Biotransformation of Hinesol Isolated from the Crude Drug *Atractylodes lancea* **by** *Aspergillus niger* **and** *Aspergillus cellulosae*

Toshihiro HASHIMOTO, *^a*) Yoshiaki NOMA, *^b*) Sumie KATO, *a*) Masami TANAKA,^{*a*} Shigeru TAKAOKA,^{*a*} and Yoshinori ASAKAWA*,*^a*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University,^a *Japan; Faculty of Domestic Sciences, Tokushima Bunri University,*^b *Yamashiro-cho, Tokushima 770–8514, Japan.* Received March 5, 1999; accepted April 13, 1999

Biotransformation of the sesquiterpene alcohol hinesol (1) with spasmolytic activity, which was prepared from the rhizome of *Atractylodes lancea***, was carried out by** *Aspergillus niger* **and** *Aspergillus cellulosae* **IFO 4040. Compound 1 was easily converted to compounds 2—9 by** *A***.** *niger***, and compounds 10 and 11 by** *A***.** *cellulosae***, respectively. Their stereostructures were established by a combination of high-resolution NMR spectral analysis, X-ray crystallographic analysis, and chemical reactions such as epoxydation.**

Key words *Atractylodes lancea*; hinesol; biotransformation; *Aspergillus niger*; *Aspergillus cellulosae* IFO 4040

We are continuing to study the biotransformation of secondary plant metabolites by microorganisms¹⁾ and mammals²⁾ from the pharmacological point of view. Previously, we reported the biotransformation of three germacrane-type sesquiterpenoids³⁾ from the crude drug *Curcuma aromatica*, and 6-gingerol and 6-shogaol⁴⁾ from the crude drug *Zingiber officinale* belonging to the Zingiberaceae by the fungus *Aspergillus* niger. In continuation of the biotransformation of the chemical constituents isolated from crude drugs into biologically active compounds, the biotransformation of hinesol (**1**), which has spasmolytic activity,5) from *Atractylodes lancea* was examined by *A*. *niger* and *A*. *cellulosae*. This paper deals with the structure elucidation of 10 metabolites (**2**—**11**) of **1** biotransformed by two fungi.

A. *niger* was inoculated and cultivated under rotation (100 rpm) in Czapek-peptone medium⁶⁾ at 30 °C, pH 7.0, for 2 days. $(-)$ -Hinesol (1) (150 mg/200 ml) was added to the medium and further cultivated for 10 days. The crude metabolites obtained from the culture broth by ether extraction were chromatographed on silica gel (*n*-hexane–EtOAc gradient) and a Sephadex LH-20 column (CHCl₃-MeOH= 1 : 1) to give eight metabolites, **2** (15%), **3** (11%), **4** (12%), **5** (8%), **6** (7%), **7** (9%), **8** (6%), and **9** (12%). (2)-Hinesol (**1**) (150 mg/200 ml) was cultivated for 8 days by *A*. *cellulosae* in the same medium to afford **10** (26%) and **11** (14%).

The IR, UV, and ¹H-NMR spectra of compound 2, $C_{15}H_{24}O_2$ (HRMS; [M]⁺ m/z 236.1857), showed the presence of an α , β -conjugated ketone (IR; 1664 cm⁻¹; UV λ_{max} 240 nm [$log \epsilon = 3.99$]; δ_H 5.76 [1H, br s, 1-H]). From careful analysis of its 2D NMR spectrum, the structure of the metabolite 2 was formulated as 2 -oxo-hinesol.⁵⁾

Compounds **3** and **4** showed the same molecular formula, $C_{15}H_{26}O_{2}$, and similar spectral data. Acetylation (Ac₂O, Py) of **3** and **4** afforded the monoacetates **12** and **13**, respectively. The NaBH₄ reduction of 2 afforded $3(2\%)$ as a minor product and **4** (97%) as a major product, whereas the biotrasformation of **1** by *A*. *niger* afforded **3** and **4** in almost the same yield. Compounds **3** and **12** showed the NOE between H-2 and H-15 in the NOESY spectra (Fig. 1). On the other hand, compounds **4** and **13** showed the NOE between H-2 and H-4 (Fig. 1). Thus the stereostructures of **3** and **4** were formulated as 2α -hydroxyhinesol and 2β -hydroxyhinesol.

Compounds **5** and **6** showed the same molecular formula, $C_{15}H_{26}O_3$, and similar spectral data. The ¹H-NMR spectra of **5** and **6** showed the presence of an exomethylene (5: $\delta_{\rm H}$ 4.93, 5.16 [br s, H-14]; 6: $\delta_{\rm H}$ 4.58, 4.98 [br s, H-14]). The relative structure of **5** was established by X-ray crystallographic analysis⁷⁾ of 5, as shown in Fig. 2. The structure of 6 was determined to be the 1β , 2α -dihydroxyl isomer of **5** by the NOESY spectum (Fig. 1) of **6**.

Compounds **7** and **8** showed the same molecular formula, $C_{15}H_{24}O_3$, and similar spectral data. Acetylation of 7 and 8 afforded the diacetates **14** and **15**, respectively. The relative structure of **7** was deduced by the NOESY spectrum (Fig. 3) of **14** and finally established by X-ray crystallographic analysis8) of **14**, as shown in Fig. 4, indicating that **7** contained an intramolecular ether linkage between C-10 and C-11. The structure of **8** was determined to be the 12-hydroxyl isomer of **7** by the NOESY spectum (Fig. 3) of **15**.

The ¹H-NMR spectrum of **9**, $C_{15}H_{24}O_4$ showed the pres-

Fig. 1. The Metabolites of $(-)$ -Hinesol (1) by *A*. *niger* and *A*. *cellulosae*

Fig. 2. ORTEP Drawing of Compound **5**

Fig. 3. NOESY Spectra of Compounds **14** and **15**

Fig. 4. ORTEP Drawing of Compound **14**

ence of an epoxy ring (δ_H 3.37 [d, *J*=3.6 Hz, H-1]; 3.46 [dd, *J*52.7, 3.6 Hz, H-2]). Acetylation of **9** afforded the diacetate **16**. Epoxydation with MCPBA of **14** gave **16** in 68% yield, indicating that the structure of **9** was the epoxide of **7**.

The spectral data of 10, $C_{15}H_{26}O_2$, resembled those of 1, except for the presence of a primary hydroxyl group ($\delta_{\rm H}$) 4.04, 4.16 [d, $J=12.6$ Hz, H-14]) in place of the vinyl methyl group observed in **1**, establishing that the structure of **10** was the C-14-hydroxylated derivative of **1**.

The ¹³C-NMR spectrum of **11**, $C_{15}H_{26}O_3$, showed the presence of two tertiary alcohols (δ_c 74.5, 87.6 [each s]). Acetylation of **11** gave the monoacetate **17**, followed by reaction with 2, 2-dimethoxypropane and *p*-TsOH to give the acetonide 18. The structure of 11 was determined to be the 7α , 14-dihydroxyl derivative of **1** by the NOESY spectrum (Fig. 1) of **18**.

In the time course of biotrasformation of $(-)$ -hinesol (1) , it was converted into 2-hydroxyhinesols (**3** and **4**) after 24 h, and both compounds were successively converted into 2-oxohinesol (**2**) and compounds **5**—**9** by rearrangement and intramolecular etherification. 1-Aminobezotriazole, an inhibitor of cytochrome P-450, inhibited the oxidation process of **1** into **3** and **4**. Possible metabolic pathways of **1** by *A*. *niger* might be as shown in Fig. 5. It is noteworthy that the

Fig. 5. Possible Metabolic Pathways of Hinesol (**1**) by *A*. *niger*

metabolic pathways of **1** are strikingly different between *A*. *niger* and *A*. *cellulosae*. Intramolecular etherification and rearrangement occured in *A*. *niger*, and hydroxydations of the five-membered ring at C-7 and the vinyl methyl group at C-14 of **1** occured in *A*. *cellulosae*. The biotrasformation of **1** by *A*. *niger* is very similar to that of oral administration to mammals since **1** was mainly converted into **2**—**4** by rabbits.⁹⁾

References and Notes

- 1) *a*) Noma Y., Asakawa Y., *Biotechnology in Agriculture and Forestry*, Vol. 28, ed. Bajaj Y.P.S., Springer, Berlin, 1994, pp. 185—202; *b*) *Idem*, *ibid*., Vol. 33, 1995, pp. 62—96; *c*) *Idem*, *ibid*., Vol. 41, 1998, pp. 194—237.
- 2) *a*) Matsumoto T., Hayashi N., Ishida T., Asakawa Y., *J*. *Pharm*. *Sci*., **79**, 540—547 (1990). *b*) Matsumoto T., Ishida T., Yoshida T., Terao H., Takeda Y., Asakawa Y., *Chem*. *Pharm*. *Bull*., **40**, 1721—1726 (1992).
- 3) Asakawa Y., Takahashi H., Toyota M., *Phytochemistry*, **30**, 3993— 3997 (1991).
- 4) Takahashi H., Hashimoto T., Noma Y., Asakawa Y., *Phytochemistry*, **34**, 1497—1550 (1993).
- 5) Morita M., Nakanishi H., Morita H., Mihashi S., Itokawa H., *Chem*. *Pharm*. *Bull*., **44**, 1603—1604 (1996).
- 6) Asakawa Y., Takahashi H., Toyota M., Noma Y., *Phytochemistry*, **30**, 3981—3987 (1991).
- 7) The crystal data for **5** are as follows: monoclinic; space group P_1 with $a=7.642$ (1), $b=18.353$ (8), $c=10.688$ (5) Å, $\beta=92.50$ (5)°, $V=1497.65$ (1) Å³, *Z*=4, and μ (Cu K- α)=5.765 mm⁻¹ by Mac Science MXC 18 instrument. Final R value was 0.067 for 1741 reflections.
- 8) The crystal data for **14** are as follows: monoclinic; space group *P*21 with $a=11.349$ (2), $b=7.857$ (2), $c=10.601$ (2) Å, $\beta=99.53$ (1)°, *V*=932.2 (2) Å³, *Z*=2, and μ (Cu K- α)=7.244 mm⁻¹ by Mac Science MXC 18 instrument. Final R value was 0.065 for 1604 reflections.
- 9) Lie K., Toyota M., Asakawa Y., unpublished data.