Structures of New Marasmane Sesquiterpenoids from *Lactarius piperatus* **(SCOP.: FR.) S. F. GRAY1)**

Yasunori YAOITA, Kaori MACHIDA, and Masao KIKUCHI*

Tohoku Pharmaceutical University, 4–1 Komatsushima 4-chome, Aoba-ku, Sendai, Miyagi 981–8558, Japan. Received January 11, 1999; accepted March 26, 1999

Four new marasmane sesuquiterpenoids, lactapiperanols A—D (1—4), were isolated from the fruit bodies of *Lactarius piperatus* **(SCOP.: FR.) S. F. GRAY (Russulaceae) along with two known compounds. The structures of the new compounds were elucidated on the basis of spectroscopic evidence.**

Key words *Lactarius piperatus*; Russulaceae; marasmane sesuquiterpenoid

Recently we reported the isolation and structural elucidation of sterols from six edible mushrooms.^{1,2)} In a continuation of our investigation of the chemical constituents of mushrooms, we describe here the isolation and the structural elucidation of four new marasmane-type sesuquiterpenoids, lactapiperanols A—D (**1**—**4**), as well as two known compounds, lactarorufin A $(5)^3$ and furosardonin A $(6)^4$ from the fruit bodies of *Lactarius piperatus* (SCOP.: FR.) S. F. GRAY (tsuchikaburi in Japanese, Russulaceae). This is the first report of the isolation of **5** and **6** from *L. piperatus*. Extraction and isolation were carried out as described in the Experimental section.

Compound 1 was isolated as an amorphous powder, $[\alpha]_D$ $+26.3^{\circ}$. The molecular formula was determined to be $C_{16}H_{26}O_4$ by high-resolution (HR)-MS. The IR spectrum showed the presence of hydroxyl groups (3569 cm^{-1}) . The ¹H- (Table 1) and ¹³C-NMR (Table 2) spectra showed signals due to three tertiary methyl groups $[\delta_{H}$ 1.01 (3H, H₃-14), 1.07 (3H, H₃-12), 1.11 (3H, H₃-15); δ _C 21.2 (C-12), 31.8 (C-14), 32.3 (C-15)], a cyclopropane ring $[\delta_{\rm H} 0.56$ (1H, H-4 α), 0.85 (1H, H-4 β); $\delta_{\rm C}$ 17.6 (C-4), 22.4 (C-3), 42.0 (C-6)], two methylenes $[\delta_{\rm H}$ 1.44 (1H, H-1 α), 1.54 (1H, H-10 β), 1.58 (1H, H-1 β), 1.74 (1H, H-10 α); δ_c 42.2 (C-10), 45.1 (C-1)], two methines $[\delta_{\rm H}$ 1.77 (1H, H-9), 2.54 (1H, H-2); $\delta_{\rm C}$ 38.7 (C-9), 45.2 (C-2)], an oxygenated methine $[\delta_{\rm H}$ 3.18 (1H, H-

Table 1. ¹H-NMR Chemical Shifts of Compounds **1**—4 (600 MHz, CDCl₃)

8); $\delta_{\rm C}$ 73.2 (C-8)], a methoxyl group [$\delta_{\rm H}$ 3.36 (3H); $\delta_{\rm C}$ 54.6], an oxygenated methylene $[\delta_{\rm H}$ 3.95 (1H, H-13 β), 4.27 (1H, H-13 α); δ_c 77.7 (C-13)], an oxygenated quaternary carbon δ_C 77.6 (C-7)] and an acetal group δ_H 4.63 (1H, H-5); δ_c 106.4 (C-5)]. Four degrees of unsaturation derived from the molecular formula suggested that **1** was a tetracyclic compound. Detailed analysis of the ${}^{1}H-{}^{1}H$ shift correlation spectroscopy (1 H–1 H COSY) spectrum of **1** implied connectivities for H_2 -1–H-2, H-2–H-9, H-8–H-9 and H- $9-H_2-10$ (Fig. 1). In the ¹H-detected heteronuclear multiple bond connectivity (HMBC) spectrum, the C–H long-range correlations observed are shown in Fig. 1. These spectral data suggested that **1** was a marasmane sesquiterpenoid derivative.5) The stereostructure was determined with a nuclear Overhauser effect correlation spectroscopy (NOESY) spectrum in pyridine- d_5 (Fig. 2). The NOESY cross peaks observed between H-4 β and H-2; H-4 β and H-9; and H₃-14 and H-2 implied a *cis*-junction for the A/B rings, and that the cyclopropane ring, $H-2$, $H-9$ and H_3-14 methyl group occurred on the same face (β) on the ring system. The NOESY cross peak observed between H₃-12 and H-5 α suggested that the methoxyl group at C-5 had β configuration. The coupling pattern and the constants for H-8 (dd, $J=11.7$, 9.3 Hz) suggested that the hydroxyl group at C-8 had β configuration, which was supported by the NOESY cross peak between H-

Coupling constants (*J* in Hz) are given in parentheses. *a*) Measured at 400 MHz.

∗ To whom correspondence should be addressed. © 1999 Pharmaceutical Society of Japan

Table 2. 13C-NMR Chemical Shifts of Compounds **1**—**4** (150 MHz, $CDCl₃$)

Carbon	1 ^a	$\overline{2}$	3	4
1	45.1	44.9	44.9	44.7
2	45.2	45.2	45.8	45.9
3	22.4	22.2	23.7	23.7
$\overline{4}$	17.6	17.7	20.6	20.6
5	106.4	106.0	109.9	109.5
6	42.0	42.1^{b}	42.2	42.5
7	77.6	77.4	78.1	77.9
8	73.2	75.1	73.9	75.7
9	38.7	36.2	40.1	37.4
10	42.2	42.1^{b}	41.9	41.8
11	37.1	36.7	37.1	36.7
12	21.2	21.1	23.0	22.9
13	77.7	76.9	79.0	78.3
14	31.8	31.5	31.9	31.8
15	32.3	31.8	32.3	32.0
OCH ₃	54.6	54.7	54.6	54.4
COCH ₃		21.0		21.0
C OCH ₃		170.9		170.6

a) Measured at 100 MHz. *b*) Signals overlapped.

Fig. 1. ¹H⁻¹H COSY and HMBC Correlations for 1

Fig. 2. NOEs and Pyridine-Induced Deshielding for **1**

 13α and H-8 α . In the ¹H-NMR spectrum, the chemical shift of the H-4 β in pyridine- d_5 was shifted downfield by the pyridine-induced deshielding effect⁶⁾ ($\delta_{\text{C,D,N}}$ – $\delta_{\text{CDCl},}$; $\Delta\delta$, H-4 β , $+0.42$ ppm). This deshielding effect indicated that the hydroxyl group at C-7 had β configuration (Fig. 2). On the basis of the above data, the structure of lactapiperanol A (**1**) was determined to be as shown in Chart 1.

Compound 2 was isolated as a colorless oil, $[\alpha]_D$ +33.3°. The molecular formula was determined to be $C_{18}H_{28}O_5$ by HR-MS. The IR spectrum showed the presence of hydroxyl

group (3588 cm⁻¹) and acetyl group (1731 cm⁻¹). The ¹Hand 13C-NMR spectral data of **2** were closely related to those of 1, except for the presence of an acetyl group $[\delta_{\rm H} 2.13]$ (3H); δ_c 21.0, 170.9]. The ¹H- and ¹³C-NMR chemical shifts at C-8 position of 2 were shifted downfield by $+1.66$ ppm $(H-8)$ and $+1.9$ ppm $(C-8)$ compared with those of **1**, suggesting that the acetyl group is located at the C-8 hydroxyl group. This finding was supported by HMBC correlation from H-8 (δ 4.84) to the carbonyl carbon in the acetyl group $(\delta$ 170.9). The coupling pattern and the constants for H-8 (d, $J=12.5$ Hz) suggested that the acetoxyl group at C-8 had β configuration. From the above data, the structure of lactapiperanol B (**2**) was determined to be as shown in Chart 1.

Compound **3** was isolated as an amorphous powder, $[\alpha]_D$ -52.6° . The molecular formula was determined to be $C_{16}H_{26}O_4$ by HR-MS. The IR spectrum showed the presence of hydroxyl groups (3565 cm^{-1}) . Comparison of the ¹H- and 13C-NMR spectral data with those of **1** revealed that they were identical except at C-5. In the NOESY spectrum, cross peaks were observed between the H_3 -12 methyl group and the methoxyl group; and H-4 α and H-5 β , and the configuration of the methoxyl group at C-5 was determined to be α . Thus, **3** was the 5-epimer of **1**. From the above data, the structure of lactapiperanol C (**3**) was determined to be as shown in Chart 1.

Compound **4** was isolated as a colorless oil, $[\alpha]_D$ -105.3°. The molecular formula was determined to be $C_{18}H_{28}O_5$ by HR-MS. The IR spectrum showed the presence of hydroxyl group (3587 cm^{-1}) and acetyl group (1732 cm^{-1}) . The ¹Hand 13C-NMR spectra of **4** were very similar to those of **3**, except for the presence of an acetyl group $[\delta_{\rm H} 2.12 \text{ (3H)}; \delta_{\rm C}]$ 21.0, 170.6]. The 1 H- and 13 C-NMR chemical shifts at C-8 of **4** were shifted downfield by $+1.55$ ppm (H-8) and $+1.8$ ppm (C-8) compared with those of **3**, suggesting that the acetyl group is located at the C-8 hydroxyl group, which was supported by HMBC correlation from H-8 (δ 4.84) to a carbonyl carbon in the acetyl group (δ 170.6). The coupling pattern and constants for H-8 (d, $J=12.1$ Hz) suggested that the acetoxyl group at C-8 was β configuration. From the above data, the structure of lactapiperanol D (**4**) was determined to be as shown in Chart 1.

Although the absolute structures of compounds **1**—**4** have not been determined, it is probably the same as compounds **5** and **6** from a biogenetic point of view.

Experimental

General Procedures Optical rotations were determined with JASCO DIP-360 digital polarimeter. IR spectra were recorded with a Perkin-Elmer FT-IR 1725X IR spectrophotometer and UV spectra with a Beckman DU-64 spectrophotometer. 1 H- and 13 C-NMR spectra were recorded with JEOL JNM-LA 600 (600 and 150 MHz, respectively) and JEOL JNM-LA 400 (400 and 100 MHz, respectively) spectrometers. Chemical shifts are given on a δ (ppm) scale with tetramethyl silane as an internal standard (s, singlet; d, doublet; dd, double doublet; ddd, double double doublet; m, multiplet). The HR-MS was recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (Merck; 230—400 mesh). Preparative HPLC was carried out on a Tosoh HPLC system (pump, CCPD; detector, RI-8010) using a TSK gel ODS-120T (7.8 mm i.d. \times 30 cm) column (Tosoh).

Material The fresh fruit bodies of *Lactarius piperatus* were collected at Sendai City in Miyagi Prefecture, Japan, in July 1997.

Extraction and Isolation The fresh fruit bodies of *L. piperatus* (120 g) were extracted three times with Et₂O at room temperature for 2 weeks. The Et₂O extract (1.7 g) was chromatographed on a silica-gel column using *n*hexane–AcOEt (7:3—1:7), AcOEt and MeOH, to afford 24 fractions (frs. 1—24). Fraction 4 was purified by preparative HPLC [MeOH–H₂O $(4:1)$; flow rate, 1.0 ml/min; column temperature, 40 °C] to give **6** (0.5 mg). Fraction 9 was purified by preparative HPLC [MeOH–H₂O $(4:1)$; flow rate, 1.0 ml/min; column temperature, 40 °C] to give a mixture of **1** and **3**, **2** (0.6 mg) and **4** (0.4 mg). The mixture of **1** and **3** was purified by preparative HPLC [MeOH–H₂O (3 : 1); flow rate, 1.0 ml/min; column temperature, 40 °C] to give **1** (0.4 mg) and **3** (0.4 mg). Fraction 12 was purified by preparative HPLC [MeOH, flow rate, 1.0 ml/min; column temperature, 40 °C] to give **5** $(0.7 \,\text{mg})$.

Known compounds (**5**, **6**) were identified by comparison of their physical data with reported values.

Lactapiperanol A (1): Amorphous powder. $[\alpha]_D^{21}$ + 26.3° (*c*=0.04, CHCl₃). IR v_{max} (CHCl₃) cm⁻¹: 3569. HR-MS *m/z*: 282.1837 (M⁺, Calcd for $C_{16}H_{26}O_4$: 282.1831). ¹H-NMR (400 MHz, CDCl₃): see Table 1. (400 MHz, C₅D₅N) δ : 0.76 (1H, d, J=4.9 Hz, H-4 α), 0.97 (3H, s, H₃-14), 1.07 (3H, s, H₃-12), 1.10 (3H, s, H₃-15), 1.27 (1H, d, J=4.9 Hz, H-4β), 1.62 (1H, dd, *J*=13.8, 7.8 Hz, H-10 β), 2.15 (1H, dd, *J*=13.8, 2.0 Hz, H-10 α), 2.27 (1H, m, H-9), 2.57 (1H, m, H-2), 3.39 (3H, s, OCH₃), 3.55 (1H, dd, *J*=10.9, 7.9 Hz, H-8), 4.42 (1H, d, $J=8.9$ Hz, H-13 β), 4.72 (1H, d, $J=8.9$ Hz, H-13 α), 4.93 (1H, s, H-5). ¹³C- NMR (100 MHz, CDCl₃): see Table 2.

Lactapiperanol B (2): Colorless oil. $[\alpha]_D^{20} + 33.3^\circ$ (*c*=0.06, CHCl₃). IR v_{max} (CHCl₃) cm⁻¹: 3588, 1731. HR-MS *m/z*: 324.1949 (M⁺, Calcd for $C_{18}H_{28}O_5$: 324.1937). ¹H-NMR (600 MHz, CDCl₃): see Table 1. ¹³C-NMR $(150 \text{ MHz}, \text{CDCl}_3)$: see Table 2.

Lactapiperanol C (3): Amorphous powder. $[\alpha]_D^{22} - 52.6^\circ$ (*c*=0.04, CHCl₃). IR v_{max} (CHCl₃) cm⁻¹: 3565. HR-MS *m/z*: 282.1840 (M⁺, Calcd for $C_{16}H_{26}O_4$: 282.1831). ¹H-NMR (600 MHz, CDCl₃): see Table 1. ¹³C-NMR $(150 \text{ MHz}, \text{CDCl}_2)$: see Table 2.

Lactapiperanol D (4): Colorless oil. $[\alpha]_D^{21} - 105.3^\circ$ (*c*=0.04, CHCl₃). IR v_{max} (CHCl₃) cm⁻¹: 3587, 1732. HR-MS *m*/*z*: 324.1945 (M⁺, Calcd for $C_{18}H_{28}O_5$: 324.1937). ¹H-NMR (600 MHz, CDCl₃): see Table 1. ¹³C-NMR $(150 \text{ MHz}, \text{CDCl}_3)$: see Table 2.

Acknowledgments We are grateful to Mrs. S. Sato and T. Matsuki of this university for measurement of the mass and NMR spectra.

References and Notes

- 1) Part V in a series of studies on the constituents of mushrooms; Part IV, Ishizuka T., Yaoita Y., Kikuchi M., *Tohoku Yakka Daigaku Kenkyu Nempo*, **45**, 43—46 (1998).
- 2) *a*) Ishizuka T., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull*., **45**, 1756— 1760 (1997); *b*) *Idem*, *Natural Medicines*, **52**, 276—278 (1998); *c*) Yaoita Y., Amemiya K., Ohnuma H., Furumura K., Masaki A., Matsuki T., Kikuchi M., *Chem. Pharm. Bull*., **46**, 944—950 (1998).
- 3) Bernardi M. D., Fronza G., Mellerio G., Vidari G., Vita-Finzi P., *Phytochemistry*, **18**, 293—298 (1979).
- 4) Andina D., Bernardi M. D., Vecchio A. D., Fronza G., Mellerio G., Vidari G., Vita-Finzi P., *Phytochemistry*, **19**, 93—97 (1980).
- 5) Daniewski W. M., Gumulka M., Ptaszynska K., Skibicki P., Krajewski J., Gluzinski P., *Phytochemistry*, **31**, 913—915 (1992).
- 6) Demarco P. V., Farkas E., Doddrell D., Mylari B. L., Wenkert E., *J. Am. Chem. Soc.*, **90**, 5480—5486 (1968).