## Antiallergic Agent from Natural Sources. 2.<sup>1)</sup> Structures and Leukotriene Release-Inhibitory Effect of Torososide B and Torosachrysone 8-*O*-6"-Malonyl $\beta$ -Gentiobioside from *Cassia torosa* CAV.

Morihiro KANNO, Takeshi SHIBANO, Michio TAKIDO, and Susumu KITANAKA\*

College of Pharmacy, Nihon University, 7–7 Narashinodai, Funabashi, Chiba 274–8555, Japan. Received October 15, 1998; accepted April 5, 1999

Two new anti-allergic compounds, torososide B and torosachrysone 8-O-6"-malonyl gentiobioside were isolated from the seeds of *Cassia torosa* CAV., and their structures were established as physcion 8-O- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -D-glucopyranoside and torosachrysone 8-*O*- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 6)-6-malonyl  $\beta$ -D-glucopyranoside on the basis of spectral and chemical evidence. Torososide B and torosachrysone 8-*O*-6"-malonyl gentiobioside were found to inhibit the release of leucotrienes from rat peritoneal mast cells induced by calcium ionophore A 23187.

Key words Cassia torosa; anthraquinone glycoside; torososide B; torosachrysone 8-O-6"-malonyl  $\beta$ -gentiobioside; anti-allergic agent; leucotriene release inhibitor

Leukotrienes (LTs) are formed by several enzymes, *e.g.* 5lipoxygenase,  $LTC_4$  synthetase and  $LTA_4$  hydrase, from arachidonic acid released from the phosphatide of the cell membrane such as mast cells or neutrophils by phospholipase  $A_2$ . A mixture of sulphidopeptides  $LTC_4$ ,  $LTD_4$  and  $LTE_4$  is known as the slow reacting substance of anaphylaxis (SRS-A) and when combined they induce bronchospasm, mucus secretion, and enhanced vascular permeability, while  $LTB_4$  is a very potent chemoattractant for neutrophils, eosinophils and mononuclear phagocytes. Therefore, we have researched inhibitors of LT release from mast cells from natural sources.

The seeds of *Cassia torosa* CAV. (Leguminosae) have been used as a Japanese folk medicine to help digestion, as an antidote and as a tonic. We have previously reported the isolation of anthraquinone, anthrones, hydroanthracenes, naphthalenic lactones, and flavonoids from ripe and unripe seeds, seedlings, roots, and leaves of *Cassia torosa* CAV.<sup>2–17)</sup> During our search for antiallergic compounds from a natural source, two new phenolic glycosides, torososide B (1) and torosachrysone malonylgentiobioside (2), isolated from seeds of *Cassia torosa* CAV., were found to inhibit the release of LTs from rat peritoneal mast cells induced by calcium ionophore A 23187 (A 23187).

Torososide B (1), yellow powder, mp 208—209 °C,  $[\alpha]_D$ -71.3°, showed a red coloration in the methanolic sodium hydroxide test and in the magnesium acetate test.<sup>18)</sup> The UV spectrum showed maxima at 223, 271 and 418, and the IR spectrum exhibited bands due to hydroxyls (3412 cm<sup>-1</sup>), a non-chelated quinone (1670 cm<sup>-1</sup>), a chelated quinone (1630 cm<sup>-1</sup>) and aromatic rings (1596, 1485 cm<sup>-1</sup>). Torososide B (1) was presumed to be an anthraquinone glycoside



from its characteristic color reaction and spectral properties. The <sup>1</sup>H-NMR spectrum of **1** indicated the presence of one aromatic methyl group ( $\delta$  2.38), one methoxyl group ( $\delta$  3.93), four aromatic protons ( $\delta$  7.15, 7.18, 7.34, 7.45), one chelated hydroxyl ( $\delta$  13.09), and four anomeric protons ( $\delta$  4.18, 4.31, 4.33, 5.13) (Table 1). The field desorption (FD) MS of **1** observed at m/z 955 [M+Na]<sup>+</sup> and 284 [M– hexose×4]<sup>+</sup> suggested that **1** is an anthraquinone tetrahexoside.

Treatment of 1 with  $\beta$ -glucosidase gave 1a, the <sup>1</sup>H-NMR data of which were identical with those of physcion.<sup>4)</sup> Compound 1 was thus presumed to be physcion tetraglucoside. The <sup>13</sup>C-NMR and distortionless enhancement by polarization transfer (DEPT) spectra of 1 revealed the presence of two methyl, four aromatic methine, eight tertiary aromatic carbon, twenty aliphatic methine, and four methylene signals (Table 1). The <sup>1</sup>H-detected heteronuclear multiple bond connectivity (HMBC) spectrum of 1 showed a <sup>1</sup>H-<sup>13</sup>C longrange correlation between the anomeric proton at  $\delta$  5.13 (H-1') and carbon signal at  $\delta$  161.0 (C-8) and also between a proton at  $\delta$  7.18 (H-7) and aromatic carbon signals at  $\delta$ 161.0 (C-8) and 165.3 (C-6). So, the location of the sugar moiety in 1 was confirmed to be at C-8. The proton and carbon signals of the sugar moiety were assigned as shown in Table 1 by <sup>1</sup>H-<sup>1</sup>H correlation spectrometry (COSY), heteronuclear multiple quantum coherence (HMQC) and HMBC analysis. The <sup>1</sup>H-13C long-range correlations between  $\delta$  4.16 (H-1''') and  $\delta$  69.0 (C-6'''), between  $\delta$  4.33 (H-1") and  $\delta$  88.9 (C-3"), and between  $\delta$  4.29 (H-1") and  $\delta$  68.9 (C-6') were observed. Carbon signals due to the O-tetraglucoside moiety in the <sup>13</sup>C-NMR spectrum of **1** were found to be superimposable on those of the cassiasides  $B_2$  and  $C_2$ .<sup>1)</sup> Therefore, the structure of 1 was characterized as physcion 8-*O*- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 6)- $\beta$ -D-glucopyranoside.

Torosachrysone 8-O-6"-malonyl  $\beta$ -gentiobioside (2), a yellow powder,  $[\alpha]_{\rm D}$  -20.9°, was fluorescent blue under UV light. The UV maxima at 304 and 314 nm showed that torosachrysone possesses a naphthalene nucleus, and the IR spectrum exhibited absorption bands due to hydroxyls  $(3406 \text{ cm}^{-1})$ , a carbonyl ester  $(1729 \text{ cm}^{-1})$ , a chelated carbonyl  $(1629 \text{ cm}^{-1})$  and aromatic rings  $(1610, 1590 \text{ cm}^{-1})$ . The <sup>1</sup>H-NMR spectrum of **2** revealed the presence of a methyl group ( $\delta$  1.28), a methoxyl group ( $\delta$  3.86), two nonequivalent methylenes at  $\delta$  2.65 and 2.91 (each d, J=17.4 Hz) and  $\delta$  2.87 (d, J=16.9 Hz) and 3.10 (br d), an equivalent methylene group ( $\delta$  3.17), a pair of *meta*-coupled aromatic protons ( $\delta$  6.83 and 6.87), an aromatic proton ( $\delta$  6.96), a chelated hydroxyl ( $\delta$  14.87), and two anomeric protons at  $\delta$ 4.22 (1H, d, J=7.3 Hz) and 5.18 (1H, d, J=7.3 Hz). Compound 2 is shown to be a derivative of torosachrysone biglycoside from its characteristic spectral properties.<sup>5)</sup> The <sup>13</sup>C-NMR and DEPT spectra of 2 revealed the presence of sixteen carbons of the torosachrysone moiety, twelve carbons consist of two hexose molecules, an unassigned methylene and two carbonyl carbons containing two esters or a free carboxylic acid and an ester (Table 1). From analysis of the HMQC and HMBC spectra of 2, the structure of the aglycone moiety was identified as torosachrysone.<sup>7)</sup> Long-range correlations between an anomeric proton at  $\delta$  4.22 (H-1") and a carbon at  $\delta$  69.2 (C-6') and between the other

Table 1. NMR Spectral Data of Torososide A (1) and Torosachrysone 8-*O*-6"-Malonyl  $\beta$ -Gentiobioside (2) (400 Mz, Me<sub>2</sub>CO- $d_6$ , TMS as internal standard)

|              | 1                         |                 | 2                           |                 |  |
|--------------|---------------------------|-----------------|-----------------------------|-----------------|--|
| Position     | $\delta_{	ext{	ext{	H}}}$ | $\delta_{ m C}$ | $\delta_{	ext{H}}$          | $\delta_{ m c}$ |  |
| 1            |                           |                 | 1(1.0                       | 202.0           |  |
| 1            | 7 1 5 1                   | 124.0           | 161.9                       | 203.9           |  |
| 2            | 7.15 brs                  | 124.8           | 2.65 d (17.4)               | 51.5            |  |
| 2            |                           | 147.0           | 2.91 d (17.4)               | 60.4            |  |
| 3            | 7 15 hrs                  | 147.9           | $2.87 \pm (16.0)$           | 42.8            |  |
| 4            | 7.45 DI S                 | 120.1           | 2.87  u(10.9)<br>2.10  hr d | 42.8            |  |
| 40           |                           | 136.0           | 5.10 bi u                   | 138.0           |  |
| 4a<br>5      | 7344(22)                  | 107.0           | 6834(22)                    | 101.2           |  |
| 5            | 7.34 u (2.2)              | 165.3           | 0.85 u (2.2)                | 161.6           |  |
| 0 7          | 7 18 d (2 2)              | 105.5           | 6874(22)                    | 101.0           |  |
| 8            | 7.10 <b>u</b> (2.2)       | 161.0           | 0.07 u (2.2)                | 158.3           |  |
| 89           |                           | 115.1           |                             | 100 4           |  |
| 0            |                           | 187.0           |                             | 164.4           |  |
| 9            |                           | 115.0           |                             | 110.0           |  |
| 9a<br>10     |                           | 182.5           | 6 69 s                      | 116.5           |  |
| 10           |                           | 132.5           | 0.07 3                      | 141.0           |  |
| 3-Me         | 238 brs                   | 28.0            | 1 28 brs                    | 29.0            |  |
| OMe          | 3.03 c                    | 20.0<br>56.7    | 3.86 s                      | 29.0<br>55.4    |  |
| OH-1         | 13.00 s                   | 50.7            | 5.00 8                      | 55.4            |  |
| OH-9         | 15.07 3                   |                 | 14 87 s                     |                 |  |
| Sugar mojety |                           |                 | 14.07 3                     |                 |  |
|              | 5 13 d (7 3)              | 100.6           | 5 18 d (7 3)                | 100.7           |  |
| 2'           | 5.15 <b>u</b> (7.5)       | 73.3            | 5.10 <b>u</b> (7.5)         | 73.5            |  |
| 2'           |                           | 76.5            |                             | 76.3            |  |
| 3<br>4'      |                           | 69.9            |                             | 69.9            |  |
| 5'           |                           | 76.0            |                             | 75.1            |  |
| 6'           |                           | 68.9            |                             | 69.2            |  |
| 1″           | 4 29 d (7 3)              | 102.9           | 4 22 d (7 3)                | 103.8           |  |
| 2"           | , = (,                    | 72.0            | = = ( ( )                   | 73.0            |  |
| 3"           |                           | 88.9            |                             | 75.9            |  |
| 4″           |                           | 69.0            |                             | 69.8            |  |
| 5″           |                           | 75.9            |                             | 73.1            |  |
| 6"           |                           | 60.7            |                             | 64.2            |  |
| 1‴           | 4.33 d (7.3)              | 104.1           |                             |                 |  |
| 2‴           | × /                       | 73.6            |                             |                 |  |
| 3‴           |                           | 76.9            |                             |                 |  |
| 4‴           |                           | 71.1            |                             |                 |  |
| 5‴           |                           | 75.1            |                             |                 |  |
| 6‴           |                           | 69.0            |                             |                 |  |
| 1‴″          | 4.16 d (7.3)              | 102.9           |                             |                 |  |
| 2""          | · · · ·                   | 74.0            |                             |                 |  |
| 3‴″          |                           | 76.2            |                             |                 |  |
| 4‴″          |                           | 70.4            |                             |                 |  |
| 5""          |                           | 76.0            |                             |                 |  |
| 6""          |                           | 61.0            |                             |                 |  |
| Malonyl      |                           |                 | 3.17 s                      | 43.2            |  |
| -            |                           |                 |                             | 167.9           |  |
|              |                           |                 |                             | 168.2           |  |
|              |                           |                 |                             |                 |  |

anomeric proton at  $\delta$  5.18 (H-1') and a carbon at  $\delta$  158.3 (C-8) were observed. The presence of a malonyl ester was estimated from a methylene carbon at  $\delta$  43.2 and two carbonyl groups at  $\delta$  167.9 and 168.2 in **2**. From this evidence and these observations at m/z 737 [M+K]<sup>+</sup> and 721 [M+Na]<sup>+</sup> in the FDMS, **2** was considered to be a malonate of torosachrysone 8-O-(1 $\rightarrow$ 6)-hexabioside.

Treatment of **2** with 1% Na<sub>2</sub>CO<sub>3</sub>/80% MeOH gave torosachrysone 8-*O*- $\beta$ -gentiobioside (**2a**) and physcion 8-*O*- $\beta$ gentiobioside (**2b**).<sup>5)</sup> The location of the malonyl ester in **2** was confirmed to be at the 6"-hydroxyl by comparison of the <sup>13</sup>C-NMR spectral data of **2** and **2a**. That is to say , the C-6" ( $\delta$  64.2) signal in **2** shifted downfield by 4.0 ppm owing to

| Substance                     | Concentration (M)    | п | Inhibitory ratio (%) |         |         |         |
|-------------------------------|----------------------|---|----------------------|---------|---------|---------|
|                               |                      |   | $LTB_4$              | $LTC_4$ | $LTD_4$ | $LTE_4$ |
| Torososide B (1)              | $10^{-4}$            | 3 | 46.9                 | 39.7    | 41.2    | 43.3    |
|                               | $10^{-5}$            | 3 | 13.3                 | 9.3     | 10.9    | 8.1     |
| Torosachrysone 8-O-6"-malonyl | $10^{-4}$            | 3 | 35.4                 | 30.9    | 29.3    | 32.3    |
| $\beta$ -gentiobioside (2)    | $10^{-5}$            | 3 | 5.1                  | 4.1     | 6.3     | 7.5     |
| Torosachrysone 8-O-           | $10^{-4}$            | 3 | 24.8                 | 30.1    | 21.0    | 31.1    |
| $\beta$ -gentiobioside (2a)   | $10^{-5}$            | 3 | 4.2                  | 7.8     | 5.1     | 5.3     |
| Hydrocortisone                | $2.5 \times 10^{-4}$ | 3 | 70.1                 | 75.1    | 69.3    | 72.1    |

Table 2. Inhibitory Effects of Torososide (1), Torosachrysone 8-*O*-6"-Malonyl Gentiobioside (2), Torosachrysone 8-*O*-Gentiobioside (2a), and Hydrocortisone on Leukotriene Release from Rat Peritoneal Mast Cells

the acylation shift, compared with that of 2a. On the basis of the evidence presented, the structure of 2 is torosachrysone 8-*O*-6"-malonyl  $\beta$ -gentiobioside.

The inhibitory effect of torososide B (1), torosachrysone 8-*O*-6"-malonyl  $\beta$ -gentiobioside (2), and torosachrysone 8-*O*-gentiobioside (2a) on LTs B<sub>4</sub>, C<sub>4</sub>, D<sub>4</sub> and E<sub>4</sub> released from rat peritoneal mast cells stimulated by calcium ionophore A23187 is shown in Table 2. Compound 1 strongly inhibited the release of LTs at a concentration of  $10^{-4}$  M in the three compounds. Compounds 2 and 2a exhibited somewhat weaker inhibition than 1. This is the first example in which anthraquinone and tetrahydroanthracene derivatives showed a leukotriene release-inhibitory effect.

## Experimental

**General Procedures** All melting points were measured with a Yanagimoto micro-melting-point apparatus and are uncorrected. The UV spectrum was obtained in MeOH with a Hitachi 200-10 spectrophotometer, and IR spectra were recorded on a JASCO IR A-2 spectrophotometer. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were measured with a JEOL JNM GX-400 spectrometer using tetramethyl silane (TMS) as an internal standard. MS were obtained on a Hitachi M-80B spectrometer. Column chromatography was carried out on Wako gel C-200 (Wako Pure Chemical), Sephadex LH-20 (25–100  $\mu$ m, Pharmacia Fine Chemical), Diaion HP20 (Nippon Rensui), MCI gel CHP 20P (Mitsubishi Chemical) and Cosmosil 75 C<sub>18</sub>-OPN (Nacalai Tesque). HPLC analysis was carried out on a JASCO apparatus (pump, Gulliver PU-980; ultraviolet spectrophotometric detector, Gulliver UV-970; peak area measurement, Shimadzu C-R 5A Chromatopak). HPLC reference standards, leukotrienes B<sub>4</sub>, C<sub>4</sub>, D<sub>4</sub> and E<sub>4</sub> and calcium ionophore A23187 were purchased from Wako Pure Chemical Industries, Ltd.

**Extraction and Isolation** Plant material was obtained from the Drug Plant Garden of the College of Pharmacy, Nihon University. The seeds (1.0 kg) of *C. torosa* were extracted with 80% aqueous MeOH (2.5 1×3) in a sonicator. The MeOH extract was concentrated *in vacuo* into a dark mass (58.59 g) (LT release inhibitory effect (1000  $\mu$ g/ml); LTB<sub>4</sub>: 62%, LTC<sub>4</sub>: 56%), which was suspended in H<sub>2</sub>O and extracted with Et<sub>2</sub>O. The H<sub>2</sub>O layer (55.05 g) was separated on a Diaion HP20 column with H<sub>2</sub>O and then with MeOH–H<sub>2</sub>O mixtures to give frs. 2—7. Fraction 2 was applied to a Sephedex LH-20 (MeOH–H<sub>2</sub>O) and a silica gel (CHCl<sub>3</sub>–MeOH–H<sub>2</sub>O) column resulting in **2** (24.5 mg), **2a** (20.0 mg) and tryptophane (14.5 mg), respectively. Fraction 3 was applied to a Sephadex LH-20 (MeOH–H<sub>2</sub>O) and silica gel (CHCl<sub>3</sub>–MeOH–H<sub>2</sub>O) column, resulting in the isolation of **2a** (20.2 mg) and **1** (14 mg), respectively.

**Torososide B (1)** Recrystallization (MeOH) gave a yellow powder, mp 208—209 °C,  $[\alpha]_D^{14} - 71.3^{\circ}$  (pyridine; c=0.3). UV  $\lambda_{max}^{MeOH}$  nm (log  $\varepsilon$ ): 223 (4.47), 271 (4.38), 418 (3.88). IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3412, 2925, 1670, 1630, 1596, 1485, 1440, 1367, 1314, 1266, 1216, 1165, 1068, 906, 755. FDMS m/z: 955 [M+Na]<sup>+</sup>, 284 [M-4 hexose]<sup>+</sup>. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data: see Table 1.

**Enzymatic Hydrolysis of Compound 1** A solution of **1** (1 mg) and  $\beta$ -glucosidase (1 mg) in H<sub>2</sub>O (2 ml) was kept for 24 h at 37 °C. The resultant ppt. was recrystallized from methanol to afford **1a**, which was identified as physcion by comparison with an authentic sample (TLC and HPLC).

Torosachrysone 8-O-6"-Malonyl  $\beta$ -D-Gentiobioside (2) Recrystalliza-

tion (MeOH–EtOAc) gave a yellow powder,  $[\alpha]_D^{14} - 20.9^{\circ}$  (H<sub>2</sub>O; c=0.3). UV  $\lambda_{mcOH}^{MeOH}$  nm (log  $\varepsilon$ ): 228 (4.16), 272 (4.44), 304 (3.44), 314 (3.68), 326 (3.63), 382 (3.78). IR  $\nu_{max}^{KBr}$  cm<sup>-1</sup>: 3406, 2934, 1729, 1629, 1610, 1590, 1455, 1413, 1377, 1292, 1246, 1204, 1171, 1062, 921, 833. FDMS *m/z*: 737 [M+K]<sup>+</sup>, 721 [M+Na]<sup>+</sup>. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data: see Table 1.

Alkaline Treatment of 2 A solution of 2 (2 mg) and 1% Na<sub>2</sub>CO<sub>3</sub> in 80% methanol (5 ml) was kept for 5 min at 80 °C. The reaction mixture was neutralized with 10% HCl solution, which was identified as torosachrysone 8-O- $\beta$ -D-gentiobioside (2a) and physcion 8-O- $\beta$ -D-gentiobioside (2b) by comparison with an authentic sample (TLC and HPLC), respectively.

**Preparation of Rat Peritoneal Mast Cells** The preparation of mast cells was based on the method of Hirai *et al.*<sup>19)</sup> with modifications. Male Wistar rats (Japan SLC, Shizuoka) weighing 180—200 g were exsanguinated and injected intraperitoneally with 10 ml of Tyrode solution. The abdominal region was gently massaged for 2 min and then the peritoneal exudate was collected. The peritoneal cavity fluid containing mast cells was suspended in PBS, then layered on BSA (d=1.068) in a test tube at room temp. for 20 min. After centrifugation at 300×g and 4 °C for 10 min, the layer containing mast cells was pipetted out. The cells were washed three times with 4 ml of PBS (pH 7.0) and suspended in the same medium. Cell viability was determined using trypan blue.

Assay of Inhibitory Activity on Leukotriene Release The cell suspension (10<sup>7</sup> cells/ml) and test sample solution were preincubated for 5 min at 37 °C. The cells or PBS were incubated with calcium ionophore A23187  $(2 \,\mu\text{M})$  for 10 min at 37 °C and the reaction was terminated by the addition of cold 0.001 N HCl. After removal of the cells by centrifugation at  $2500 \times g$ and 4 °C for 5 min, the supernatant was applied on an Isolute C18 cartridge (IST), which was quickly washed with successive Tyrode solution, 20% MeOH, MeOH and EtOAc. The MeOH and EtOAc eluents were combined and removed under a nitrogen stream at 30 °C, and the residue was dissolved in a small amount of methanol (70  $\mu$ l). Samples thus obtained were analyzed by reversed phase HPLC<sup>20-22)</sup> under the following operation conditions: Detection, UV 280 nm; injection volume, 20 µl; column; Capcell pak C<sub>18</sub> UG120,  $(3 \,\mu\text{m}, 4.6 \times 250 \,\text{mm}; \text{Shiseido})$ ; column temperature, 40 °C; flow rate, 1.0 ml/min; mobile phase, 20% sodium acetate/acetonitrile/methanol/ trifluoroacetic acid (55/30/22/0.04), Rt values (min): LTC<sub>4</sub> (14.7), LTD<sub>4</sub> (23.1),  $LTE_4$  (26.4) and  $LTB_4$  (31.8). The activity of the test substance on LT release from mast cells induced by A23187 was expressed as an inhibitory percentage.

## **References and Notes**

- Part I: Kitanaka S., Nakayama T., Shibano T., Ohkoshi E., Takido M., Chem. Pharm. Bull., 46, 1650—1652 (1998).
- Takido M., Nakamura Y., Nitta K., *Pharm. Bull. Nihon Univ.*, 3–4, 18–19 (1960).
- Takido M., Takahashi S., Masuda K., Yasukawa K., *Lloydia*, 40, 191– 194 (1977).
- 4) Kitanaka S., Takido M., Phytochemistry, 21, 2103-2106 (1982).
- 5) Kitanaka S., Takido M., Chem. Pharm. Bull., 32, 3436-3440 (1984).
- Kitanaka S., Takahashi S., Takido M., *Phytochemistry*, 29, 350—351 (1990).
- Takahasi S., Takido M., Sankawa U., Shibata S., *Phytochemistry*, 15, 1295–1296 (1976).
- Takahasi S., Kitanaka S., Takido M., Sankawa U., Shibata S., *Phyto-chemistry*, 16, 999–1002 (1977).
- Takahashi S., Kitanaka S., Takido M., Sankawa U., Shibata S., *Phyto-chemistry*, 16, 999 (1977).

- Takido M., Kitanaka S., Takahashi S., Tanaka T., *Phytochemistry*, 21, 425–427 (1982).
- 11) Kitanaka S., Takido M., Chem. Pharm. Bull., 33, 4912-4915 (1985).
- 12) Kitanaka S., Takido M., Chem. Pharm. Bull., 38, 1292-1294 (1990).
- Kitanaka S., Ogata K., Takido M., Chem. Pharm. Bull., 37, 2441– 2444 (1989).
- 14) Kitanaka S., Takido M., Chem. Pharm. Bull., 39, 3254-3257 (1991).
- 15) Kitanaka S., Takido M., Chem. Pharm. Bull., 40, 294-251 (1992).
- 16) Kitanaka S., Takido M., Chem. Pharm. Bull., 42, 2588-2590 (1994).
- 17) Kitanaka S., Takido M., *Phytochemistry*, **39**, 717–718 (1995).
- 18) Shibata S., Takido M., Tanaka O., J. Am. Chem. Soc., 72, 2789-2790

(1950).

- Hirai Y., Takase H., Kobayashi H., Yamamoto M., Fujioka N., Kohda H., Yamazaki K., Yasuhara T., Nakajima T., *Shoyakugaku Zasshi*, 37, 374—380 (1983).
- Oerning L., Hammarstoem S., J. Biol. Chem., 255, 8023-8026 (1980).
- Hammarstroem S., Bernstroem K., Oerning L., Dahlen S., Hedqvist P., Biochem. Biophys. Res. Commun., 101, 1109–1115 (1981).
- 22) Beaubien B. C., Tippins J. R., Morris H. R., *Biochem. Biophys. Res. Commun.*, **125**, 97–104 (1984).