Total Synthesis of the Siderophore Vibrioferrin

Yasuo TAKEUCHI,* Teruaki AKIYAMA, and Takashi HARAYAMA

Faculty of Pharmaceutical Sciences, Okayama University, Tsushimanaka 1–1–1, Okayama 700–8530, Japan. Received December 16, 1998; accepted February 19, 1999

Total synthesis of vibrioferrin (1), a siderophore, was achieved *via* **chiral dibenzyl citrate separated by optical resolution. It was elucidated that the configuration of the citrate moiety of vibrioferrin was** *R***.**

Key words vibrioferrin; siderophore; total synthesis; optical resolution

Vibrioferrin (**1**), which was isolated from *Vibrio parahaemolyticus* is a siderophore, one of the iron-chelating compounds produced by bacteria. Yamamoto *et al*. proposed the structure of **1** shown Fig. 1 based on partial chemical degradation data and spectral analyses.1) They confirmed that **1** was a mixture of reversible epimeric isomers at the 2^{*m*} position on the pyrrolidinone ring and that the $2ⁿ$ methine carbon bound to the pyrrolidinone ring was the *S* form. However, the configuration of the center carbon at the 2 position in the citrate moiety could not be determined. For the purpose of complete elucidation of the structure of **1**, we attempted a total synthesis of **1** and its derivatives.

Dibenzyl citrate $(2)^{2}$ ⁾ was prepared from citric acid (3)

via 4,4-(5-oxo-1,3-dioxolane)diacetic acid³ (4) and its anhydride⁴⁾ (5). The optical resolution of 2 proceeded by recrystallization of the salt of **2** and quinine in 27% yield to afford *R*-**2** with an enantiomeric excess of 99%. Fortunately, recrystallization four times of the salt of **2** and cinchonidine gave *S*-**2** with an enantiomeric excess of 99% in 24% yield. The configuration of the chiral citrates (*R*-**2** and *S*-**2**) were determined by the transformation of *R*-**2** to a known chiral compound, chiral dimethyl citrate (**7**) 5) (Chart 1).

Vibrioferrin (**1**) 6) was successfully synthesized from *S*-**2** (Chart 2). Esterification of *S*-**2** with alcohol (**9**), which was prepared from *N*-Boc-alanine (**8**) and ethanolamine, afforded **10**. Condensation of the amine afforded by debutoxycarbonylation of 10 with 1-benzyl α -ketoglutarate⁷⁾ gave 11, which had a pyrrolidinone ring, and subsequent debenzylation gave vibrioferrin (**1**).

References and Notes

- 1) Yamamoto S., Okujo N., Yoshida T., Matsuura S., Shinoda S., *J. Biochem*., **115**, 868—874 (1994).
- 2) Dibenzoate (**2**): A mixture of **6** (10.0 g, 34.0 mmol), benzyl alcohol $(36.0 \text{ ml}, 348 \text{ mmol}),$ Et₃N $(31.0 \text{ ml}, 222 \text{ mol}),$ and CHCl₃ (200 ml) was refluxed for 1 week. After removal of the solvent, the mixture was

Fig. 1. Proposed Structure of Vibrioferrin (**1**)

a) (CH₂O)_n, 160 °C, 0.5 h, 46%; *b*) PhNMe₂, POCl₃, dry CHCl₃, r.t., 0.5 h, 63%; *c*) dry pyridine, BnOH, dry CHCl₃, reflux, 1 d, 77%; *d*) dry Et₃N, BnOH, dry CHCl₃, reflux, 1 week, 49%; *e*) i) (-)-cinchonidine; ii) recrystallization four times from AcOEt; iii) HCl, 24%, 99% ee from chiral HPLC, $([\alpha]_D - 6.80^{\circ})$; f) i) (-)-quinine; ii) recrystallization three times from
AcOEt; iii) HCl, 27%, 99% ee from chiral HPLC ([$\alpha]_D + 6.49^{\circ}$); g) NaH, abs. MeOH, 0 °C, 4h, $[\alpha]_{D} + 4.0^{\circ}$]).

Chart 1

a) NH₂CH₂CH₂CH₂CH₂ ch₂ C₁²C₁₂, r.t.., 12 h, 59%; *b*) (*S*)-2, EDC, dry CH₂Cl₃, 0^oC, 3 h, 64%; *c*) i) CF₃COOH, 0^oC, 3 h; ii) HOCOCH₂CH₂COCOOBn, EDC, dry CH₂Cl₂, r.t.., 24 h, 40%; *d*) Pd(OH)₂–C/H₂, AcOEt, r.t., 6 h, 98% ([α]_D +6.52°,⁸⁾ [lit.¹⁾ $[\alpha]_D + [13.3^\circ]$.

poured into 1 N HCl aq. (500 ml), then extracted with Et₂O (100 ml \times 3), and the solvent was removed. The residue was dissolved in aqueous saturated NaHCO₃ solution (400 ml) and washed with Et₂O (100 m l \times 3). The aqueous layer was made acidic with aqueous 10% HCl solution and extracted with Et₂O (200 ml \times 3). The ethereal layer was washed with brine, dried over anhydrous MgSO₄, and the solvent was removed. The layer in which the residue was dissolved in hot hexane was separated and the solvent was removed. Crystallization of the residue from Et₂O (10 ml) and recrystallization from Et₂O gave pure 2 (6.16 g, 49%) as colorless needles, mp 80—83 °C. *Anal*. Calcd for $C_{20}H_{20}O_7$: C, 64.51; H, 5.41. Found: C, 64.32; H, 5.44. ¹H-NMR (500 MHz, CDCl₃) δ: 2.82, 2.84, 2.91, 2.93 (each 1H, each d), 5.06, 5.14 (each s, each 2H), 7.27—7.34 (10H, m). FAB-MS (positive ion mode) m/z : 373 $(M+1)^+$

- 3) Gastaldi C., *Chemiches Zentralblatt*, **1923**, 152.
- 4) Nau C. A., Brown E. B., Bailey J. R., *J. Am. Chem. Soc*., **47**, 2596— 2606 (1925).
- 5) Bergeron R. J., Xin M., Smith R. E., Wollenweber M., McManis J. S., Ludin C., Abboud K. A., *Tetrahedron*, **53**, 427—434 (1997).
- 6) $[\alpha]_D^{24} + 6.52^{\circ}$ (*c*=1.38, MeOH) ($[\alpha]_D^{20} + 13.3^{\circ}$ (*c*=1.4, MeOH)). ¹H-NMR (500 MHz, acetone- d_6) (Values in parentheses are reported ones¹⁾) δ : 1.47 (1.5H, d) (1.45), 1.50 (1.5H, d) (1.48), 2.15—2.26 (1H, m) (2.17—2.26), 2.40—2.61 (3H, m) (2.36—2.58), 2.83 (1H, d) (2.81), 2.84 (1H, d) (2.84), 2.97 (2H, d) (2.95, 2.96), 3.32—3.48 (2H,

m) (3.32—3.52), 4.00 (0.5H, q) (4.00), 4.04—4.16 (2H, m) (4.07— 4.16), 4.33 (0.5H, q) (4.30). ¹³C-NMR (125 MHz, acetone- d_6) (Values in parentheses are reported ones¹⁾) δ : 14.4 (14.3), 14.7 (14.7), 33.2 (33.0), 34.5 (34.3), 39.2, 39.3 (39.0), 43.5 (43.4), 43.6 (43.4), 44.4 (44.2), 44.5 (44.3), 52.7 (52.5), 52.7 (52.7), 63.9 (63.9), 64.0 (64.0), 73.8 (73.6), 90.8 (90.7), 90.9 (90.9), 169.9 (170.0), 171.5 (171.6), 171.6 (171.7), 172.1 (171.9), 172.7 (172.6), 173.1 (173.0), 174.4 (174.2), 175.5 (175.4), 175.5 (175.5), 175.7 (175.6, 175.9). FAB-HRMS (positive ion mode) m/z : 435.1264 (Calcd. for C₁₆H₂₃N₂O₁₂: 435.1251). A diastereomer of **1** was prepared from (*R*)-**2** by the same synthetic method as 1; $[\alpha]_D^{24} - 12.4^{\circ}$ (*c*=1.19, MeOH). ¹³C-NMR (125) MHz, acetone-*d*₆) δ: 14.4, 14.8, 33.0, 34.5, 39.1, 39.3, 43.5, 43.7, 44.5, 44.7, 52.6, 52.8, 63.9, 64.3, 73.8, 90.9, 91.0, 169.7, 169.8, 171.5, 171.6, 171.9, 172.8, 173.1, 174.4, 175.7, 175.7, 175.9.

- 7) Natsugari H., Kawano Y., Morimoto A., Yoshioka K., Ochiai M., *J. Chem. Soc., Chem. Commun.*, **1987**, 62—63.
- 8) The value of the optical rotation of synthetic vibrioferrin was about half that of the reported one. We did not recieve an authentic sample of natural product. However, we think that our synthetic compound is almost optically pure, because the ratio of the mixture of epimers due to the 2^m position of synthetic compound is the same as reported one. In the next paper, we will include additional details including the siderophore activity of the synthetic and natural compounds.