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New total syntheses of renierol (3), renierol acetate (4), and
renierol propionate (5) were completed by the synthesis of 5-
oxygenated isoquinoline (6) based on the thermal electrocyclic
reaction of the 1-azahexatriene system followed by regioselective
oxidations of 5-hydroxyisoquinolines (6).
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During the past two decades, several naturally occurring
5,8-isoquinolinequinones have been isolated from marine
sponges and from Actinomycetes.1) In 1979, Faulkner and co-
workers2) reported the isolation and structural determination
of renierone (1) and 7-methoxy-1,6-dimethylisoquinoline-
5,8-dione (2), along with N-formyl-1,2-dihydrorenierone,
from the marine sponge Reniera sp. Subsequently, McKee
and Ireland3) isolated renierol (3) from the hard blue 
sponge Xestospongia caycedoi. In addition, new isoquino-
linequinone metabolites, renierol acetate (4) and renierol pro-
pionate (5), together with N-formyl-1,2-dihydrorenierol es-
ters, have recently been isolated from the marine sponge
Xestospongia sp. and its associated nudibranch Jorunna fu-
nebris.4)

Synthetic studies of these antibiotics have been conducted
by four groups. Total synthesis of renierone (1) was com-
pleted by both Danishefsky5) and Kubo.6a,c) 7-Methoxy-
1,6-dimethylisoquinoline-5,8-dione (2) was synthesized by
Kubo,6a,c) Liebskind,7) and Molina.8) In addition, total synthe-
sis of renierol (3), renierol acetate (4), and renierol propi-
onate (5) was reported by Kubo and co-workers.6a,c,d) Re-
cently, the Molina group8) also reported a formal synthesis of
renierol (3) in conjunction with the synthesis of 2. Among
the efforts by these groups, two regioselective syntheses of
the isoquinolone-5,8-dione have been established by the oxi-
dation of an 8-aminoisoquinoline derivative with potassium
nitrosodisulfonate (Fremy’s salt) (Kubo group)6) and by ox-

idative demethylation of a 5,7,8-trimethoxyisoquinoline de-
rivative with Ag2O (Liebskind group).7) However, it is diffi-
cult to find the regioselectivity of oxidative demethylation
from the 5,7,8-trimethoxyisoquinoline to either the isoquino-
line-5,8-dione or isoquinoline-7,8-dione in literatures.5,6,8)

We are currently interested in the synthetic development of
biologically active, condensed heterocyclic compounds, in-
cluding natural products based on the thermal electrocyclic
reaction9) of either hexatriene9,10a) or azahexatriene sys-
tems9—11) incorporating one double bond of the aromatic or
heteroaromatic portion. In 1988—1989, we reported studies
on the synthesis of simple isoquinolines11a) and the total syn-
thesis of aaptamine11b) using the thermal electrocyclic reac-
tion of 1-azahexatriene systems involving the benzene 1,2-
bond. We wish to report new access to the highly substituted
5-oxygenated isoquinoline based on the thermal electrocyclic
reaction of the 1-azahexatriene system, and the total synthe-
ses of renierol (3), renierol acetate (4), and renierol propi-
onate (5) by regioselective oxidations.

Based on previous researchers’ results and our synthetic
studies, we envisaged the synthesis of 5-hydroxy-1-hydroxy
(or acyloxy)methylisoquinoline (6) as an efficient substrate
for a new regioselective oxidation of the isoquinoline-5,8-
dione antibiotics (1—5) based on a retrosynthetic analysis
(Chart 1). The required substrate would be obtained by 
application of our methodology. For the preparation of a 
ketoxime (7), that is, a 1-azahexatriene system, we began
with 2,4-dimethoxy-3-methylbenzaldehyde (8)12) and pro-
ceeded as follows. 2,4-Dimethoxy-3-methylbenzaldehyde (8)
was treated with boron tribromide to produce the 2-hydroxy-
benzaldehyde (9) (83%), which was converted into the ben-
zyl ether (10) (99%). The benzaldehyde (10) was subjected
to the Baeyer-Villiger reaction with m-chloroperbenzoic acid
to give the phenol (11) (88%). The phenol (11) was subjected
to the Duff reaction with hexamethylenetetramine in acetic
acid, followed by treatment with trifluoromethanesulfonic an-
hydride to yield the triflate (13) (43% from 11). The cross-
coupling reaction of 13 with vinyl tributyltin in the presence
of palladium dichlorobistriphenylphosphine gave the o-
ethenylbenzaldehyde (14) (90%). The Grignard reaction of
14 with dimethylisopropyloxysilylmethylmagnesium chlo-
ride,13) followed by treatment with potassium fluoride and
30% hydrogen peroxide, afforded the 1,2-diol (15) (87%).
Selective protection of the 1,2-diol with tert-butyldimethylsi-
lyl chloride (TBDMSCl) produced the TBDMS ether (16)
(92%), which was oxidized with pyridinium chlorochromate
(PCC) to obtain the ketone (17). Subsequent treatment of the
ketone with hydroxylamine afforded the ketoxime (18) as the
1-azahexatriene system (57%), which was subjected to the
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Chart 1



thermal electrocyclic reaction10b,11) in o-dichlorobenzene at
180 °C to furnish the desired 5-benzyloxyisoquinoline (19)
(42%). Although it was found that the electrocyclic reaction
of the highly substituted benzene (18) also proceeded, the
yield of isoquinoline (19) was only marginally better than
that of the simple o-alkenyl benzaldoxime (Chart 2).11a)

Deprotection of the TBDMS group of 19 was carried out
by tetrabutylammonium fluoride (TBAF) to give the iso-
quinoline derivative (20) (89%) with the appropriate sub-
stituents. Subsequently, 1-hydroxymethylisoquinoline (20)
was converted into the esters (22, 83% and 23, 80%) by treat-
ment of the alcohol (20) with phenyl lithium and the corre-
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sponding acid anhydride. Subsequent reductive cleavage of
the benzyl ether (20, 22, and 23) with 10% Pd-C/H2 gave the
three 5-hydroxyisoquinolines (21, 24, and 25) as precursors
of natural products in excellent yields (Chart 3).

Finally, regioselective oxidation of 5-hydroxyisoquinolines
(21, 24, and 25) to isoquinoline-5,8-diones (3, 4, and 5) was
examined by either cerium ammonium nitrate (CAN)14) or
N,N-bis(salicylidene)ethylenediaminocobalt(II) (salcomine)15)

and oxygen. The oxidation of 21, 24, and 25 with CAN in an
aqueous acetonitrile afforded the corresponding quinones in
52%, 91%, and 90% yields, respectively. On the other hand,
the oxidation of 21, 24, and 25 with salcomine and oxygen in
DMF gave the same quinones (3, 4, and 5) without any other
products in 78%, 96%, and 97% yields (Chart 3). The spec-
troscopic evidence of these synthetic isoquinoline-5,8-diones
(3, 4, and 5) was identical to that of reported data for the syn-
thetic6) and natural products.3,4)

Thus the novel 5-oxygenated isoquinoline (19) could be
synthesized by the thermal electrocyclic reaction of a 1-aza-
hexatriene system involving the benzene 1,2-bond. Further,
the total syntheses of renierol (3), renierol acetate (4), and re-
nierol propionate (5) were newly established by regioselec-
tive oxidation. It was demonstrated that the 5-hydroxyiso-
quinolines are novel efficient substrates for the regioselective
total synthesis of isoquinoline-5,8-dione antibiotics.
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