Stereostructures of New Labdane-Type Diterpenes, Excoecarins F, G1, and G2 from the Wood of *Excoecaria agallocha*

Tenji KONISHI,*,*^a* Takao KONOSHIMA, *a* Yasuhiro FUJIWARA, *^a* Shiu KIYOSAWA, *a* Kazumoto MIYAHARA, *^b* Masatoshi NISHI*^b*

Kyoto Pharmaceutical University,a 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan and Faculty of Pharmaceutical Sciences, Setsunan University,b 45–1 Nagaotoge-cho, Hirakata, Osaka 573–0101, Japan. Received December 16, 1998; accepted January 29, 1999

Three new labdane-type diterpenes, excoecarins F, G1, and G2, were isolated from resinous wood of *Excoecaria agallocha* **LINN collected from Okinawa prefecture. Stereochemistries of the new diterpenes were determined on the basis of chemical and physicochemical evidence. Excoecarin F was found to possess a chloride element in its structure.**

Key words *Excoecaria agallocha*; excoecarin F; excoecarin G1; excoecarin G2; labdane-type diterpene; chlorinated diterpene

Excoecaria agallocha LINN (Euphorbiaceae) is distributed on seashores and edge-mangroves throughout tropical Africa, Asia, and northwest Australia.1,2) The *Excoecaria* genus is well known to contain skin irritants, generally called irritant *Excoecaria* factors. The bark and wood of this tree have been used in traditional medicines for flatulence in Thailand.²⁾ The resinous wood including the latex of *E. agallocha* has been used as a substitute for agarwood $(Jinko)^3$ incense in Okinawa, Japan. The piscicidal constituent excoecariatoxin⁴⁾ characterizing the daphnane diterpene ester and some related compounds has been obtained from the twigs, bark, and latex of *E. agallocha* in Japan⁴⁾ and Thailand,²⁾ respectively. Daph-

Table 1. ¹H-NMR Spectra Data for Compounds **1a**, **2**, and **3** in CDCl₃^{*a*})

nane- and tigliane-type diterpene esters are known to be skin irritants and tumor promoters.2) A novel phorbol ester acting as an anti-HIV agent was isolated from the leaves and stems of *E. agallocha* collected in northwest Australia.⁵⁾ We reported the isolation and structure elucidation of some diterpenes from the resinous wood of this plant, 6 and also reported their inhibitory effect on Epsetin-Barr virus early antigen (EBV-EA) activation induced by 12-*O*-tetra-decanoyl phorbol-13-acetate (TPA) in Raji cells.⁷⁾ As a continuing study, we isolated three new diterpenes, excoecarin F (**1**), excoecarin G1 (**2**), and G2 (**3**) from the resinous wood of *E. agallocha*. In this paper, we describe the stereochemistry of the new compounds. The ether extract of the resinous wood was purified by repeated ordinary and reversed-phase silicagel column chromatography and finally preparative HPLC to give excoecarins F (**1**, 0.0011%), G1 (**2**, 0.0008%), and G2 (**3**, 0.0007%).

The positive detection of excoecarin F (1), $[\alpha]_D$ -20.8° $(c=1.0, \text{MeOH})$, for 2,6-dichlorophenol-indophenol sodium salt on TLC revealed the presence of a carboxylic acid group. The molecular formula of colorless syrup dimethyl ester **1a**, $[\alpha]_{\text{D}}$ -21.7° (c=1.0, CHCl₃), was determined by HR-FAB-MS measurement to be $C_{22}H_{37}O_6Cl$. The IR spectrum of **1a** showed hydroxyl (3358 cm^{-1}) , carbonyl $(1740, 1726 \text{ cm}^{-1})$, ether (1109, 1074, 987 cm⁻¹), and alkyl halide (1259, 740 cm⁻¹) groups. The ¹H-NMR spectrum of **1a** showed signals for methine and methylene protons on each carbon bearing a hydroxyl group and/or chloride group (δ 3.44, 3.60, 3.71) (Table 1). The proton and carbon signals in the 1 H- and 13 C-NMR spectra of **1a** were very similar to those of *ent*-13-*epi*-8,13-epoxy-2,3-secolabd-14-en-2,3-oic acid dimethyl ester (4),⁶⁾ except for some signals due to the side chain [1a: δ_c 77.4, $\delta_{\rm H}$ 3.71 (1H, dd, *J*=2.3, 9.0 Hz, 14-H), 46.4, 3.44 (1H, dd, *J*=9.0, 11.0 Hz, 15-H), 46.4, 3.60 (1H, dd, *J*=2.3, 11.0 Hz, $15-H$)] (Tables 1 and 2). These data and detailed 13 C- and

a) Values in parentheses are coupling constants in Hz. *b*) Spectrum was measured at 600 MHz. *c*) Spectra were measured at 300 MHz.

Table 2. ¹³C-NMR Spectra Data for Compounds $1 - 5$ and $1a$ in CDCl₃^{*a*})

Carbon	1 ^b	1a	$\overline{2}$	3	4	5
$\mathbf{1}$	77.0	40.6	37.7	37.6	41.2	37.6
$\overline{2}$	176.2	171.5	34.7	34.7	171.5	34.7
3	176.5	179.5	216.8	216.9	179.6	216.9
$\overline{4}$	40.3	45.9	47.8	47.8	46.1	47.8
5	52.6	46.1	55.2	55.2	47.9	55.2
6	20.5	21.9	25.0	25.1	21.9	25.1
7	42.0	42.2	37.9	37.9	41.7	38.2
8	75.4	75.4	146.9	147.5	75.6	147.2
9	50.5	48.3	56.2	56.5	50.6	55.2
10	41.5	41.5	39.4	39.5	41.6	39.2
11	16.0	15.6	17.7	17.6	16.7	22.3
12	30.4	30.2	36.7	36.7	34.6	37.8
13	74.4	74.5	74.7	74.7	73.1	139.8
14	77.4	77.4	76.2	76.6	147.4	123.4
15	46.4	46.4	63.3	63.2	109.6	59.3
16	24.1	24.2	23.3	23.3	32.3	16.4
17	24.3	24.3	107.9	107.4	22.9	107.5
18	27.8	27.9	26.0	26.0	27.5	26.0
19	23.4	23.6	21.7	21.7	23.8	21.7
20	19.3	19.1	14.0	14.0	19.6	14.1
OMe		51.0			51.0	
		51.9			51.4	

a) Those of ¹³C signals were determined by DEPT and ¹³C⁻¹H COSY experiments. *b*) Spectrum was measured in DMSO- d_6 .

 1 H-NMR studies with the aid of 13 C $-{}^{1}$ H COSY, HMBC spectra led us to conclude that **1** and **1a** may be 2,3-secolabdanetype diterpenes possessing side chains with polar groups. The connectivities of a hydroxyl group at C-14 and a chloride group at C-15 were determined by the effect of substituents on ¹³C chemical shifts in the side chain and comparison of the 13C-NMR spectrum for **1a** with that of **4**, as shown in Table 2. The presence of **1** and **1a** was detected from the ether extract and its methyl ester products using diazomethane by TLC, respectively. Thus the possibility of an artifact of **1** in the process of separating was eliminated. The absolute configuration of the hydroxyl group was determined by the application of a modification of Mosher's method⁸⁾ to **1a**. Treatment of **1a** with (*R*)- and (*S*)-MTPA chloride in the presence of pyridine afforded the (*S*)-MTPA ester (**1b**) and (*R*)-MTPA ester (**1c**), respectively. The signals due to protons on C-12, -14, -16, -17, and -20 in **1b** appeared at higher fields than those of **1c** ($\Delta \delta$: negative), while the signals due to protons attached to C-15 of **1b** were observed at lower fields compared with those of **1c** ($\Delta \delta$: positive). Consequently, the configuration at C-14 in **1a** has been elucidated to be *R*. The absolute stereostructure of **1a** was clarified by the chemical evidence. The reaction of **4** with calcium hypochloride in the presence of acetic acid gave the chlorohydrin **1a** ($[\alpha]_D$ -20.1°, 10.0%) and 14-isomer of **1a** ($[\alpha]_D$ 222.4°, 12.0%). Consequently, the stereostructure of **1** was determined as shown.

Excoecarin G1 (2), mp 130—132 °C, $[\alpha]_D$ -14.8° (*c*=0.5, CHCl₃) and G2 (3), mp 118—120 °C, $[\alpha]_D$ -9.4° (*c*=0.5, $CHCl₃$), were found to have the same molecular formula, $C_{20}H_{34}O_4$, on the basis of HR-FAB-MS. The IR spectra of 2 and **3** showed absorption bands ascribable to the carbonyl (**2**, **3** 1707 cm⁻¹), and olefinyl $(2, 3, 1645, 892 \text{ cm}^{-1})$ groups. The ¹H- and ¹³C-NMR spectra of **2** and **3** indicated the presence of four *tert*-methyls $(\delta 0.89, 1.03, 1.10, 1.25 \text{ in } 2, 0.88, 1.03,$ 1.10, 1.25 in 3), six methylenes, exomethylenes $(\delta 4.68, 4.92)$

 $\Delta \delta$ values in ppm (δS - δR , measured in 300 MHz)

Fig. 1. Chemical Shift Differences for the (*R*)-MTPA Esters (**1c**, **7**, **9**) and (*S*)-MTPA Esters (**1b**, **8**, **10**) in ppm at 300 MHz

Fig. 2. Structures of **1a**, **2**—**5**, and C–H Long-Range Coupling and NOE Correlations for **1a**, **2**, and **3**

in **2**, 4.55, 4.91 in **3**), and methine and methylene protons (δ 3.48, 3.76 in **2**, 3.47, 3.76 in **3**) on the carbons bearing the hydroxyl groups (Tables 1 and 2). The mass spectra measurements and 13C chemical shift data led us to presume that **2** and **3** were labdane-type diterpenes analogous to those occurring along with *ent*-15-hydroxylabda-8(17),13*E*-dien-3 one (5).⁹⁾ The sp^3 carbon signals at δ 74.7 and 76.2 in 2, analogous to the signals at δ 74.7 and 76.6 in **3**, were observed instead of the *sp*² carbon signals of C-13 and -14 in **5**. Thus the hydroxyl groups were present at C-13, -14, and -15 in **2** and **3**. The configuration of the secondary hydroxyl group at C-14 was determined by a modification of Mosher's method following the protection of the primary hydroxyl group in **2** and **3** with trityl chloride in pyridine, respectively. In the MTPA esters prepared from **2**, the signals due to protons on C-12, -16, -17, and -20 and hydroxyl proton in (*R*)- MTPA ester (**7**) appeared at lower fields than those of (*S*)- MTPA ester (8) $(\Delta \delta)$: negative), while the signals due to protons attached to C-15 and the protons of the trityl group of (*R*)-MTPA ester were observed at higher fields at compared with those of (S) -MTPA ester $(\Delta \delta)$: positive). In the MTPA esters (9, 10) derived from 3, $\Delta\delta$ showed opposite signs to the MTPA esters (**7**, **8**). These observations suggest that the configurations of C-14 in **2** and **3** were *R* and *S*, respectively. However, the configurations at C-13 of **2** and **3** were not determined. The CD spectra of **2** and **3** showed negative Cotton effect (315 m) analogues to that of **5** (315 nm). Consequently, the absolute stereostructures of **2** and **3** except for the configuration of C-13 were determined as shown.

More labdane-type diterpenes possessing halide groups were found in *Aplysia kurodai*, 10) *Laurencia venusta*, 11) and

Chondria tenuissima, 12) a marine animal and plants, respectively. Excoecarin F is the first example of the isolation of a labdane-type diterpene with a chloride group from the shore plant *Excoecaria agallocha*, however.

Acknowledgements We are thankful to Dr. M. Takasaki for NMR spectra and to Ms. K. Oda for MS spectra measurements.

References

- 1) Willis J. C. (ed.), "A Dictionary of the Flowering Plants and Ferns," 8th ed., Cambridge University Press, Cambridge, 1973, p. 450.
- 2) *a*) Karalai C., Wiriyachitra P., Opferkuch H. J., Hecker E., *Planta Med*., **60**, 351—355 (1994); *b*) Wiriyachitra P., Hajiwangoh H., Boonton P., Adolf W., Opferkuch H., Kecker E., *ibid*., **51**, 368—371 (1985).
- 3) *a*) Metcalfe C. R., *Kew Bull*., **1**, 8—9 (1933); *b*) Nakanishi T., Yamagata E., Yoneda K., Nagashima T., Kawasaki I., Yoshida T., Mori H., Miura I., *Phytochemistry*, **23**, 2066—2067 (1984); *c*) Varma K. R., Maheshwari M. L., Bhattacharyya S. C., *Tetrahedron*, **21**, 115—138 (1965).
- 4) Ohigashi H., Katsumata H., Kawazu K., Koshimizu K., Mitsui T., *Agr. Biol. Chem*., **38**, 1093—1095 (1974).
- 5) Erickson K. L., Beytler J. A., Cardellina J. H. II, McMahon J. B., Newman D. J., Boyd M. R., *J. Nat. Prod*., **58**, 769—772 (1995).
- 6) Konishi T., Konoshima T., Fujiwara Y., Kiyosawa S., *Chem. Pharm. Bull.*, **46**, 1393—1398 (1998).
- 7) Konishi T., Takasaki M., Tokuda H., Kiyosawa S., Konoshima T., *Biol. Pharm. Bull.*, **21**, 993—996 (1998).
- 8) Kusumi T., *Yuki Gosei Kagaku Kyokaishi*, **51**, 462—470 (1993).
- 9) Konishi T., Azuma M., Itoga R., Kiyosawa S., Fujiwara Y., Shimada Y., *Chem. Pharm. Bull*., **44**, 229—231 (1996).
- 10) Yamamura S., Hirata Y., *Bull. Chem. Soc. Jpn*., **44**, 2560—2562 (1971).
- 11) Suzuki M., Kurosawa E., Kurota K., *Phytochemistry*, **27**, 1209—1210 (1988).
- 12) Oˇ ztunç A., Imre S., Looter H., Wagner H., *Phytochemistry*, **28**, 3403—3404 (1989).