Structure Elucidation of Two Secoiridoid Glucosides from *Jasminum officinale* **L. var.** *grandiflorum* **(L.) KOBUSKI**

Takao TANAHASHI,^{*,a} Takeshi SAKAI,^a Yukiko TAKENAKA,^a Naotaka NAGAKURA,^a and Cheng-Chang C_{HEN}^b

Kobe Pharmaceutical University,^a 4–19–1, Motoyamakita-machi, Higashinada-ku, Kobe 658–8558, Japan and National *Kaoshiung Normal University,^b Kaoshiung, Taiwan, Republic of China.* Received June 10, 1999; accepted August 17, 1999

Phytochemical investigation of the dried leaves of *Jasminum officinale* **var.** *grandiflorum* **has led to the isolation of two new secoiridoid glucosides, (2**0*R***)-2**0**-methoxyoleuropein and (2**0*S***)-2**0**-methoxyoleuropein, together with four known secoiridoid glucosides, oleuropein, ligstroside, demethyloleuropein and oleoside dimethyl ester, a lignan, (**2**)-olivil and** *p***-hydroxyphenethyl alcohol. The structures of the new compounds were elucidated from chemical and spectroscopic evidence.**

Key words *Jasminum officinale* var. *grandiflorum*; Oleaceae; secoiridoid glucoside; (2"R)-2"-methoxyoleuropein; (2"S)-2"methoxyoleuropein; 2-(3,4-dihydroxyphenyl)-2-methoxyethanol

Jasminum officinale L. var. *grandiflorum* (L.) KOBUSKI is an oleaceous plant which is widely cultivated for its fragrant flowers and its leaves are used as a diuretic in Indian folk medicine. In a recent screening of the plant for angiotensinconverting enzyme (ACE) inhibitory activity, oleacein, which could be artificially formed from oleuropein (**1**), was isolated as an active compound along with its genuine glucoside **1**. 1) In the course of our chemical studies on the secoiridoid glucosides from the family Oleaceae, 2 we have investigated the constituents of the leaves and twigs of *J. officinale* var. *grandiflorum* and isolated two new secoiridoid glucosides, $(2ⁿR)$ -2''-methoxyoleuropein (2) and (2''S)-2''-methoxyoleuropein (3) as well as six known compounds, oleuropein,³⁾ ligstroside (4) ,³⁾ demethyloleuropein (5) ,⁴⁾ oleoside dimethyl ester (6) ,³⁾ $(-)$ -olivil (7) ⁵⁾ and *p*-hydroxyphenethyl alcohol. Compounds **4**—**7** were isolated for the first time from this species. This paper deals with the isolation and structure elucidation of the novel glucosides.

Compound **2** was isolated as a colorless amorphous powder, $[\alpha]_D - 172^\circ$ (MeOH). The high resolution secondary ion mass spectrum (HR-SI-MS) of **2** exhibited a strong $(M-H)^{-}$ at m/z 569.1889 indicating a molecular formula of $C_{26}H_{34}O_{14}$. It showed UV maxima at 233 and 281 nm and IR bands at 3422 (OH), 1732 (ester), 1705 and 1630 (α , β -unsaturated ester) and 1522 (aromatic ring) cm^{-1} . Its ¹H-NMR spectra (Table 1) showed signals due to an oleoside 11 methyl ester (8) moiety [H-3 at δ 7.52, H-8 at δ 6.09 (qd), H_3 -10 at δ 1.70 (dd), and a carbomethoxyl group at δ 3.72] as well as an ABX spin system at 6.65, 6.756 and 6.758, indicating that **2** was structurally similar to **1**. However, there were marked differences in the spectra with the aliphatic protons of 2 appearing as an ABX spin system at δ 4.04, 4.10 and 4.27, instead of an ABX_2 system of a COOCH₂CH₂Ar moiety as in **1**. The ¹³C-NMR signals of **2** (Table 1) were superimposable on those of **1**, except for the presence of an additional methoxyl signal and chemical shifts of $C-1$ ["] and $C-$ 2". ¹H-Detected heteronuclear multiple-bond connectivity (HMBC) experiments with **2** showed significant correlations between H₂-1" (δ 4.04 and 4.10) and C-7 (δ 173.0) and between the methoxyl group (δ 3.21) and C-2" (δ 82.6). These findings indicated that **2** had a 2-(3,4-dihydroxyphenyl)-2 methoxyethanol unit instead of a 2-(3,4-dihydroxyphenyl) ethanol unit, as in **1**. This was confirmed by the fact that methylation of 2 with CH_2N_2 –Et₂O and subsequent methanolysis gave 2-methoxy-2-(3,4-dimethoxyphenyl)ethanol (**9**). Thus, the structure of 2 was established as 2"-methoxyoleuropein except for the absolute configuration of C-2".

Compound **3** was isomeric with **2**, and showed UV, IR, MS and NMR spectral features closely similar to those of **2**. A significant difference between the two compounds was observed only in the signals of H_2 -1" in the ¹H-NMR spectra, suggesting 3 to be a $C-2$ ["] epimer of 2 . This assumption was supported by methylation of **3** followed by methanolysis to compound 10, whose ¹H-NMR data were identical to those

Chart 1

Table 1. ${}^{1}H$ - and ${}^{13}C$ -NMR Spectral Data of Compounds 2 and 3 in CD_3OD

Values in parentheses are coupling constants in Hz. *a*—*d*) Assignments may be interchangeable.

a: 1) OsO₄, Et₂O, Py, 2) NaHSO₃, Py, H₂O; b: conc. HCl, MeOH, reflux; c: LiAlH₄, Et₂O, reflux; d: 2,2-dimethoxypropane, acetone, *p*-TsOH;
e: (R)-MTPA, DCC, 4-DMAP, CH₂Cl₂; f: LiAlH₄, THF; g: NaIO₄, Et Compounds **12**—**18** are racemates. Structures of **9**, **10**, **19** and **20** represent the absolute configurations.

of **9**.

The 2-(3,4-dihydroxyphenyl)-2-methoxyethanol unit has so far been found in glucosides such as campneoside $II⁶$ and syringopicroside-C.⁷⁾ However, the absolute stereochemistry of the unit has not been determined for these compounds. This situation prompted us to establish the absolute configuration of $C-2$ ["] in glucosides 2 and 3 by comparison of compounds **9** and **10** with the authentic (*R*)- and (*S*)- 2-methoxy-2-(3,4-dimethoxyphenyl)ethanols. These compounds could be chemically prepared from methyl 3,4 dimethoxycinnamate (**11**) *via* methyl 2-hydroxy-3-methoxy-3-(3,4-dimethoxyphenyl)propionates (**12**) and then 3 methoxy-3-(3,4-dimethoxyphenyl)-1,2-propanediols (**13**). An initial attempt to prepare *erythro*-**12** from **11** through the stereospecific ring-opening reaction of oxirane **14**8) with BF_3-Et_2O in dry MeOH was not successful. Although the oxirane ring of **15**8) was opened to give mainly *erythro*-**16** (*erythro* : *threo*=6:1) as expected,⁹⁾ the reaction of **14** gave a mixture of *erythro*-**12** and *threo*-**12** in a ratio of 1 : 3. Moreover, as methyl 3,4-dimethoxycinnamate (**11**) resists epoxidation with a peracid, 8) an alternative practical synthetic route was developed as follows.

Methyl 3,4-dimethoxycinnamate (**11**) was treated with osmium tetroxide $(OsO₄)$ in pyridine–Et₂O, giving a diol, 17. Treatment of **17** with conc.HCl in MeOH afforded two methyl ethers, *erythro*-**12** and *threo*-**12**, in a ratio of 17 : 19. The stereochemical relationship of C-2 and C-3 of the two isomers was determined from the following observations: i) when the ¹H-NMR data were compared, there were characteristic differences between the *erythro*- and *threo*-isomers in the chemical shift of H-2 (*erythro*-16: δ 4.50; *threo*-16: δ 4.27; *erythro*-12: δ 4.50; *threo*-12: δ 4.26) and the coupling constant between H-2 and H-3 (*erythro*-**16**: 4.2 Hz; *threo*-**16**: 3.0 Hz; *erythro*-**12**: 4.2 Hz; *threo*-**12**: 3.3 Hz); ii) the signals of two acetonide methyls in *erythro*-**18**, which was prepared from *erythro*-**12** through reduction with lithium aluminum hydride $(LiA1H₄)$ and subsequent treatment of the resulting *erythro*-**13** with 2,2-dimethoxypropane in the presence of *p*toluenesulfonic acid, resonated at δ 1.31 and 1.41, whereas those of *threo*-**18**, derived from *threo*-**12** *via threo*-**13**, appeared at δ 1.39 and 1.45.¹⁰⁾

Next, *erythro*-**12** was esterified with (*R*)-2-methoxy-2-trifluoromethylphenylacetic acid ((*R*)-MTPA) and the resulting esters, **19** and **20**, were separated by preparative HPLC. The absolute configuration of C-2 of each compound was determined by a modification of Mosher's method.¹¹⁾ Differences in the chemical shifts of the corresponding proton signals between **19** and **20** indicated the absolute configuration of C-2 of **20** to be *S* and so **19** is the (2*R*,3*R*)-isomer, while, on the other hand, **20** is the (2*S*,3*S*)-isomer (Fig. 1). Compound **19** was reduced with $LiAlH₄$ to afford $(2S,3R)$ -3-methoxy-3-(3,4-dimethoxyphenyl)-1,2-propanediol, which was treated with sodium periodate $(NaIO_A)$ and subsequently reduced with sodium borohydride (NaBH₄) to yield (*R*)-2-methoxy-2-(3,4-dimethoxyphenyl)ethanol ($[\alpha]_D$ -91°). Compound **20** was subjected to a series of the similar reactions as for **19** to give (*S*)-2-methoxy-2-(3,4-dimethoxyphenyl)ethanol ($\lbrack \alpha \rbrack$ _D 192°). The absolute configuration at C-2 of (*R*)- and (*S*)-2 methoxy-2-(3,4-dimethoxyphenyl)ethanols was supported by agreement of the sign of their specific optical rotations with those of similar compounds, (*R*)-2-methoxy-2-phenylethanol

Fig. 1. $\Delta \delta$ Values Obtained from the MTPA Esters, **19** and **20**

 $([\alpha]_{D}$ -107°) and (*S*)-2-methoxy-2-phenylethanol ([α]_D $+117^{\circ}$), respectively.¹²⁾

Chiral HPLC analysis showed that **9** and **10** derived from natural products were identical with synthetic (*R*) and (*S*)-2-methoxy-2-(3,4-dimethoxyphenyl)ethanols, respectively. These results led us to conclude that compound **2** is $(2ⁿR)$ -2^{*m*}-methoxyoleuropein, while **3** is $(2ⁿS)$ -2^{*m*}-methoxyoleuropein. These glucosides represent the first instance of glucosides with an O -function at $C-2ⁿ$ among the oleuropeintype secoiridoid glucosides. No interconversion of the two glucosides **2** and **3** was observed during the separation procedures. However, we could not exclude the possibility that the isolated compounds are artifacts formed from an unknown $2^{\prime\prime}$ -hydroxyoleuropein by the same mechanism as previously proposed for related compounds.¹³⁾

Experimental

Melting points were measured on a Yanagimoto microapparatus and are uncorrect. The UV spectra were recorded on a Shimadzu UV-240 spectrophotometer and the IR spectra on a Shimadzu FTIR-8200 infrared spectrophotometer. The optical rotations were measured on a Jasco DIP-370 digital polarimeter. SI-MS, electron impact (EI)-MS, chemical ionization (CI)- MS, HR-SI-MS and HR-EI-MS were obtained with a Hitachi M-4100 mass spectrometer. Glycerol or 3-NOBA was used as the matrix for SI-MS. The NMR experiments were performed with Varian VXR-500 and Varian Gemini-300 spectrometers, with tetramethylsilane as internal standard. HPLC was performed using a Waters system (510 HPLC Pump, 486 Tunable Absorbance Detector). Thin-layer chromatography was performed on precoated Kieselgel $60F_{254}$ plates (Merck) and spots were visualized under UV light.

Isolation of Glucosides The plant material was collected by the Taiwan Forestry Research Institute, Taipei, Taiwan. A voucher specimen (KPFY-971) has been deposited in the laboratory of Kobe Pharmaceutical University. The dried leaves and stems of *J. officinale* var. *grandiflorum* (115.2 g) were extracted with hot MeOH. The MeOH extract (13.4 g) was suspended in H₂O and successively partitioned with CHCl₃ and *n*-BuOH. The *n*-BuOHsoluble fraction was concentrated and the resulting residue $(2.0 g)$ was chromatographed on a Wakogel LP-40C₁₈ (Wako Pure Chemical Industries Ltd., Osaka, Japan) column. Elution with MeOH-H₂O mixtures of increasing MeOH content $(0-90\%)$ gave five fractions I (H₂O eluate, 66 mg), II (3– 10% MeOH eluate, 105 mg), III (10—20% MeOH eluate, 161 mg), IV (25—35% MeOH eluate, 262 mg) and V (35—40% MeOH eluate, 119 mg). Fraction I was further purified by preparative HPLC $(\mu$ Bondasphere $5 \mu C18$ —100 Å; MeOH–H₂O, 3:17), giving *p*-hydroxyphenethyl alcohol (4.3 mg). The following fractions were also purified by a combination of preparative HPLC (μ Bondasphere 5 μ C18—100 Å; MeOH–H₂O, 1:3 or 27 : 73 or MeCN–H2O, 11 : 39, 1 : 4, 1 : 3 or 3 : 7). Fraction II yielded **6** (5.7 mg) and **7** (6.7 mg); fraction III: **5** (25.5 mg), **6** (3.9 mg) and **7** (5.1 mg); fraction IV: **1** (36.1 mg), **2** (13.1 mg) and **3** (11.0 mg); and fraction V: **4** (10.5 mg).

 $(2ⁿR)$ -2''-Methoxyoleuropein (2) A white amorphous powder, $[\alpha]_D^{24}$ -172° (*c*=1.01, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 233 (4.22), 281 (3.50). IR (KBr) cm⁻¹: 3422, 1732, 1705, 1630, 1522, 1078. ¹H- and ¹³C-NMR: Table 1. Significant HMBC correlations: H-1→C-1', H-3→C-11, H₂-6→C-7, 11-OMe→C-11, H-1′→C-1, H₂-1″→C-7, H-1″ (δ 4.04)→C-2″, H-2″→C-1″, H-2"→C-3", 2"-OMe→C-2", H-4"→C-2". HR negative-mode SI-MS m/z : Calcd for $C_{26}H_{33}O_{14}$: 569.1871(M-H)⁻. Found: 569.1889.

 $(2^{\prime\prime}S)$ -2"-Methoxyoleuropein (3) A white amorphous powder, $[\alpha]_D^{25}$ -121° (*c*=0.98, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 232 (4.15), 281 (3.40). IR (KBr) cm⁻¹: 3393, 1736, 1707, 1630, 1522, 1076. ¹H- and ¹³C-NMR: Table 1. Significant HMBC correlations: H-1→C-1', H-3→C-11, H₂-6→C-7, 11OMe→C-11, H-1′→C-1, H₂-1″→C-7, H-1″ (δ 4.18)→C-2″, H-2″→C-1″, H- $2''\rightarrow C-3''$, $2''\rightarrow OMe \rightarrow C-2''$, H-4" $\rightarrow C-2''$. HR negative-mode SI-MS Calcd for $C_{26}H_{33}O_{14}$: 569.1871 (M-H)⁻. Found: 569.1879.

Methylation of 2 and 3 Followed by the Zemplen Reaction To a solution of **2** (1 mg) in MeOH (1 ml) was added $CH_2N_2-Et_2O$ until the solution showed a persistent yellow color. The reaction mixture was concentrated and dried *in vacuo*, then the residue was dissolved in dry MeOH (1 ml) and 0.1 M NaOMe (1 ml). The solution was stirred at room temperature for 1 h. After neutralization with Amberlite IR-120 (H^+ -form), the reaction mixture was extracted with CHCl₃. The CHCl₃ layer was concentrated to give 9 . ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$ δ : 3.30 (3H, s, 2-OMe), 3.60 (1H, dd, J=11.6, 4.0 Hz, H-1), 3.69 (1H, dd, $J=11.6$, 8.0 Hz, H-1), 3.88 (3H, s, 3'- or 4'-OMe), 3.90 (3H, s, 4'- or 3'-OMe), 4.25 (1H, dd, $J=8.0$, 4.0 Hz, H-2), 6.82–6.88 (3H, m, H-2', 5', 6'). EI-MS m/z : 212 (M⁺).

Compound **3** (1 mg) was treated in the same way as described above to give **10**. ¹H-NMR (300 MHz, CDCl₃) δ : 3.30 (3H, s, 2-OMe), 3.60 (1H, dd, *J*=11.5, 4.0 Hz, H-1), 3.69 (1H, dd, *J*=11.5, 8.0 Hz, H-1), 3.88 (3H, s, 3'- or 4'-OMe), 3.89 (3H, s, 4'- or 3'-OMe), 4.25 (1H, dd, $J=8.0$, 4.0 Hz, H-2), 6.82—6.90 (3H, m, H-2', 5', 6'). EI-MS m/z : 212 (M⁺).

Treatment of 14 and 15 with BF_3-Et_2O **in MeOH** BF_3-Et_2O (3 μ l) was added to a stirred solution of oxirane **14** (13.6 mg) in dry MeOH (1 ml) at -30 °C, and the resulting solution was then stirred for 30 min at the same temperature. The mixture was diluted with $Et₂O$ and washed successively with 5% aqueous NaHCO₃ and H₂O. The dried Et₂O layer was concentrated *in vacuo* and the residue (13.8 mg) was purified by preparative TLC $(Et₂O-n-hexane, 2:3)$ to give a mixture (11.6 mg) of *erythro*-12 and *threo*-**12** (*erythro* : *threo* $=1:3$).

To a solution of **15** (45.3 mg) in dry MeOH (1 ml) was added BF_3-Et_2O (100 μ l) at -30 °C with stirring, and stirring was continued for 2 h at the same temperature. The mixture was worked-up in the same way as described above and purified by preparative TLC $(Et_2O-n$ -hexane, 4:1) to give *erythro*-**16** (34.3 mg) and *threo*-**16** (5.4 mg). *erythro*-**16**: Colorless crystals, mp 65—66 °C (AcOEt–*n*-hexane). ¹H-NMR (300 MHz, CDCl₃) δ: 2.90 (1H, d, *J*57.0 Hz, 2-OH), 3.33 (3H, s, 3-OMe), 3.69 (3H, s, COOMe), 4.50 (1H, dd, $J=7.0$, 4.2 Hz, H-2), 4.53 (1H, d, $J=4.2$ Hz, H-3), 7.25-7.40 (5H, m, H-2', 3', 4', 5', 6'). CI-MS m/z : 211 (M+H)⁺. *threo*-16: Colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ: 2.95 (1H, d, J=7.0 Hz, 2-OH), 3.29 (3H, s, 3-OMe), 3.80 (3H, s, COOMe), 4.27 (1H, dd, J=7.0, 3.0 Hz, H-2), 4.55 (1H, d, $J=3.0$ Hz, H-3), 7.30 — 7.45 (5H, m, H-2', 3', 4', 5', 6'). CI-MS m/z : 211 $(M+H)^+$.

 \textbf{OsO}_4 **Oxidation of 11** A mixture of OsO_4 (580 mg), pyridine (0.5 ml) and dry Et₂O (1 ml) was added dropwise to a stirred solution of 11 (500 mg) in dry Et₂O (10 ml). Stirring was continued at room temperature for 29 h, then a mixture of NaHSO₃ (1.2 g), pyridine (10 ml) and $H₂O$ (15 ml) was added to the reaction mixture. The whole was stirred for a further 1 h and then the mixture was concentrated *in vacuo*. To the residue was added dil. HCl followed by extraction with CHCl₃. The washed and dried organic layer was concentrated *in vacuo* and the resulting residue (631 mg) was chromatographed on silica gel with $CHCl₃$ to give 17 (536 mg, 94%) as colorless crystals, mp 84—85 °C (AcOEt–*n*-hexane). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 231 (3.93) , 278 (3.43) , 283 sh (3.38) . IR (KBr) cm⁻¹: 3485, 3425, 1751, 1516, 1271. ¹H-NMR (300 MHz, CDCl₃) δ: 2.71 (1H, d, J=6.6 Hz, 3-OH), 3.11 $(1H, d, J=6.0 \text{ Hz}, 2-OH), 3.82 (3H, s, COOMe), 3.88 (3H, s, 3'- or 4'-$ OMe), 3.89 (3H, s, 4'- or 3'-OMe), 4.36 (1H, dd, J=6.0, 3.0 Hz, H-2), 4.96 $(1H, dd, J=6.6, 3.0 Hz, H=3), 6.86 (1H, d, J=8.1 Hz, H=5), 6.94 (1H, dd, J=6.64)$ *J*=8.1, 1.9 Hz, H-6'), 6.97 (1H, d, *J*=1.9 Hz, H-2'). EI-MS m/z : 256 (M⁺).

Methanolysis of 17 A solution of **17** (250 mg) in MeOH (30 ml) and conc. HCl (3 ml) was heated under reflux for 90 min. After neutralization with 5% aqueous NaHCO₃, the reaction mixture was concentrated *in vacuo*, diluted with H_2O and extracted with CHCl₃. The washed and dried organic layer was concentrated *in vacuo*. The residue (252 mg) was purified by a combination of column chromatography on silica gel and preparative HPLC (μ Bondasphere 5 μ C18—100 Å; MeOH–H₂O, 3 : 7) to yield *erythro*-12 (91) mg, 34%) and *threo*-**12** (101 mg, 38%). *erythro*-**12**: Colorless needles, mp 121—122 °C (AcOEt-*n*-hexane). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 232 (3.94), 278 (3.42) , 284 sh (3.36) . IR (KBr) cm⁻¹: 3362, 1713, 1520. ¹H-NMR (300) MHz, CDCl₃) δ: 2.73 (1H, d, J=7.0 Hz, 2-OH), 3.32 (3H, s, 3-OMe), 3.72 $(3H, s, COOMe), 3.88$ (6H, s, 3', 4'-OMe), 4.45 (1H, d, $J=4.2$ Hz, H-3), 4.50 (1H, dd, J=7.0, 4.2 Hz, H-2), 6.80 (1H, dd, J=8.0, 1.8 Hz, H-6'), 6.85 (1H, d, *J*=8.0 Hz, H-5'), 6.88 (1H, d, *J*=1.8 Hz, H-2'). HR-EI-MS Calcd for C13H18O6: 270.1104 (M¹). Found: 270.1081. *threo*-**12**: Colorless crystals, mp 89—90 °C (AcOEt–*n*-hexane). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 232 (4.00), 278 (3.51) , 284 sh (3.45) . IR (KBr) cm⁻¹: 3493, 1734, 1514. ¹H-NMR (300 MHz, CDCl₃) δ: 2.95 (1H, d, J=7.0 Hz, 2-OH), 3.28 (3H, s, 3-OMe), 3.80 (3H, s, COOMe), 3.89 (3H, s, $3'-$ or $4'-OMe$), 3.90 (3H, s, $4'-$ or $3'-OMe$), 4.26 (1H, dd, *J*57.0, 3.3 Hz, H-2), 4.49 (1H, d, *J*53.3 Hz, H-3), 6.86 (1H, d, *J*=8.0 Hz, H-5'), 6.90 (1H, dd, *J*=8.0, 1.6 Hz, H-6'), 6.93 (1H, d, *J*=1.6 Hz, H-2'). HR-EI-MS Calcd for $C_{13}H_{18}O_6$: 270.1104 (M⁺). Found: 270.1084.

Reduction of *erythro***-12 and** *threo***-12 with LiAlH₄ To a soluton of** *erythro*- 12 (30 mg) in dry Et₂O (5 ml) was added portionwise LiAlH₄ (12) mg) and the mixture was stirred under reflux for 50 min. After addition of Et₂O containing H₂O and then 10% aqueous H₂SO₄, the reaction mixture was extracted with AcOEt. The washed and dried organic layer was concentrated *in vacuo*. The resulting residue was purified by preparative TLC (CHCl₃–MeOH, 95:5) to afford $erythro-13$ (12 mg, 45%) as a colorless oil. IR (KBr) cm⁻¹: 3406, 1516, 1263, 1028. ¹H-NMR (300 MHz, CDCl₃) δ : 3.27 (3H, s, 3-OMe), $3.68 - 3.78$ (3H, m, H₂-1, H-2), 3.89 (3H, s, 3'- or 4'-OMe), 3.90 (3H, s, 4'- or 3'-OMe), 4.23 (1H, d, J=5.7 Hz, H-3), 6.84–6.90 (3H, m, H-2', 5', 6'). EI-MS m/z : 242 (M⁺).

threo-**12** (35 mg) was worked-up in the same way as for *erythro*-**12** to give *threo*-**13** (18 mg, 58%) as colorless crystals, mp 78—79 °C (AcOEt–*n*hexane). IR (KBr) cm⁻¹: 3425, 1514, 1265, 1026. ¹H-NMR (300 MHz, CDCl₃) δ: 3.26 (3H, s, 3-OMe), 3.35 (1H, dd, *J*=12.0, 4.5 Hz, H-1), 3.55 (1H, dd, $J=12.0$, 3.3 Hz, H-1), 3.73 (1H, ddd, $J=8.0$, 4.5, 3.3 Hz, H-2), 3.890 (3H, s, $3'$ - or 4'-OMe), 3.893 (3H, s, 4'- or 3'-OMe), 4.14 (1H, d, *J*=8.0 Hz, H-3), 6.82—6.90 (3H, m, H-2', 5', 6'). EI-MS m/z : 242 (M⁺).

Preparation of the Acetonides *erythro***-18 and** *threo***-18** A mixture of *erythro*-**13** (6.8 mg), 2,2-dimethoxypropane (0.1 ml), and *p*-toluenesulfonic acid (0.5 mg) in dry acetone (0.5 ml) was stirred at room temperature for 30 min. After neutralization with 5% aqueous NaHCO₃, the reaction mixture was concentrated *in vacuo*, diluted with H₂O and extracted with CHCl₃. Removal of the solvent from the CHCl₃ layer *in vacuo* gave *erythro*-18 (7.9 mg, 98%) as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ : 1.31 (3H, s, acetonide-Me), 1.41 (3H, s, acetonide-Me), 3.24 (3H, s, 3-OMe), 3.88 (3H, s, $3'$ - or $4'$ -OMe), 3.89 (3H, s, $4'$ - or $3'$ -OMe), 4.01 (1H, dd, $J=8.4$, 6.0 Hz, H-1), 4.04 (1H, d, J=6.8 Hz, H-3), 4.06 (1H, dd, J=8.4, 6.0 Hz, H-1), 4.19 $(1H, dt, J=6.8, 6.0 Hz, H=2), 6.84—6.90 (3H, m, H=2', 5', 6').$ EI-MS m/z : $282 \, (M^+).$

threo-**13** (8.3 mg) was worked-up in the same way as for *erythro*-**13** to give *threo*-**18** (7.9 mg, 81%) as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) d: 1.39 (3H, s, acetonide-Me), 1.45 (3H, s, acetonide-Me), 3.25 (3H, s, 3- OMe), 3.50 (1H, dd, *J*=8.5, 7.8 Hz, H-1), 3.58 (1H, dd, *J*=8.5, 6.5 Hz, H-1), 3.89 (3H, s, 3'- or 4'-OMe), 3.90 (3H, s, 4'- or 3'-OMe), 4.07 (1H, d, J=7.8) Hz, H-3), 4.30 (1H, td, $J=7.8$, 6.5 Hz, H-2), 6.82–6.86 (3H, m, H-2', 5', 6'). EI-MS m/z : 282 (M⁺).

Preparation of the MTPA Esters 19 and 20 To a solution of *erythro*-**12** (45 mg) in dry CH₂Cl₂ (5 ml) were added (R) -MTPA (40 mg), 4-dimethylaminopyridine (4-DMAP) (21 mg) and *N*,*N'*-dicyclohexylcarbodiimide (DCC) (36 mg), and the whole was stirred at room temperature for 25 h. The reaction mixture was poured into dil. HCl and extracted with CHCl₃. The CHCl₃ layer was dried and concentrated *in vacuo*. The residue was chromatographed on silica gel to give a mixture (77 mg), which was further purified by preparative HPLC (μ Bondasphere 5 μ C18—100 Å; MeOH–H₂O, 13 : 7) to yield **19** (40 mg, 49%) and **20** (30 mg, 37%). **19**: Colorless oil, $\left[\alpha\right]_{\text{D}}^{28}$ – 29° (*c*=0.92, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 232 (3.91), 278 (3.38), 283 (3.33). IR (KBr) cm⁻¹: 1751, 1518. ¹H-NMR (500 MHz, CDCl₃) δ : 3.219 (3H, s, 3-OMe), 3.524 (3H, d, J=1.0 Hz, MTPA-OMe), 3.647 (3H, s, 3'-OMe), 3.764 (3H, s, COOMe), 3.853 (3H, s, 4'-OMe), 4.558 (1H, d, *J*=6.0 Hz, H-3), 5.524 (1H, d, *J*=6.0 Hz, H-2), 6.670 (1H, dd, *J*=8.0, 2.0 Hz, H-6'), 6.698 (1H, d, *J*=8.0 Hz, H-5'), 6.709 (1H, d, *J*=2.0 Hz, H-2'), 7.30—7.50 (5H, m, MTPA-Ph). ¹³C-NMR* (125 MHz, CDCl₃) δ : 52.5 $(COOMe), 55.5 (3'-OMe), 55.8 (4'-OMe), 56.8 (3-OMe), 75.8 (C-2), 81.5$ (C-3), 110.2 (C-2'), 110.4 (C-5'), 120.4 (C-6'), 128.1 (C-1'), 148.9 (C-3'), 149.2 (C-4'), 167.9 (C-1). HR-EI-MS Calcd for $C_{23}H_{25}F_{3}O_8$: 486.1502 (M^+) . Found: 486.1519. **20**: Colorless oil, $[\alpha]_D^{28} + 59^\circ$ (*c*=0.85, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 233 (3.95), 278 (3.44), 283 sh (3.40). IR (KBr) cm⁻¹: 1755, 1518. ¹H-NMR (500 MHz, CDCl₃) δ: 3.273 (3H, s, 3-OMe), 3.404 (3H, br s, MTPA-OMe), 3.725 (3H, s, 3'-OMe), 3.734 (3H, s, COOMe), 3.868 (3H, s, 4'-OMe), 4.589 (1H, d, J=6.0 Hz, H-3), 5.460 (1H, d, *J*=6.0 Hz, H-2), 6.777 (1H, d, *J*=8.0 Hz, H-5'), 6.818 (1H, dd, *J*=8.0, 2.0 Hz, H-6'), 6.874 (1H, d, J=2.0 Hz, H-2'), 7.26-7.40 (5H, m, MTPA-Ph). ¹³C-NMR* (125 MHz, CDCl₃) δ : 52.5 (COOMe), 55.6 (3'-OMe), 55.8 $(4'-OMe)$, 56.9 (3-OMe), 76.1 (C-2), 81.5 (C-3), 110.3 (C-2'), 110.6 (C-5'), 120.8 (C-6'), 128.3 (C-1'), 149.1 (C-3'), 149.4 (C-4'), 167.6 (C-1). HR-EI-MS Calcd for $C_{23}H_{25}F_{3}O_{8}$: 486.1502 (M⁺). Found: 486.1513. *Compounds **19** and **20** showed additional signals of an MTPA moiety.

Preparation of (*R***)-2-Methoxy-2-(3,4-dimethoxyphenyl)ethanol (9) from 19** To an ice-cooled solution of **19** (40 mg) in dry tetrahydrofuran

(THF, 5 ml) was added portionwise LiAlH₄ (6.5 mg) and the mixture was stirred at room temperature for 90 min. After addition of THF containing H2O and removal of the insoluble portion by filtration, the reaction mixture was concentrated *in vacuo*. The residue was extracted with AcOEt and the washed and dried organic layer was concentrated *in vacuo*. The resulting residue was purified by preparative TLC (CHCl₃–MeOH, 95:5) to afford $(2S,3R)$ -13 (12.2 mg, 61%), $[\alpha]_D^{28}$ -60° ($c=0.57$, MeOH). EI-MS *m/z*: 242 (M^+) . To a solution of $(2S,3R)$ -13 (5.8 mg) in EtOH (1 ml) was added a solution of NaIO₄ (5.2 mg) in H₂O (1 ml). The mixture was stirred at room temperature for 30 min, checked by TLC (CHCl₃–MeOH, 95:5) to make sure that the reaction was complete, and treated with a small portion of NaBH4 for 10 min. After addition of dil. AcOH, the mixture was extracted with CHCl₃. Following removal of the solvent *in vacuo*, the residue was recrystallized from AcOEt–*n*-hexane to give (*R*)-2-methoxy-2-(3,4 dimethoxyphenyl)ethanol (**9**) (3.7 mg, 79% from (2*S*,3*R*)-**13**) as colorless crystals, mp 52—53 °C, $[\alpha]_D^{25}$ –91° (*c*=0.31, CHCl₃). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 231 (4.46), 278 (3.43), 285 sh (3.32). IR (KBr) cm⁻¹: 3337, 1520, 1019, 820. ¹H-NMR (300 MHz, CDCl₃) δ: 3.30 (3H, s, 2-OMe), 3.60 (1H, dd, *J*=11.6, 4.0 Hz, H-1), 3.69 (1H, dd, *J*=11.6, 8.4 Hz, H-1), 3.88 (3H, s, 3'- or 4'-OMe), 3.89 (3H, s, 4'- or 3'-OMe), 4.25 (1H, dd, J=8.4, 4.0 Hz, H-1), 6.83—6.90 (3H, m, H-2', 5', 6'). EI-MS m/z : 212 (M⁺).

Preparation of (*S***)-2-Methoxy-2-(3,4-dimethoxyphenyl)ethanol (10) from 20** Compound **20** (26 mg) was worked-up in the same way as for **19** to give (2*R*,3*S*)-13 (6.8 mg, 52%), $[\alpha]_D^{28}$ +58° (*c*=0.57, MeOH). EI-MS *m/z*: 242 (M^+). (2*R*,3*S*)-13 (3.5 mg) was treated in the same way as described above to give (*S*)-2-methoxy-2-(3,4-dimethoxyphenyl)ethanol (**10**) (2.8 mg, 98% from $(2R,3S)$ -13) as a colorless oil, $[\alpha]_D^{26} + 92^\circ (c=0.37, \text{CHCl}_3)$. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 231 (3.82), 278 (3.34), 285 sh (3.26). IR (KBr) cm⁻¹: 3444, 1518, 1028, 812. ¹H-NMR (300 MHz, CDCl₃) δ: 3.30 (3H, s, 2-OMe), 3.60 (1H, dd, *J*=11.6, 4.0 Hz, H-1), 3.69 (1H, dd, *J*=11.6, 8.5 Hz, H-1), 3.88 $(3H, s, 3'-$ or 4'-OMe), 3.90 (3H, s, 4'- or 3'-OMe), 4.25 (1H, dd, $J=8.5$, 4.0 Hz, H-1), 6.83-6.90 (3H, m, H-2', 5', 6'). EI-MS m/z : 212 (M⁺).

HPLC Analysis of 9 and 10 Standard (*R*)- and (*S*)-2-methoxy-2-(3,4 dimethoxyphenyl)ethanols were separated by chiral HPLC [column, CHI-RALCEL OB-H (4.6 i.d.×250 mm, Daicel Chemical Industries, Ltd.); mobile phase, *n*-hexane–2-propanol (22:3); flow rate, 0.6 ml/min; detection, 270 nm; retention time, *R*-form (24 min), *S*-form (28 min)]. HPLC analysis under the same conditions demonstrated that compounds **9** and **10**, derived from the natural products, were identical with (*R*)- and (*S*)-2-methoxy-2- (3,4-dimethoxyphenyl)ethanols, respectively.

Acknowledgements We are grateful to Dr. M. Sugiura (Kobe Pharmaceutical University) for ¹H- and ¹³C-NMR spectra, and to Dr. K. Saiki (Kobe Pharmaceutical University) for mass spectra measurements. We express our thanks to Mr. J.-C. Shieh (Taiwan Forestry Research Institute) for identification of the voucher specimen. This work was supported in part by Kobe Pharmaceutical University Collaboration Fund.

References and Notes

- 1) Somanadhan B., Wagner Smitt U., George V., Pushpagadan P., Rajasekharan S., Duus J. O., Nyman U., Olsen C. E., Jaroszewski J. W., *Planta Med*., **64**, 246—250 (1998).
- 2) Tanahashi T., Parida, Takenaka Y., Nagakura N., Inoue K., Kuwajima H., Chen C.-C., *Phytochemistry*, **49**, 1333—1337 (1998) and references cited therein.
- 3) Damtoft S., Franzyk H., Jensen S. R., *Phytochemistry*, **31**, 4197— 4201 (1992).
- 4) Tsukamoto H., Hisada S., Nishibe S., *Shoyakugaku Zasshi*, **39**, 90—92 (1985).
- 5) Abe F., Yamauchi T., Wan A. S. C., *Chem. Pharm. Bull*., **36**, 795—799 (1988).
- 6) Imakura Y., Kobayashi S., Miwa A., *Phytochemistry*, **24**, 139—146 (1985).
- 7) Kikuchi M., Yamauchi Y., *Yakugaku Zasshi*, **107**, 23—27 (1987).
- 8) Moyna G., Williams H. J., Scott A. I., *Synth. Commun*., **26**, 2235— 2239 (1996).
- 9) Takano S., Yanase M., Ogasawara K., *Synthesis*, **1989**, 39—40.
- 10) Takano S., Yanase M., Ogasawara K., *Chem. Lett*., **1989**, 1689—1690. 11) Ohtani I., Kusumi T., Kashman Y., Kakisawa H., *J. Am. Chem. Soc*., **113**, 4092—4096 (1991).
- 12) Otera J., Niibo Y., Nozaki H., *Tatrahedron*, **47**, 7625—7634 (1991).
- 13) Endo K., Hikino H., *Heterocycles*, **19**, 2033—2036 (1982).