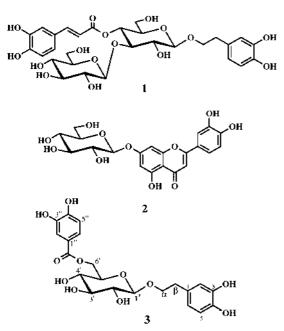
Fuhsioside, a New Phenylethanoid Glucoside from Veronica fuhsii

Meltem OZIPEK,^a Iclal SARACOGLU,^a Keisuke KOJIMA,^b Yukio OGIHARA,^{*,b} and Ihsan CALIS^a

Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University,^a TR-06100 Ankara, Turkey and Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagoya City University,^b Tanabe-dori, Mizuho-ku, Nagoya 467–8603, Japan. Received October 22, 1998; accepted December 28, 1998

Fushioside, a new phenylethanoid glucoside, 2-(3,4-dihydroxyphenyl)ethyl 6-*O*-protocatechuoyl- β -D-glucopyranoside was isolated from the methanolic extract of the aerial parts of *Veronica fuhsii* along with a known phenylethanoid glycoside, plantamajoside, and a flavone glucoside, luteolin 7-*O*-glucoside.


Key words Veronica fuhsii; Scrophulariaceae; phenylethanoid glycoside; fuhsioside

In the flora of Turkey, genus *Veronica* (Scrophulariaceae) is represented by 79 species, 26 of which are endemic.¹⁾ *Veronica* species contain mainly iridoid glycosides, especially catalpol esters of benzoic and cinnamic acid derivatives, and some phenylethanoid glycosides and flavonoid compounds.^{2—9} Some of the *Veronica* species are used as diuretics and for wound healing in traditional medicine.¹⁰

In the previous paper, we reported the structures of iridoid glucosides isolated from *Veronica fuhsii*, which is one of the endemic species distributed in Middle Anatolia.¹¹⁾ As a continuation of our studies on the same plant, we report here the isolation and structure elucidation of a new phenylethanoid glucoside (3), in addition to the known phenylethanoid glycoside (1) and flavone glucoside (2).

Compound 1 was identified as plantamajoside¹²⁾ and 2 as luteolin 7-O-glucoside¹³⁾ from their UV, IR and NMR spectral data by comparison with reported data.

Compound **3** was obtained as a colourless, amorphous solid. UV spectra suggested its polyphenolic nature. The IR spectrum of **3** showed absorption bands for hydroxyl groups (3370 cm^{-1}) , carbonyl (1698 cm^{-1}) and aromatic rings (1510 cm^{-1}) . Compound **3** showed a $[M]^+$ peak at m/z 452 and a $[M+H]^+$ peak at m/z 453 corresponding to a molecular formula of $C_{21}H_{24}O_{11}$. The ¹H- and ¹³C-NMR spectra of **3** revealed the presence of one protocatechuoyl group confirmed

by the ABX-type aromatic protons ($\delta_{\rm H}$ 6.77, 7.44, 7.45) and a carbonyl carbon ($\delta_{\rm C}$ 168.1), and one 2,3-dihydroxyphenethyl alcohol, confirmed by ABX-type aromatic groups ($\delta_{\rm H}$ 6.48, 6.63, 6.64) and two methylenes which were coupled with each other (α : $\delta_{\rm H}$ 3.69, 3.93, $\delta_{\rm C}$ 72.2; β : $\delta_{\rm H}$ 2.76, $\delta_{\rm C}$ 36.5).

The signals assigned to the sugar moiety indicated the presence of a glucose unit. In the ¹H- and ¹³C-NMR spectra, the anomeric signal was observed at $\delta_{\rm H}$ 4.32 (d, J=7.9 Hz) and $\delta_{\rm C}$ 122.5, as a β -linked D-glucose. All protons in the glucose unit were assigned unambiguously from the correlation spectroscopy (COSY) spectrum and a heteronuclear multiple quantum coherence (HMQC) experiment correlated all proton resonances with those of the corresponding carbons in the sugar unit. The downfield signals at $\delta_{\rm H}$ 4.40 (dd, J=6, 12 Hz) and $\delta_{\rm H}$ 4.56 (dd, J=6, 12 Hz), belonging to H-6 of glucose. The signal at $\delta_{\rm C}$ 64.7, arising from C-6 of the glucose moiety showed a 3 ppm downfield shift indicating that the

Table 1. ¹H- and ¹³C-NMR Spectral Data for Compound **3** in Methanol- d_4

	С	Н
Aglycone		
1	131.3	
2	117.0	6.64 (d, J=2 Hz)
3	145.9	
4	144.5	
5	116.3	6.63 (d, J = 8 Hz)
6	121.2	6.48 (dd, $J=2, 8$ Hz)
α	72.2	3.69 (m)
		3.93 (m)
β	36.5	2.76 (t, J=8 Hz)
Glucose		
1'	104.4	4.32 (d, J=8 Hz)
2'	74.9	3.22 (t, J=9 Hz)
3'	77.8	3.39 ^{<i>a</i>})
4'	71.7	$3.39^{a)}$
5'	75.4	3.55 (m)
6'	64.7	4.40 (dd, J=6, 12 Hz)
		$4.56 (\mathrm{dd}, J=2, 12\mathrm{Hz})$
Protocatechuoyl		
1″	122.5	
2″	117.5	7.45 (m)
3″	146.1	
4″	151.7	
5″	115.8	6.77 (d, <i>J</i> =8 Hz)
6"	123.8	7.44 (dd, $J=2, 8$ Hz)
C=O	168.1	· · · /

a) Signal pattern unclear due to overlapping.

© 1999 Pharmaceutical Society of Japan

acyl moiety was indeed attached to C-6. The location of glucose, the protocatechuoyl group and the 2,3-dihydroxyphenethyl alcohol were confirmed by the heteronuclear multiple bond correlation (HMBC) experiment. Correlation peaks were observed from the following pairs: H-6'/C-1", H-1'/C- α and H- α /C-1'. Therefore, the structure of **3** was identified as 2-(3,4-dihydroxyphenyl)ethyl 6-*O*-protocatechuoyl- β -D-glucopyranoside, for which fubsioside is proposed as the trival name.

Protocatechic acid has also been found as an acyl moiety in several iridoids isolated from different *Veronica* species.^{2,11)}

Experimental

General Procedures NMR spectra were recorded on a JEOL JNM-A500 spectrometer in CD_3OD with tetramethylsilane (TMS) as internal standard. FAB-MS were recorded on a JEOL JMS-DX300 spectrometer. UV spectra were recorded on a Shimadzu UV-160A spectrometer. IR spectra were recorded on a Perkin Elmer FT-IR 1720X spectrometer.

Plant Material Veronica fuhsii FREYN et SINT was collected from Kizilcahamam-Isikdagi in May 1988. The voucher specimen has been deposited in the Herbarium of the Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey (HUEF-88-148).

Extraction and Isolation Air dried overground parts of the plant (220 g) were extracted twice with methanol (each 2 l). The methanolic extract was evaporated *in vacuo*. The residue (48 g) was dissolved in water and then extracted with petroleum ether and the petroleum ether phase discarded. The aqueous phase was concentrated and chromatographed over a polyamide column eluting with H₂O, followed by increasing concentrations of MeOH to yield four main fractions: A—D [fr.A, 9.2 g (H₂O); fr.B, 675 mg (50% MeOH); fr.C, 400 mg (75% MeOH); fr.D, 1 g (MeOH)]. Fraction B was chromatographed over silica gel by stepwise elution with a CHCl₃–MeOH–H₂O (80:20:2 \rightarrow 60:40:4) solvent system and then rechromatographed over Sephadex LH-20 with MeOH to give 1 (7 mg). Fraction C was chro

matographed over Sephadex LH-20 with MeOH to give **2** (5 mg). **Fuhsioside (3)** $[\alpha]_D^{24} - 21.1^{\circ}$ (*c*=1.2, MeOH). UV λ_{max}^{MeOH} nm: 220, 242, 264, 290. IR ν_{max}^{KBr} cm⁻¹: 3370 (OH), 1698 (C=O), 1600, 1510 (arom. ring). FAB-MS *m/z*: 452 [M]⁺, 453 [M+H]⁺. ¹H- and ¹³C-NMR: Table 1.

References

- Davis P. H., "Flora of Turkey and East Aegean Islands," Vol. 6, University Press, Edinburgh, 1978, pp. 689–753.
- 2) Lahloub M. F., Planta Med., 55, 623 (1989).
- Lahloub M. F., Zaghloul M. G., Afifi M. S., Sticher O., *Phytochemistry*, 33, 401–405 (1993).
- Tomassini L., Brkic D., Serafini M., Nicoletti M., *Fitoterapia*, 66, 382 (1995).
- Lahloub M. F., Gross G. A., Sticher O., Winkler T., Schulten H. R., Planta Med., 1986, 352–355.
- Aoshima H., Miyase T., Ueno A., *Phytochemistry*, 37, 547–550 (1994).
- Gusev N. F., Glumov G. A., Guseva N. M., Teslov S. V., *Khim. Prir.* Soedin., 5, 704–705 (1977).
- Frolova V. I., Dzhumyrko S. F., Khim. Prir. Soedin., 5, 655–656 (1984).
- Wang C. Z., Jia Z. J., Liao J. C., Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 34B, 914—916 (1995).
- Baytop T., "Therapy with Medicinal Plants in Turkey (Past and Present)," Publications of Istanbul University, Istanbul, 1984, p. 423.
- Ozipek M., Saracoglu I., Maruyama M., Takeda T., Calis I., *Hacettepe* University, Journal of The Faculty of Pharmacy, 18, 9–14 (1998).
- 12) Ravn H., Brimer L., Phytochemistry, 27, 3433-3437 (1988).
- Feeny P., Sachdev K., Rosenberry L., Carter M., *Phytochemistry*, 27, 3439—3448 (1988).