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Secondary imidazole-appended bb-cyclodextrin 5 with a
nondistorted cavity synthesized from a novel intermediate 3-
amino-3-deoxy-bb-cyclodextrin exhibits much greater catalytic
activity in the ester hydrolysis than its isomer 6 with a distorted
cavity, indicating that the catalytic activities of secondary func-
tional cyclodextrins are dependent on cavity structures.
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Cyclodextrins (CDs) and some of their functional deriva-
tives1) have been studied extensively as artificial enzymes in
biomimetic chemistry.2) These studies, however, have been
largely confined to the primary hydroxyl side, while the re-
ported secondary functional CDs3) obtained from the ring
opening of manno-2,3-epoxido-CDs are of the distorted CD
type. The distortion of CD cavities causes a decrease in bind-
ing abilities.4) Thus such secondary functional CDs may not
exhibit great overall catalytic activity (k2/Km) or even lose a
significant amount of catalytic activity. In this case, to attain
optimum catalysis by secondary functional CDs, study of the
effect of cavity structures on their catalytic activities is re-
quired. Herein, we report the synthesis of secondary func-
tional CDs with nondistorted cavities and the first investiga-
tion of the dependence of catalytic activities of secondary
imidazole-appended CDs on their cavity structures.

Secondary imidazole-appended b-CD 5 (65.9%) with a

nondistorted cavity and its isomer 6 (65.7%) with a distorted
cavity were synthesized from the reaction of a novel interme-
diate 3-amino-3-deoxy-b-CD 3 and 3-amino-3-deoxy-(2S,3R)-
b-CD 4,5) respectively, with imidazol-1-ylacetic acid in the
presence of dicyclohexylcarbodiimide (DCC) and 1-hydroxy-
benzotriazole (HOBt) (Chart 1). Compound 3 was prepared
as follows: the reaction of allo-2,3-epoxido-b-CD6) with
NaN3 in H2O, followed by purification by reverse-phase chro-
matography with a gradient elution from H2O to 40% aque-
ous MeOH, afforded 1 (65%) and 2 (25%). Staudinger reduc-
tion of 1 gave 3 (82.6%). All the compounds were character-
ized by FAB MS, NMR (1H, 13C, and 2D), and elemental
analysis. The 4C1 glucosidic structures of the modified sugar
residues in 3 and 5 and the 1C4 altrosidic structure in 6 were
deduced from the 1H–1H coupling constants.7) Thus, the 4C1

glucosidic conformations in native CDs are maintained in 3
and 5, while the distortion of the macrocycle in 6 is required
because of the equatorial C1 (A9)–O4 (G9) and axial C4
(A9)–O4 (A9) bonds (Residue A9, Chart 1). That is, com-
pounds 3 and 5 possess nondistorted cavities, while 6 has a
distorted cavity.

The catalytic activities of 5 and 6 were investigated by
measuring the hydrolysis rate of ester 7 spectroscopically at
420 nm. The pseudo-first-order rate constants for the hydrol-
ysis of 7 as well as the pKa values of imidazoles in 5 and 6
are shown in Table 1. Secondary imidazole-appended b-CD
6 with a distorted cavity is not more efficient than imidazole
in the hydrolysis of 7, while 5 with a nondistorted cavity can
hydrolyze 7 ca. 22 and 24 times faster than imidazole and 6,
respectively, indicating that the nondistorted cavity con-
tributes remarkably to the acceleration of the reaction. From
the maximum catalytic rate constants (k2) and Michaelis con-
stants (Km) (Table 2), estimated by the Lineweaver–Burk
plots,8) it is revealed that the overall catalytic activity (k2/Km)
of 5 is ca. 108 and 61 times as large as those of imidazole
and 6, respectively. These results suggest that efficient cataly-
sis can be expected from secondary functional CDs with
nondistorted cavities.

The differences in catalytic activities between 5 and 6
could be explained by the differences in their cavity struc-
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Chart 1. Synthesis of 3-Amino-3-deoxy-b-cyclodextrin 3 and Imidazole-Appended b-Cyclodextrins 5 and 6
Reagents and conditions: i, NaN3, (CH3)3N ·HCl, H2O, 80 °C, 3 d; ii, Ph3P, DMF, then NH3·H2O; iii, imidazol-1-ylacetic acid, DCC, HOBt, DMF.



tures, rather than by the differences in the availability of un-
protonated imidazolyl groups based on their pKa values. That
is, the distortion of the cavity in 6 decreases the binding abil-
ity (1/Km), and causes an unfavorable mutual orientation be-
tween the imidazolyl group and the ester carbonyl in the in-
clusion complex of 6 and 7, leading to a greatly decreased
acceleration in the intracomplex reaction (k2/kun). Thus the

inferior catalytic activity (kobs/kun, k2/Km) of 6 was observed.
In conclusion, secondary functional b-CDs with nondis-

torted cavities can be obtained from 3-amino-3-deoxy-b-CD,
a novel intermediate allowing the selective functionalization
of the secondary hydroxyl side of CDs. The present results
reveal the cavity-dependent catalytic activities of secondary
functional CDs and supply a clear guideline for the creation
of versatile artificial enzymes using secondary functional
CDs, i.e., appropriate incorporation of functional groups
with no distortion of the cavities of the native CDs.
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Table 1. pKa Values of 5 and 6 and Pseudo-first-order Rate Constants for
the Hydrolysis of 7

Catalyst pKa
a) kobs/s

21 b) Catalyst pKa
a) kobs/s

21 b)

None ___ (1.4560.04)31024 5 6.62 (3.6160.01)31022

b-CD ___ (2.4060.08)31025 6 5.90 (1.5260.02)31023

Imidazole 6.95 (1.6560.01)31023

a) Measured spectroscopically (220 nm) in aqueous solution at 25 °C, except for im-
idazole by titration. b) In 20% DMSO phosphate buffer (0.02 M, pH 7.40, I50.200
[KCl]) at 25 °C with 0.74% (v/v) MeCN added, [catalyst]51.9931023

M, [ester 7]5
2.9831025

M.

Table 2. Kinetic Parameters for the Hydrolysis of 7 Catalyzed by 5 and 6a)

Catalyst k2/s
21 Km/M k2/kun k2/Km/M21s21 b)

5 4.7431022 5.7931024 327 81.9
6 4.2631023 3.1531023 29.4 1.35

a) In 20% DMSO phosphate buffer (0.02 M, pH 7.40, I50.200 [KCl]) at 25 °C with
0.74% (v/v) MeCN added, [ester 7]52.9831025

M. b) The second-order rate constant
of imidazole in the same condition is 0.76 M

21s21.


