₂O $(1:4)$] to give 1 (22 mg). Fraction D_5 (0.1 g) was subjected to a Lobar RP-8 column [MeOH–H₂O $(3:17)$] to give $2(10 \text{ mg})$. The ether-soluble portion (74.3 g) in 225.6 g) was chromatographed over silica gel [hexane→hexane–EtOAc $(9:1\rightarrow 4:1\rightarrow 3:2) \rightarrow$ acetone \rightarrow MeOH] to give fourteen fractions (frs. N₁— N_{14}). Fraction N_4 (2.0 g) was chromatographed over silica gel [CHCl₃– CHCl₃–MeOH (9:1)] to give five fractions (frs. N_{4-1} – N_{4-5}). Fractions N_{4-3} (0.3 g) and N₄₋₄ (0.9 g) were individually chromatographed over aluminum oxide [hexane–EtOAc $(9:1)$] to give **8** (30 mg) from fr. N₄₋₃, and **7** (45 mg) from fr. N₄₋₄. Fraction N₇ (2.7 g) was chromatographed over silica gel [hexane–EtOAc $(4:1 \rightarrow 7:3) \rightarrow$ EtOAc] and HPLC [symmetryprep C₈, MeOH] to give 10 (40 mg) and 9 (30 mg). Fraction N_{10} (3.9 g) was chromatographed over silica gel $[CHCl_3 \rightarrow CHCl_3–MeOH (9:1)]$ and Sephadex LH-20 [MeOH] to give **11** (90 mg). The ethyl acetate-soluble portion (2.8 g) was chromatographed over silica gel [CHCl₃–MeOH–H₂O (9:1:0.1) \rightarrow MeOH] to give five fractions (frs. O_1 —O₅). Fraction O_2 (0.6 g) was subjected to a Lobar RP-8 column [MeOH–H₂O $(1:1)$] and HPLC [symmetryprep C_8 , MeOH–H₂O (1 : 1)] to give **13** (60 mg) and **12** (140 mg). Fraction O_3 (0.3 g) was treated with MeOH–H₂O (1 : 1), and a part of the insoluble portion (120 \rightarrow 12 mg) was subjected to HPLC [symmetryprep C₈, MeOH] to give **6** (5 mg) and **5** (7 mg).

The following compounds were identified by comparison with authentic compounds.

Cnidioside A (2), β -sitosteryl β -D-glucopyranoside (5), stigmasteryl β -Dglucopyranoside (6), *p*-anisic acid (8), β -sitosterol (9), stigmasterol (10), oleanolic acid (**11**), *threo*-anethole glycol (**12**), and *erythro*-anethole glycol (**13**).

6-Carboxyethyl-7-hydroxy-2,2-dimethylchromanone 7-*O***-**b**-D-Glucopyranoside** (1) An amorphous powder, $[\alpha]_D^{22}$ -68.0° (*c*=0.8, MeOH). Positive FAB-MS m/z : 465 [M+K]⁺, 449.1458 [M+Na]⁺ (Calcd for $C_{20}H_{26}NaO_{10}$: 449.1424), 427.1612 $[M+H]^+$ (Calcd for $C_{20}H_{27}O_{10}$: 427.1604), 265 $[M - C_6H_{10}O_5 + H]^+$ (base). HMBC (in CD₃OD, 500 MHz): H₂-3/C-2, -4, \underline{CH}_3a , \underline{CH}_3b ; H-5/C-4, -7, -10, -1'; H-8/C-6, -7, -9, -10; $CH_3a/C-2$, -3 , $-CH_3b$; $CH_3b/C-2$, -3 , $-CH_3a$; $H_2-1'/C-5$, -6 , -7 , $-2'$; H-Glc- $1/C-7$.

Acid Hydrolysis of 1 Glycoside **1** (8 mg) was dissolved in aq. 2 ^N H_2SO_4 and heated in a water bath for 3 h. The reaction mixture of hydrolysate was neutralized with $NaHCO₃$, the salt was filtered off, and the filtrate was chromatographed over silica gel $[CHCl₃–MeOH–H₂O (7 : 3 : 0.5)].$ The sugar fraction was subjected to HPLC [column, carbohydrate analysis (Waters, size, 3.9×300 mm); detector, JASCO RI-930 detector; solv., CH₃CN–H₂O (17:3), 2 ml/min; t_R 4.5 min (same location as that of D-glucose)].

 $(1/R)-1'$ -(3,4-Dimethoxyphenyl)ethane-1',2'-diol $1'-O$ - β -D-Glucopyra**noside (3)** An amorphous powder, $[\alpha]_D^{24} - 87.0^{\circ}$ (*c*=0.1, MeOH). Positive FAB-MS m/z : 453 [M+H+92 (glycerol)]⁺, 361.1512 [M+H]⁺ (Calcd for $C_{16}H_{25}O_9$: 361.1499), 181 [M-C₆H₁₂O₆+H]⁺ (base).

 $(1/R)-1'$ -(3,4-Dimethoxyphenyl)ethane-1',2'-diol 2'-O- β -D-Glucopyra**noside (4)** An amorphous powder, $[\alpha]_D^{24}$ –45.0° (*c*=0.1, MeOH). Positive FAB-MS m/z : 453 [M+H+92 (glycerol)]⁺, 383.1329 [M+Na]⁺ (Calcd for $C_{16}H_{24}NaO_9$: 383.1318), 181 $[M-C_6H_{12}O_6+H]^+$ (base).

threo-Epoxyanethole (7) Colorless needles, mp $182-184$ °C, $[\alpha]_D^{21}$ 0° (*c*=1.8, CHCl₃). Positive FAB-MS *m*/*z*: 329 [2M+H]⁺, 187 [M+Na]⁺, 165.0904 [M+H]⁺ (base, Calcd for C₁₀H₁₂O₂: 165.0916). CI-MS *m/z*: 329 $[2M+H]^{+}$, 165 $[M+H]^{+}$ (base).

Acknowledgments The authors thank Messrs. Y. Takase and H. Suzuki of the Central Analytical Department of this college for NMR and MS measurements.

References and Notes

- 1) Kitajima J., Ishikawa T., Tanaka Y., *Chem. Pharm. Bull*., **46**, 1643— 1646 (1998).
- 2) *a*) Kitajima J., Ishikawa T., Tanaka T., Ono M., Ito Y., Nohara T., *Chem. Pharm. Bull*., **46**, 1587—1590 (1998); *b*) Kitajima J., Ishikawa T., Tanaka Y., *ibid.*, **46**, 1591—1594 (1998).
- 3) Ono M. Ito Y., Ishikawa T., Kitajima J., Tanaka Y., Niiho Y., Nohara T., *Chem. Pharm. Bull*., **44**, 337—342 (1996); Ishikawa T., Kitajima J., Tanaka Y., *ibid*., **46**, 1599—1602 (1998); *idem, ibid*., **46**, 1603—1606 (1998); *idem, ibid*., **46**, 1748—1751 (1998); Ishikawa T., Kitajima J., Tanaka Y., Ono M., Ito Y., Nohara T., *ibid*., **46**, 1738—1742 (1998); Ishikawa T., Tanaka Y., Kitajima J., Ida Y., *ibid*., **47**, 805—808 (1999).
- 4) Kitajima J., Ishikawa T., Tanaka Y., Ida Y., *Chem. Pharm. Bull.*, **47**, 988—992 (1999).
- 5) Yahara S., Sugimura C., Nohara T., Niiho Y., Nakajima Y., Ito H., *Shouyakugaku Zasshi*, **47**, 74—78 (1993).
- Klyne W. "Determination of Organic Structure by Physical Methods," ed. by Braude E. A., Nachod F. C., Academic Press, New York, 1975, p. 73; *idem, Biochem*. *J*., **47**, XIi—XIii (1950).
- 7) Nishibe S., Okabe K., Tsukamoto H., Sakushima A., Hisada S., Baba H., Akisada T., *Chem. Pharm. Bull*., **30**, 4548—4553 (1982); Tommasi N. D., Rastrelli L., Cumanda J., Speranza G., Pizza C., *Phytochemistry*, **42**, 163—167 (1996).
- 8) Betts T. J., *J. Pharm. Pharmacol*., **20**, 469—472 (1968); *idem, ibid.*, **20**, supplement, 61s-64s (1968); Tóth L. V., *Planta Med*., **15**, 157— 172 (1967); *idem, ibid.*, **15**, 371—389 (1967); Karlsen J., Svendsen A. B., Chingova B, Zolotovitch G., *ibid*., **17**, 281—293 (1969).
- 9) Ravid U., Putievsky E., Snir N., *J. Nat. Prod.*, **46**, 848—851 (1983).
- 10) Noro S., Hisada Y., Abstracts of Papers, 26th Annual Meeting of the Japanese Society of Pharmacognosy, Tokyo, October, 1979, p. 40.
- 11) Fennel used in this experiment (purchased from Kinokuniya Chinese Medicine Pharmacy, Ltd., lot. No. AOCJOD28J) contained 3.8% of essential oil, and the ratio of anethole and **14** was 17 : 3 by HPLC analysis; Curro P., Micali G., Lauzza F., *J. Chromatogr*., **404**, 273— 278 (1987).