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Two new migrated pimarane-type diterpenes called
neoorthosiphols A and B have been isolated from a water decoc-
tion of the leaves of Orthosiphon aristatus (Lamiaceae) culti-
vated in Java, Indonesia. Their chemical structures have been
elucidated on the basis of physicochemical evidence.
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Orthosiphon aristatus (BL.) Miq. (Lamiaceae) is called
kumis kucing in Javanese. The leaves of Orthosiphon arista-
tus are prescribed in Javanese traditional medicine (jamu)1)

for the treatment of hypertension and diabetes. We have con-
ducted a chemical study of the water decoction of the leaves
and isolated two novel migrated pimarane-type diterpenes
designated neoorthosiphols A (1) and B (2).

Neoorthosiphols A (1) and B (2) were obtained from the
chloroform-soluble portion of the water decoction by separa-
tion on normal phase adsorbents, in addition to four known
isopimarane-type diterpenes, orthosiphols A (3) and B,2)

orthosiphonones A and B,3) and three known ben-
zochromenes.3)

Neoorthosiphol A (1), colorless plates from ether, mp
148—149 °C, [a]D 228.7° (CHCl3), showed quasimolecular
ion peaks at m/z 699 [M1Li]1, C38H44LiO12, in the FAB-MS,
and the IR spectrum showed the presence of a hydroxyl
(3420 cm21) group, a vinyl (3080, 712 cm21) group, and an
ester (1720, 1267 cm21) group. The UV spectrum showed ab-
sorption bands at 230 nm (e 24000) and 274 nm (e 2000).

The 1H-NMR spectrum4) exhibited signals due to four ter-
tiary methyls, two acetoxymethyls, four methine protons at-
tached to an ester group, three olefinic protons, and ten aro-
matic protons. The 13C-NMR5) and DEPT spectra showed the
presence of six methyl carbons, two methylene carbons, nine
methine carbons, a ketonic carbonyl carbon, four ester car-
bonyl carbons, twelve aromatic carbons, and four quaternary
carbons including two carbons bearing a hydroxyl function.

The 1H–1H COSY spectrum of 1 showed correlation peaks
revealing the sequences from 1-C to 3-C via 2-C, from 5-C
to 7-C via 6-C, and from 9-C to 16-C via 11-C, 12-C, and
15-C (Fig. 3). From these findings and analysis of the HMBC
spectrum (Table 1), it has been deduced that 1 possesses a
novel diterpene skeleton, which may be biosynthetically pro-
duced through a 1,2-shift of a C2 unit into the C-12 from the
C-13 position in a pimarane-type diterpene.

The ROESY spectrum showed correlation peaks between
19-H3 and 20-H3, 2-H and 19-H3, 2-H and 20-H3, 6b-H and
20-H3, and 5-H and 9-H. This evidence and the coupling

constants of protons on the A and B rings suggested that the
conformation and configuration of A and B rings in 1 were
the same as those in 3.2)

The orientations of 11-H and 17-CH3 were both deter-
mined to be b-axial based on the coupling constant (J9,115
11.0 Hz) and the correlations with 11-H and 17-H3, and 11-H
and 20-H3 in the ROESY spectrum. The signals due to 20-H3

and 17-H3 were observed at lower fields than expected, which
was assumed to be due to an anisotropic effect of 8b-axial-
OH. This assumption is supported by the pyridine-induced
solvent shifts6) (dCDCl3

–dC5D5N
) D520.43 ppm for 20-CH3

and D520.30 ppm for 17-CH3. Furthermore, the coupling
constant J11,12 (3.5 Hz) indicated that the vinyl group was ori-
ented in the a-axial configuration.

In the HMBC experiment, 1 showed the presence of four
characteristic cross-peaks between two hydroxymethine pro-
tons (1- and 11-H) and two benzoyl carbonyl carbons, and
between two hydroxymethine protons (2- and 7-H) and two
acetyl carbonyl carbons, respectively. In addition, the pres-
ence of cross-peaks between the protons at C-12 and C-17
and the ketonic carbonyl carbon indicated that the ketonic
function was oriented to C-14.

Neoorthosiphol B (2),7) a colorless plate from ether, mp
194—195 °C, [a]D 118.1° (CHCl3), showed a quasimolecu-
lar ion peak at m/z 699 [M1Li]1, C38H44LiO12, in the FAB-
MS. The IR, UV, and NMR spectra were very similar to
those of 1 except for the chemical shifts for 2-H and 3-H in
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Fig. 1

Fig. 2. Plausible Biosynthetic Route for “Migrated Pimarane” from “Pi-
marane”

Fig. 3. 1H–1H COSY and ROESY Correlations of 1



the 1H-NMR spectrum. A cross-peak between 3-H and 3-
COCH3 was observed in the HMBC, instead of that between
2-H and 2-COCH3 in 1.

Finally, the absolute configurations of 1 and 2 were estab-
lished by application of the exciton chirality method.8) Posi-
tive maxima (1: [q]236 163000, 2: [q]237 147000) which
were caused by two chromophoric benzoates at C-1 and C-11
were observed in those CD spectra. Consequently, it has been
clarified that the absolute configurations of 1 and 2 are as
shown.

In conclusion, we isolated two novel migrated pimarane-
type diterpenoids, 1 and 2, from the leaves of the lamiaceous
plant Orthosiphon aristatus. It should be mentioned that 1
and 2 exhibit concentration-dependent suppressions of the
contraction induced by K1 and l-phenylephrine in the en-
dothelium-denuded rat thoracic aorta. The IC50 values of 1
and 2 against the contraction by high K1 were 10.5 mg/ml
and 41.6 mg/ml, and against that by l-phenylephrine were
35.9 mg/ml and 42.6 mg/ml, respectively.
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Table 1. HMBC Correlations of Neoorthosiphol A (1)

1H → 13C

1-H 2-C, 5-C, 10-C, -COPh
2-H 1-C, -COCH3

3-H 1-C, 2-C, 4-C, 5-C, 19-C
5-H 4-C, 7-C, 10-C, 18-C, 19-C, 20-C
6-Ha 7-C, 8-C, 10-C
6-Hb 5-C
7-H 5-C, 8-C, 9-C, -COCH3

9-H 1-C, 10-C, 11-C, 12-C, 20-C
11-H 9-C, 12-C, 13-C, 15-C, -COPh
12-H 9-C, 11-C, 13-C, 14-C, 15-C, 16-C, 17-C
15-H 9-C, 13-C
16-H2 12-C
17-H3 12-C, 13-C, 14-C
18-H3 3-C, 4-C, 5-C, 19-C
19-H3 3-C, 4-C, 5-C, 18-C
20-H3 1-C, 5-C, 9-C, 10-C


