Structures of New Oplopane-Type Sesquiterpenoids from the Flower Buds of *Tussilago farfara* L.¹⁾

Yasunori YAOITA, Hirokazu KAMAZAWA, and Masao KIKUCHI*

Tohoku Pharmaceutical University, 4–1 Komatsushima 4-chome, Aoba-ku, Sendai, Miyagi 981–8558, Japan. Received January 5, 1999; accepted February 4, 1999

Five new oplopane-type sesquiterpenoids, 7β -senecioyloxyoplopa-3(14)Z,8(10)-dien-2-one (1), 7β -angeloyloxyoplopa-3(14)Z,8(10)-dien-2-one (2), 7β -(4-methylsenecioyloxy)oplopa-3(14)E,8(10)-dien-2-one (3), 1 α -angeloyloxy-7 β -(4-methylsenecioyloxy)oplopa-3(14)Z,8(10)-dien-2-one (4) and 1α , 7β -di(4-methylsenecioyloxy)oplopa-3(14)Z,8(10)-dien-2-one (5), were isolated from the flower buds of *Tussilago farfara* L. (Compositae). The structures of these compounds were elucidated on the basis of spectroscopic evidence.

Key words Tussilago farfara; Compositae; oplopane-type sesquiterpenoid

The flower buds of *Tussilago* (*T*.) *farfara* L. (Compositae) have been widely used for the treatment of coughs, bronchitis and asthmatic disorders in China.²⁾ In previous papers, we reported the isolation and structural elucidation of the essential oil components,³⁾ sesquiterpenoids,⁴⁾ phenolic compounds⁵⁾ and triterpenoids¹⁾ from the plant. Here, we report the isolation and structural elucidation of five new oplopane-type sesquiterpenoids, 7 β -senecioyloxyoplopa-3(14)*Z*,8(10)-dien-2-one (1), 7 β -angeloyloxyoplopa-3(14)*Z*,8(10)-dien-2-one (3), 1 α -angeloyloxy-7 β -(4-methylsenecioyloxy)oplopa-3(14)*Z*,8(10)-dien-2-one (4) and 1 α ,7 β -di(4-methylsenecioyloxy)oplopa-3(14)*Z*,8(10)-dien-2-one (5). Extraction and isolation were carried out as described in the Experimental section.

Compound 1 was isolated as a colorless oil, $[\alpha]_{\rm D} = -97.6^{\circ}$. The molecular formula was determined to be C₂₀H₂₈O₃ by high-resolution (HR)-MS. The IR spectrum showed absorption bands due to an α,β -unsaturated ester (1715 cm⁻¹), an α,β -unsaturated ketone (1715 cm⁻¹) and a double bond (1650 cm⁻¹). The ¹H- (vide Experimental) and ¹³C-NMR (Table 1) spectra were virtually identical to those of 7β -(4methylsenecioyloxy)oplopa-3(14)Z,8(10)-dien-2-one (6), recently isolated from the flower buds of T. farfara, as an inhibitor of platelet aggregation caused by platelet activating factor,²⁾ except for the presence of a senecioyl group⁴⁾ instead of a 4-methylsenecioyl group in 6. In the ¹H-detected heteronuclear multiple bond correlation (HMBC) spectrum, a cross peak was observed between the H-7 at $\delta_{\rm H}$ 5.53 and the C-1' at $\delta_{\rm C}$ 165.7, confirming that the senecioyl group was attached to the oxygen at C-7. The stereochemistry of $\Delta^{3(14)}$ was shown to be Z by the nuclear Overhauser effect correlation spectroscopy (NOESY) spectrum, giving a cross peak between H-11 and H-14. The absolute configuration of oplopa-3(14)Z,8(10)-dien-2-one, which is the main skeleton of 1 has been established by Joseph-Nathan et al.⁶⁾ On the basis of this evidence, the structure of 1 was determined to be 7 β -senecioyloxyoplopa-3(14)Z,8(10)-dien-2-one.

Compound **2** was isolated as a colorless oil, $[\alpha]_D - 104.5^\circ$. The molecular formula was determined to be $C_{20}H_{28}O_3$ by HR-MS. The IR spectrum showed absorptions due to an α,β -unsaturated ester (1714 cm⁻¹), an α,β -unsaturated ketone (1714 cm⁻¹) and a double bond (1646 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **2** were identical to those of **1** except for the appearance of signals ascribable to an angeloyl group⁴⁾ instead of signals due to a senecioyl group in **1**. Thus, **2** was characterized as 7β -angeloyloxyoplopa-3(14)Z,8(10)-dien-2-one.

Compound **3** was isolated as a colorless oil, $[\alpha]_D - 33.3^\circ$. The molecular formula was determined to be $C_{21}H_{30}O_3$ by HR-MS. The IR spectrum showed absorptions due to an α,β -unsaturated ester (1720 cm⁻¹), an α,β -unsaturated ketone (1720 cm⁻¹) and a double bond (1646 cm⁻¹). The ¹H-NMR spectrum was similar to that of **6**,²⁾ although the ¹H-NMR spectrum showed that the olefinic methyl group (H₃-15) of **6** at δ_H 2.15 was shifted upfield to 1.90, and the trisubstituted olefinic proton (H-14) of **6** at δ_H 6.23 was shifted downfield to 6.53. The above results indicate that **3** is a $\Delta^{3(14)}E$ isomer of **6**.⁷⁾ Based on this evidence, the structure of **3** was deter-

Table 1. 13 C-NMR Chemical Shifts of Compounds 1—5 (150 MHz, CDCl₃)

Carbon	1	2	3 ^{<i>a</i>)}	4	5	=
1	41.0	41.1	39.6	72.4	71.8	
2	206.4	206.3	205.3	200.0	200.0	
3	141.1	140.9	142.2	139.0	139.1	
4	50.8	50.8	51.3	44.9	44.8	
5	39.9	40.4	37.7	40.4	40.6	
6	30.7	30.8	29.9	29.8	29.9	
7	73.1	73.9	72.6	73.4	73.5	
8	146.1	145.8	146.2	140.9	140.9	
9	41.7	42.0	41.3	45.8	45.7	
10	110.0	110.4	110.2	112.7	113.5	
11	27.0	27.0	29.5	27.5	27.5	
12	21.3	21.3	21.3	21.3	21.3	
13	15.3	15.3	16.0	15.4	15.5	
14	132.4	132.8	128.5	137.0	137.0	
15	14.6	14.6	14.6	15.1	15.1	
1'	165.7	167.0	166.1	165.9	166.0	
2'	116.3	128.2	114.6	114.5	114.6	
3'	156.8	137.8	162.1	162.1	162.2	
4′	27.4	15.9	33.8	33.8	33.8	
5'	20.3	20.7	12.0	11.9	11.9	
6'			18.9	18.9	18.9	
1″				166.5	166.0	
2″				127.3	114.6	
3″				139.1	164.1	
4″				15.9	33.9	
5″				20.6	11.9	
6″					19.1	

a) Measured at 100 MHz.

© 1999 Pharmaceutical Society of Japan

mined to be 7β -(4-methylsenecioyloxy)oplopa-3(14)*E*,8(10)dien-2-one. This is the first report of the isolation of an oplopane derivative with a $\Delta^{3(14)}E$ configuration from the flower buds of *T. farfara*.

Compound 4 was isolated as a colorless oil, $[\alpha]_{\rm D} = 166.7^{\circ}$. The molecular formula was determined to be $C_{26}H_{36}O_5$ by HR-MS. The IR spectrum showed absorptions due to an α,β unsaturated ester (1730 cm⁻¹), an α,β -unsaturated ketone (1708 cm^{-1}) and a double bond (1646 cm^{-1}) . The ¹H- and ¹³C-NMR spectra of 4 were similar to those of 1α -(2-methylbutyryloxy)-7 β -(4-methylsenecioyloxy)oplopa-3(14)Z,8(10)dien-2-one (7),⁴⁾ except for the presence of an angeloyl group⁴⁾ in place of a 2-methylbutyryl group in 7. The oxygenated methine proton at $\delta_{\rm H}$ 5.58 was assigned to H-1 by a ¹H-¹H shift correlation spectroscopy (¹H-¹H COSY) correlation between $\delta_{\rm H}$ 5.58 and $\delta_{\rm H}$ 2.70 (H-9). The oxygenated quaternary carbon at $\delta_{\rm C}$ 166.5 was assigned to C-1" by the HMBC correlation between $\delta_{\rm C}$ 166.5 and $\delta_{\rm H}$ 1.86 (H₃-5"). Furthermore, in the HMBC spectrum, a cross peak was observed between the H-1 and the C-1", confirming that the angeloyl group was attached to the oxygen at C-1. The configuration of the angelovloxyl group was shown to be α by the NOESY spectrum, giving a cross peak between H-1 β and H- 9β . On the basis of this evidence, the structure of 4 was determined to be 1α -angeloyloxy-7 β -(4-methylsenecioyloxy)oplopa-3(14)Z,8(10)-dien-2-one.

Compound **5** was isolated as a colorless oil, $[\alpha]_D - 173.9^\circ$. The molecular formula was determined to be $C_{27}H_{38}O_5$ by HR-MS. The IR spectrum showed absorptions due to an α,β unsaturated ester (1730 cm⁻¹), an α,β -unsaturated ketone (1710 cm⁻¹) and a double bond (1646 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **5** were similar to those of **4** except for the appearance of signals due to a 4-methylsenecioyl group⁴) instead of signals due to an angeloyl group in **4**. Therefore, **5** was characterized as $1\alpha,7\beta$ -di(4-methylsenecioyloxy)oplopa-3(14)*Z*,8(10)-dien-2-one. Compounds **4** and **5** are the first examples of the isolation of oplopane derivatives with an angeloyloxyl and 4-methylsenecioyloxyl groups at the C-1 positions, respectively, from the flower buds of *T. farfara*.

Experimental

General Procedures Optical rotations were determined with a JASCO DIP-360 digital polarimeter. IR spectra were recorded with a Perkin–Elmer FT-IR 1725X infrared spectrophotometer and UV spectra with a Beckman DU-64 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded with JEOL JNM-LA 600 (600 and 150 MHz, respectively) and JEOL JMN-LA 400 (400 and 100 MHz, respectively) spectrometers. Chemical shifts are given on a δ (ppm) scale with tetramethylsilane as an internal standard (s, singlet; br s, broad singlet; d, doublet; dd, double doublet; dd, double doublet; t, triplet; q, quartet; dq, double quartet; qd, quartet doublet; qq, quartet quartet; m, multiplet). The electron ionization (EI)- and HR-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (Merck; 230–400 mesh). Preparative HPLC was carried out on a Tosoh HPLC system (pump, CCPD; detector, RI-8010) using a TSK gel ODS-120T (7.8 mm i.d.×30 cm) column (Tosoh).

Plant Material The dried flower buds of *T. farfara* were purchased from Tochimoto Tenkaido Co., Ltd., Osaka, Japan in 1990.

Extraction and Isolation The dried flower buds of *T. farfara* (5.0 kg) were extracted with Et₂O at room temperature for one week. The Et₂O extract was subjected to steam distillation to give an essential oil (7.7 g) and residue (64.5 g). A part of this residue (23.5 g) was placed on a silica gel column and developed with *n*-hexane–AcOEt (4 : 1—1 : 4), AcOEt and MeOH to afford 19 fractions (frs. 1—19). Fraction 5 was purified by preparative HPLC [MeOH–H₂O (4 : 1); flow rate, 1.5 ml/min; column temperature, 40 °C] to give a mixture of 1 and 2, 3 (0.3 mg), 4 (0.4 mg) and 5 (0.2 mg). The mixture of 1 and 2 was purified by preparative HPLC [MeOH–H₂O (5 : 2); flow rate, 1.6 ml/min; column temperature, 40 °C] to give 1 (0.4 mg) and 2 (0.7 mg).

7β-Senecioyloxyoplopa-3(14)*Z*,8(10)-dien-2-one (1) Colorless oil, $[\alpha]_D^{27} - 97.6^\circ (c=0.04, CHCl_3). IR v_m^{CHCl_3} cm^{-1}: 1715, 1650. UV λ_m^{MCM} nm$ (log ε): 223 (4.3). HR-MS*m/z*: 316.2032 (M⁺, Calcd for C₂₀H₂₈O₃;316.2039). EI-MS*m/z*: 316 (M⁺), 216 (M⁺-C₅H₈O₂), 173 (M⁺-C₅H₈O₂-C₃H₇). ¹H-NMR (600 MHz, CDCl₃) & 0.81 (3H, d,*J*=7.0 Hz, H₃-13), 0.96(3H, d,*J*=7.0 Hz, H₃-12), 1.89 (3H, d,*J*=1.5 Hz, H₃-4'), 2.12 (3H, d,*J*=7.3 Hz, H₃-15), 2.16 (3H, d,*J*=1.1 Hz, H₃-5'), 2.23 (1H, dd,*J*=16,12.8 Hz, H-1α), 2.34 (1H, m, H-11), 2.39 (1H, dd,*J*=16.8, 6.2 Hz, H-1β),5.53 (1H, dd,*J*=3.3, 3.3 Hz, H-7), 5.67 (1H, dd,*J*=1.5, 1.1 Hz, H-2'), 6.22(1H, q,*J*=7.3 Hz, H-14). ¹³C- NMR (150 MHz, CDCl₃): see Table 1.

7β-Angeloyloxyoplopa-3(14)*Z*,8(10)-dien-2-one (2) Colorless oil, $[α]_D^{28} - 104.5^\circ$ (*c*=0.07, CHCl₃). IR $V_{max}^{CHCl_3}$ cm⁻¹: 1714, 1646. UV λ_{max}^{McoH} nm (log ε): 224 (4.1). HR-MS *m/z*: 316.2027 (M⁺, Calcd for C₂₀H₂₈O₃; 316.2039). EI-MS *m/z*: 316 (M⁺), 216 (M⁺-C₃H₈O₂), 173 (M⁺-C₃H₈O₂-C₃H₇). ¹H-NMR (600 MHz, CDCl₃) δ : 0.82 (3H, d, *J*=7.0 Hz, H₃-13), 0.96 (3H, d, *J*=7.0 Hz, H₃-12), 1.88 (3H, dq, *J*=1.5, 1.5 Hz, H₃-5'), 1.98 (3H, dq, *J*=7.3, 1.5 Hz, H₃-4'), 2.13 (3H, dd, *J*=7.0, 2.2 Hz, H₃-15), 2.25 (1H, dd, J=17.2, 13.2 Hz, H-1 α), 2.36 (1H, m, H-11), 2.40 (1H, dd, J=17.2, 6.2 Hz, H-1 β), 2.57 (1H, m, H-9), 4.82 (1H, dd, J=2.2, 1.1 Hz, H-10a), 5.16 (1H, s, H-10b), 5.61 (1H, dd, J=3.3, 2.9 Hz, H-7), 6.06 (1H, qq, J=7.3, 1.5 Hz, H-3'), 6.23 (1H, qd, J=7.3, 2.2 Hz, H-14). ¹³C-NMR (150 MHz, CDCl₃): see Table 1.

7β-(4-Methylsenecioyloxy)oplopa-3(14)*E*,**8(10)-dien-2-one (3)** Colorless oil, $[\alpha]_D^{25} - 33.3^\circ$ (*c*=0.03, CHCl₃). IR $v_{max}^{CHCl_3}$ cm⁻¹: 1720, 1646. UV λ_{max}^{MeOH} nm (log ε): 225 (4.0). HR-MS *m/z*: 330.2180 (M⁺, Calcd for $C_{21}H_{30}O_3$; 330.2195). EI-MS *m/z*: 330 (M⁺), 216 (M⁺-C₆H₁₀O₂), 173 (M⁺-C₆H₁₀O₂-C₃H₇). ¹H-NMR (400 MHz, CDCl₃) δ : 0.86 (3H, d, *J*=6.8 Hz, H₃-13), 1.00 (3H, d, *J*=7.1 Hz, H₃-12), 1.07 (3H, t, *J*=7.3 Hz, H₃-5'), 1.90 (3H, dd, *J*=12. Hz, H₃-15), 2.05 (1H, ddd, *J*=14.4, 4.4, 4.4 Hz, H-6*β*), 2.16 (3H, d, *J*=1.2 Hz, H₃-6'), 2.42 (1H, dd, *J*=17.3, 6.1 Hz, H-1*β*), 2.63 (1H, m, H-9), 4.84 (1H, d, *J*=1.5 Hz, H-10a), 5.16 (1H, dd, *J*=1.0, 1.0 Hz, H-10b), 5.57 (1H, dd, *J*=4.4, 3.7 Hz, H-7), 5.67 (1H, q, *J*=1.2 Hz, H-2'), 6.53 (1H, qd, *J*=7.8, 2.0 Hz, H-14). ¹³C-NMR (100 MHz, CDCl₃): see Table 1.

1α-Angeloyloxy-7β-(4-methylsenecioyloxy)oplopa-3(14)Z,8(10)-dien-**2-one (4)** Colorless oil, $[α]_D^{28} - 166.7^{\circ} (c=0.04, CHCl_3). IR ν_{max}^{CHCl_3} cm^{-1}$: 1730, 1708, 1644. UV λ_{max}^{McOH} nm (log ε): 224 (4.5). HR-MS m/z: 428.2555 (M⁺, Calcd for $C_{26}H_{36}O_5$; 428.2563). EI-MS m/z: 428 (M⁺), 328 (M⁺ – C₅H₈O₂), 314 (M⁺ – C₆H₁₀O₂), 214 (M⁺ – C₆H₁₀O₂ – C₅H₈O₂), 173 (M⁺ – C₆H₁₀O₂ – C₅H₈O₂ – C₃H₂). ¹H-NMR (600 MHz, CDCl₃) δ : 0.87 (3H, d, J= 7.0 Hz, H₃-13), 0.98 (3H, d, J=7.0 Hz, H₃-12), 1.07 (3H, t, J=7.3 Hz, H₃-5'), 1.86 (3H, dq, J=1.5, 1.5 Hz, H₃-5''), 1.96 (3H, dq, J=7.3, 1.5 Hz, H₃-4''), 2.15 (3H, d, J=1.1 Hz, H₃-6'), 2.16 (3H, d, J=7.3 Hz, H₃-15), 2.32 (1H, m, H-11), 2.70 (1H, br s, H-9), 4.83 (1H, s, H-10a), 5.18 (1H, s, H-10b), 5.52 (1H, dd, J=3.7 Hz, H-7), 5.58 (1H, d, J=3.3 Hz, H-1), 5.64 (1H, q, J= 1.1 Hz, H-2'), 6.10 (1H, qq, J=7.3, 1.5 Hz, H-3''), 6.41 (1H, q, J=7.3 Hz, H-

14). ¹³C-NMR (150 MHz, CDCl₃): see Table 1.

1α,**7β**-Di(4-methylsenecioyloxy)oplopa-3(14)*Z*,**8**(10)-dien-2-one (5) Colorless oil, $[α]_{D}^{29} - 173.9^{\circ}$ (c=0.02, CHCl₃). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1731, 1710, 1646. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 222 (4.6). HR-MS *m*/*z*: 442.2694 (M⁺, Calcd for C₂₇H₃₈O₅; 442.2719). EI-MS *m*/*z*: 442 (M⁺), 328 (M⁺-C₆H₁₀O₂), 214 (M⁺-C₆H₁₀O₂×2), 173 (M⁺-C₆H₁₀O₂×2-C₃H₇). ¹H-NMR (600 MHz, CDCl₃) δ : 0.89 (3H, d, *J*=7.0 Hz, H₃-13), 0.97 (3H, d, *J*=7.0 Hz, H₃-12), 1.06 (3H, t, *J*=7.3 Hz, H₃-5″), 1.07 (3H, t, *J*=7.3 Hz, H₃-5′), 2.15 (3H, d, *J*=1.1 Hz, H₃-6′), 2.16 (3H, d, *J*=7.3 Hz, H₃-15), 2.17 (3H, d, *J*=1.1 Hz, H₃-6″), 4.44 (1H, dd, *J*=1.8, 1.1 Hz, H-10a), 5.17 (1H, s, H-10b), 5.53 (2H, m, H-1, H-7), 5.64 (2H, q, *J*=1.1 Hz, H-2″, H-2″), 6.40 (1H, q, *J*=7.3 Hz, H-14). ¹³C-NMR (150 MHz, CDCl₃): see Table 1.

Acknowledgments We are grateful to Mrs. S. Sato and T. Matsuki of this university for measurement of the mass and NMR spectra.

References and Notes

- Part V in a series of studies on the constituents of the flower buds of *Tussilago farfara* L. Part IV: Yaoita Y., Kikuchi M., *Natural Medicines*, 52, 273–275 (1998).
- 2) Shi W., Han G., J. Chin. Pharm. Sci., 5, 63-67 (1996).
- 3) Suzuki N., Kikuchi M., Yakugaku Zasshi, 112, 571-576 (1992).
- 4) Kikuchi M., Suzuki N., Chem. Pharm. Bull., 40, 2753-2755 (1992).
- 5) Kikuchi M., Mori M., Tohoku Yakka Daigaku Kenkyu Nempo, **39**, 69–73 (1992).
- Joseph-Nathan P., Villagomez J. R., Roman L. U., Hernandez J. D., Phytochemistry, 28, 1207–1209 (1989).
- Aal A. M., Bohlmann F., Sarg T., El-Domiaty M., Nordenstam B., *Phytochemistry*, 27, 2599–2602 (1988).