Water-Soluble Constituents of Fennel. IX. Glucides and Nucleosides

Junichi Kitajima,^{*,*a*} Toru Ishikawa,^{*a*} Yasuko Tanaka,^{*a*} and Yoshiteru Ida^b

Showa College of Pharmaceutical Sciences,^a Higashi-Tamagawagakuen 3, Machida, Tokyo 194–8543, Japan and School of Pharmaceutical Sciences, Showa University,b Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan. Received March 1, 1999; accepted April 27, 1999

From the water-soluble portion of the methanolic extract of fennel, seven new sugar alcohols (two deoxybutitols, four deoxypentitols and one deoxyhexitol) and a sugar lactone were isolated, together with seven known glucides, four nucleosides, (3*R***)-2-hydroxymethylbutane-1,2,3,4-tetrol and uracil. From the results of spectral investigation, the new compounds were characterized as 1-deoxythreitol (9), (2***R***)-butane-1,2,4-triol (10), 1-deoxy-Dribitol (11), 1-deoxy-D-xylitol (12), 2-deoxy-D-ribitol (13), 3-deoxyarabinitol (14), 1-deoxy-D-glucitol (16) and 2 deoxy-D-ribono-1,4-lactone (15), respectively.**

Key words fennel; *Foeniculum vulgare* fruit; glucide; sugar alcohol; sugar lactone; nucleoside

In previous papers, we reported the isolation and characterization of alkyl glycosides, $^{1)}$ glycosides of aromatic compounds2) and glycosides of monoterpenoids of different t ypes³⁾ of fennel. In this paper we discuss the isolation and structural elucidation of glucides and nucleosides.

The methanolic extract of commercial fennel [prepared from the fruit of *Foeniculum vulgare* MILLER (Umbelliferae)] was treated as described in the Experimental section, and fourteen glucides, four nucleosides, (3*R*)-2-hydroxymethylbutane-1,2,3,4-tetrol (**8**) 4) and uracil (**21**) were isolated from the water-soluble portion. Molecular formulae of the new compounds were established from the accurate mass number of $[M+H]^+$ or $[M+Na]^+$ ion peaks in high-resolution positive FAB-MS.

Glucides **1**, **2**, **3**, **4**, **5**, **6** and **7** were identified as glycerol, erythritol,⁵⁾ D-threitol,⁵⁾ D-mannitol, D-glucose, D-fructose and sucrose by direct comparison with authentic compounds.

Glucides 9 (an amorphous powder, $[\alpha]_D^{23} + 3.0^\circ$) and 10 (a colorless syrup, $[\alpha]_D^{23}$ +25.0°) had the same molecular formula: $C_4H_{10}O_3$. Glucide 9 was obtained as a mixture which included a trace of a compound which was considered to be the epimer of $9(9')$; however, this trace epimer was excluded in the isolation process. The $\mathrm{^{1}H_{\text{-}}}$, $\mathrm{^{13}C_{\text{-}}}$ and $\mathrm{^{13}C_{\text{-}}}$ H correlation spectroscopy (COSY) NMR spectral data for **9** (Tables 1 and 2) revealed the presence of one *sec*-methyl, one hydroxymethyl, and two hydroxylated methines. From these data, **9** was characterized as butane-1,2,3-triol. The relation between C-2 and C-3 in **9** was considered to be *threo* by comparison of the methyl proton chemical-shift with that of 9'. In the ¹H-NMR spectrum, the methyl proton signal of 1-deoxy-2,3 *threo*-alditols in pyridine- d_5 appeared in a higher field than those of 2,3-*erythro* isomers [fucitol (*threo*, δ 1.59),⁶⁾ quinovitol (*erythro*, δ 1.68)⁶; 1-deoxyglucitol (*threo*, δ 1.53), rhamnitol (*erythro*, δ 1.68)⁶⁾; 1-deoxyxylitol (*threo*, δ 1.56), 1-deoxyarabinitol (threo, δ 1.60),⁷⁾ 1-deoxyribitol (*erythro*, δ 1.70)]. As the methyl proton signal of **9** appeared in a higher region than that of **9'** (**9** for δ 1.53, **9'** for δ 1.65), **9** was suggested to be 1-deoxythreitol.⁸⁾ However, the absolute configuration of **9** could not be established from the available data.

Glucide **10** was revealed to contain two hydroxymethyls, one hydroxylated methine and one methylene, and was concluded to be butane-1,2,4-triol from the analysis of the ${}^{1}H$ -, 13 C- and 13 C-¹H COSY NMR spectral data (Tables 1 and 2).

As the synthesized (2*R*)-form of butane-1,2,4-triol was reported to have a positive optical rotation ($[\alpha]_D$ +27.9°),⁹⁾ the configuration at C-2 of 10 was revealed to be \overline{R} ¹⁰⁾ Therefore, **10** was characterized as (2*R*)-butane-1,2,4-triol.

Glucides 11 (a colorless syrup, $[\alpha]_D^{23} + 6.5^{\circ}$), 12 (a colorless syrup, $[\alpha]_{D}^{23}$ –4.0°), **13** (a colorless syrup, $[\alpha]_{D}^{22}$ –17.0°) and **14** (a colorless syrup, $[\alpha]_D^{23}$ –34.5°) had the same molecular formula: $C_5H_{12}O_4$. The ¹H-, ¹³C- and ¹³C-¹H COSY NMR spectral data for **11** and **12** showed them to have one *sec*-methyl, one hydroxymethyl and three hydroxylated me-

Fig. 1. Structures of **2**, **3**, **4**, **8**—**21**

Table 1. ¹H-NMR Chemical Shifts of **2**, **3**, **8**—16 (in Pyridine- d_5 , 500 MHz)

 δ in ppm from TMS [coupling constants (J) in Hz are given in parentheses]. *a*) Assignments may be interchanged.

Table 2. ¹³C-NMR Chemical Shifts of **2—4**, **8—16** (in Pyridine- d_5 , 125 MHz)

	2		9	$\mathbf{9}'$	10	11	12	13	14	15	8	16	4
$C-1$ $C-2$ $C-3$ $C-4$ $C-5$ C-6	65.19 74.29 74.29 65.19	64.67 73.50 73.50 64.67	20.24 68.52 77.02 64.63	20.34 69.43 77.17 65.13	67.65 70.99 37.79 59.84	19.59 69.91 76.77 75.07 65.31	20.44 69.23 75.95 74.03 64.81	60.25 37.35 72.04 76.28 65.15	67.61 72.16 38.22 72.16 67.61	177.11 39.46 69.23 89.76 62.07	64.61^{a} 76.46 75.16 63.69 65.33^{a}	20.32 70.01 74.03 74.86 73.21 65.23	64.13 70.37 71.90 71.90 70.37 64.13

 δ in ppm from TMS. *a*) Assignments may be interchanged.

Table 3. ¹H-NMR Chemical Shifts of $17-21$ (in Pyridine- d_5 , 500 MHz)

	17	18	19 ^a	20	21
$H-2$	8.73 1H, s	8.74 1H, s			
$H-5$				5.81 1H, $d(8.0)$	5.82 1H, $d(8.0)$
H-6			8.17 1H, d (1.0)	8.55 1H, d (8.0)	7.55 1H, d (8.0)
$H-8$	8.61 1H, s	8.71 1H, s			
CH ₃			1.88 3H, d (1.0)		
NH ₂	8.37 2H, s	8.43 2H, s			
$Sug-1$	6.73 1H, $d(6.0)$	7.01 1H, dd $(6.0, 7.5)$	7.05 1H, d (6.5)	6.83 1H, $d(4.0)$	
$Sug-2$	5.50 1H, dd $(3.5, 6.0)$	2.82 1H, ddd $(3.0, 6.0, 13.0)$	2.66 2H, m	4.92 1H, dd $(4.0, 9.0)$	
		3.23 1H, ddd $(6.0, 7.5, 13.0)$			
$Sug-3$	5.07 1H, dd $(3.5, 6.0)$	5.25 1H, ddd $(3.0, 3.0, 6.0)$	5.05 1H, m	4.91 1H, dd $(4.5, 9.0)$	
$Sug-4$	4.78 1H, ddd $(3.0, 3.0, 6.0)$	4.69 1H, ddd $(3.0, 3.0, 3.0)$	4.48 1H, ddd $(3.0, 3.0, 3.0)$	4.67 1H, ddd $(2.5, 2.5, 4.5)$	
$Sug-5$	4.15 1H, dd $(3.0, 12.0)$	4.20 1H, dd $(3.0, 12.0)$	4.15 1H, dd $(3.0, 12.0)$	4.21 1H, dd $(2.5, 12.0)$	
	4.33 1H, dd $(3.0, 12.0)$	4.31 1H, dd $(3.0, 12.0)$	4.24 1H, dd $(3.0, 12.0)$	4.32 1H, dd $(2.5, 12.0)$	

 δ in ppm from TMS [coupling constants (*J*) in Hz are given in parentheses]. *a*) Measured at 67.5 MHz.

Table 4. ¹H-NMR Chemical Shifts of $17-21$ (in Pyridine- d_5 , 125 MHz)

	17	18	19 ^a	20	21
$C-2$	153.30	153.28	151.96	152.20	153.24
$C-4$	150.00	150.15	164.99	164.44	165.83
$C-5$	121.44	121.11	110.46	102.38	101.23
$C-6$	157.67	157.53	136.65	141.11	142.18
$C-8$	140.58	140.07			
CH ₃			12.76		
$Sug-1$	90.83	85.99	85.30	90.27	
$Sug-2$	75.54	41.24	41.39	76.04	
$Sug-3$	72.40	72.20	71.45	71.14	
$Sug-4$	87.80	89.77	88.87	86.19	
$Sug-5$	63.03	63.13	62.31	61.66	

 δ in ppm from TMS. *a*) Measured at 67.5 MHz.

thines (Tables 1 and 2), and suggested them to be diastereomers of pentane-1,2,3,4-tetrol. Since the 1 H-NMR spectra of **11** and **12** in deuterium oxide showed identical patterns with those of tetrols which were obtained in the reduction of ribose and xylose, $^{11)}$ they were concluded to be 1-deoxyribitol and 1-deoxyxylitol, respectively. The absolute configuration of **11** was revealed to be a D-form since 1-deoxy-Dribitol was reported to have a positive [M]_D value in water $(+14^{\circ},^{12})$ +12.9° for 11). On the other hand, the absolute configuration of **12** could not be assigned by consideration of the $[M]_D$ value, as the D-form of 1-deoxyxylitol was reported to show zero $[M]_D$ value in water.¹²⁾ However, 12 was considered to be a D-form since only the D-form of xylose is known in nature. From the above facts, **11** and **12** were characterized as 1-deoxy-D-ribitol and 1-deoxy-D-xylitol, respectively.

The ¹ H-, 13C- and 13C–1 H COSY NMR spectral data for **13** showed the presence of two hydroxymethyls, one methylene and two hydroxylated methines (Tables 1 and 2), and were indicated to be pentane-1,2,3,5-tetrol. The absolute configuration of this sugar alcohol was confirmed by direct comparison with tetrol obtained by N a BH ₄ reduction of 2-deoxy-p-ribose. Therefore, **13** was characterized as 2-deoxy-D-ribitol.

The 13C-NMR spectrum of **14** showed only three signals, but analysis of the 1 H- and 13 C $-{}^{1}$ H COSY NMR spectral data revealed the presence of one methylene, one pair of hydroxymethyl and one pair of hydroxylated methine (Tables 1 and 2). So, **14** was suggested to be pentane-1,2,4,5-tetrol, which has an intermolecular symmetry plane or center. The relation between C-2 and C-4 was considered to be *threo* since **14** showed a negative optical rotation. Therefore, **14** was characterized as deoxyarabinitol. However, the absolute configuration of **14** could not be established from the available data.

Glucide **15** (C₅H₈O₄, a colorless syrup, $[\alpha]_D^{22}$ +3.5°) showed $[2M+H]^+$, $[M+K]^+$, $[M+Na]^+$, $[M+H]^+$, $[M-$ H₂O]⁺, [M-2H₂O]⁺ ion peaks at m/z 265, 171, 155, 133, 115, 97 in the positive FAB-MS, and $[2M+H]^+$, $[M+H]^+$, $[M-H₂O]⁺$ ion peaks at m/z 265, 133, 115 in the CI-MS. The ¹H₋, ¹³C- and ¹³C-¹H COSY NMR spectral data for 15 (Tables 1 and 2) revealed the presence of one hydroxymethyl, one methylene and two oxygenated methines and one carbonyl carbon. From the heteronuclear multiple-bond correlation (HMBC) spectrum, which showed H–C long-range correlations between the methylene protons (H_2-2) and the C-1, C-3, C-4 carbons, and between the hydroxymethyl protons $(H₂-5)$ and the C-3, C-4 carbons, and from the unsaturation degree of this compound, **15** was indicated to be 3,5-dihy-

droxypentono-1,4-lactone. Han *et al*. 13) prepared some pentonolactones, and the 13C-NMR data in deuterium oxide was identical with those of 2-deoxy-D-ribono-1,4-lactone which was prepared from 2-deoxy-p-ribose. As the synthetic lactone was reported to have a positive optical rotation in water ($[\alpha]_D$ +19.9°,¹³⁾ $[\alpha]_D^{22}$ +13.5° for **15**), glucide **15** was identified as 2-deoxy-D-ribono-1,4-lactone.

Glucide **16** ($C_6H_{12}O_5$, mp 123—126 °C, $[\alpha]_D^{23}$ -3.0°) was observed to have one *sec*-methyl, one hydroxymethyl and four hydroxylated methines from the NMR spectral data (Tables 1 and 2). So, **16** was suggested to be 6-deoxyhexitol. And the ¹H-NMR spectrum in deuterium oxide was identical with that of 1-deoxyglucitol, which was prepared from a reduction of D -glucose.¹¹⁾ Since the 1-deoxy- D -glucitol was reported to have a positive $[M]_D$ value in water $(+7^{\circ},^{12}_{\cdot})$ +8.3° for **16**) and a negative $[M]_D$ value in methanol $(-2^{\circ}, ^{12})$ -5.0° for **16**), **16** was characterized as 1-deoxy-D-glucitol. This characterization was also supported by the fact that the ${}^{1}H$ and 13C-NMR spectra of deoxyhexitols which were obtained by the N a $BH₄$ reduction of quinovitol, rhamnose and fucose were not identical with that of **16**.

Nucleosides **17**, **18**, **19** and **20** were identified as adenosine, 2'-deoxyadenosine, thymidine and uridine, respectively.

This is the first paper to present the isolation of sugar alcohols corresponding to deoxytetrose, deoxypentose and deoxyhexose, and a sugar lactone corresponding to deoxypentose from natural sources.

Experimental

NMR spectra in deuterium oxide were taken with 3-(trimethylsilyl)-1 propane sulfonic acid sodium salt, while FAB-MS spectra of **9**, **10**, **13**, **15** and **16** were recorded without a matrix. The instruments used and the other experimental conditions for obtaining spectral data and for chromatography were the same as in the preceding paper.

Extraction and Isolation of 1 to 21 As reported in the previous paper, commercial fennel (2.0 kg) was extracted with MeOH. The MeOH extract (329.4 g) was partitioned into Et₂O/H₂O and then EtOAc/H₂O, and the resulting aqueous portion was subjected to Amberlite XAD-II ($H_2O \rightarrow MeOH$). The Amberlite XAD-II MeOH eluate (29.5 g) was chromatographed over Sephadex LH-20 (MeOH) to give seven fractions (frs. A—G). Fraction C (16.9 g) was chromatographed over silica gel [CHCl₃–MeOH–H₂O (4:1: 0.1)→MeOH] to give fifteen fractions (frs. C_1 — C_{15}). Fraction C_5 (1.7 g) was subjected to a Lobar RP-8 column [CH₃CN–H₂O (3:17)] to give twelve fractions (frs. C_{5-1} — C_{5-12}). Fraction C_{5-2} was subjected to HPLC [carbohydrate analysis (Waters), CH_3CN-H_2O (14 : 1)] to give 19 (20 mg). Fraction E (1.8 g) was subjected to a Lobar RP-8 column [CH₃CN–H₂O (1:19–1:9)] to give six fractions (frs. E_1 — E_6). Fraction E_4 was chromatographed over Sephadex LH-20 (MeOH) to give 17 (150 mg). Fraction E_5 was chromatographed over silica gel [CHCl₃–MeOH–H₂O (7:3:0.5)] to give 18 (5 mg).

The Amberlite XAD-II water eluate (71.5 g) was chromatographed over Sephadex LH-20 [MeOH–H₂O $(9:1)$] to give six fractions (frs. H––M). Fraction I (56.9 g) was chromatographed over silica gel $\text{[CHCl}_3\text{--}$ MeOH– H₂O (17 : 3 : 0.2→4 : 1 : 0.1→7 : 3 : 0.5→MeOH] to give eleven fractions (frs. I_1 —I₁₁). Fraction I₄ (0.3 g) was subjected to a Lobar RP-8 column [CH₃CN– $H_2O (1:19)$] to give four fractions (frs. I_{4-1} — I_{4-4}). Fraction I_{4-2} was subjected to HPLC [carbohydrate analysis, CH_3CN-H_2O (99:1)] to give 15 (35 mg) and **21** (20 mg). Fraction $I_{4,3}$ ¹⁴⁾ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [ODS, MeOH–H₂O $(2:3)$] to give four fractions (frs. I_{4-3-1} — I_{4-3-4}). Fraction I_{4-3-3} was deacetylated by heating in a water bath with 5% NH4OH–MeOH for 2 h to give **9** (3 mg). Fraction I₅ (0.2 g) was subjected to a Lobar RP-8 column [CH₃CN–H₂O (1:99)] to give four fractions (frs. I_{5-1} — I_{5-4}). Fraction I_{5-3} ¹⁴⁾ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [ODS, MeOH—H₂O (2 : 3)] to give four fractions (frs. I₅₋₂₋₁—I₅₋₂₋₄). Fraction I_{5-2-2} was deacetylated by heating in a water bath (80 °C) with 5% NH₄OH– MeOH for 2 h to give 10 (3 mg). Fraction I_6 (0.7 g) was subjected to a Lobar RP-8 column $[CH_3CN-H_2O (1:99 \rightarrow 1:19)]$ to give seven fractions (frs.

 I_{6-1} — I_{6-7}). Fraction I_{6-5} was subjected to HPLC [carbohydrate analysis, CH₃CN–H₂O (24 : 1)] to give 20 (110 mg). Fraction I₇ (11.5 g) was subjected to a Lobar RP-8 column $[CH_3CN-H_2O (1:99)]$ to give four fractions (frs. I_{7-1} — I_{7-4}). Fraction I_{7-2} was subjected to HPLC [carbohydrate analysis, CH₃CN–H₂O (97:3)] to give 1 (3 g) and other fractions (frs. I₇₋₂₋₂—I₇₋₂₋₄). Fraction I_{7-2-2} ¹⁴⁾ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C_{18} (Waters), MeOH-H₂O $(1:1)$] to give four fractions (frs. I_{7-2-2d} — I_{7-2-2d}). Fractions I_{7-2-2d} and I_{7-2-2d} were each deacetylated by heating in a water bath (80 °C) with 5% NH₄OH– MeOH for 2 h to give 12 (2 mg) and 11 (3 mg) . Fraction $I_{7.2.3}$ ¹⁴⁾ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C_{18} , MeOH–H₂O (1:1)] to give two fractions (frs. I_{7-2-3a} and I_{7-2-3b}). Fractions I_{7-2-3a} and I_{7-2-3b} were deacetylated by heating with 5% NH4OH–MeOH for 2 h in a water bath (80 °C) to give **14** (2 mg) and **13** (4 mg). Fraction I_8 was subjected to a Lobar RP-8 column [CH₃CN–H₂O] $(1:99)$] to give four fractions (frs. I₈₋₁—I₈₋₄), respectively. Fraction I₈₋₂ was subjected to HPLC [carbohydrate analysis, CH_3CN-H_2O (97:3)] to give four fractions (frs. I_{8-2-1} — I_{8-2-4}). Fraction I_{8-2-3} ¹⁴⁾ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C_{18} , MeOH–H₂O (1 : 1)] to give two fractions (frs. I_{8-2-3a} and I_{8-2-3b}). Fractions I_{8-2-3a} and I_{8-2-3b} were deacetylated by heating with 5% NH₄OH– MeOH for 2 h in a water bath $(80^{\circ}$ C) to give 3 (20 mg) and 2 (15 mg) , respectively. Fraction $I_{8-2-4}^{(14)}$ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C_{18} , MeOH–H₂O $(3:2)$] and was deacetylated by heating with 5% NH₄OH–MeOH for 2 h in a water bath (80 °C) to give **16** (30 mg). Fraction I_0 was subjected to a Lobar RP-8 column [CH₃CN–H₂O (1:99)] to give four fractions (frs. I₉₋₁–I₉₋₄). Fraction I_{9-2} was subjected to HPLC [carbohydrate analysis, CH₃CN–H₂O $(19:1)$] to give **8** (45 mg). Fraction I_{10} was treated with hot MeOH to give a MeOH soluble portion and insoluble crystal **4** (1.5 g). The MeOH soluble portion was subjected to a Lobar RP-8 column $[CH_3CN-H_2O (1:99)]$ to give three fractions (frs. I_{10-1} — I_{10-3}). Fraction I_{10-2} was subjected to HPLC [carbohydrate analysis, CH_3CN-H_2O (17:3)] to give 6 (100 mg), 5 (1 g) and **7** (2 g).

Glycerol (1) A colorless syrup, $[\alpha]_D^{21}$ 0°(c =1.0, H₂O). ¹³C-NMR (pyridine- d_5 , 125 MHz) δ : 64.87 (C-1,3), 74.09 (C-2).

Erythritol (2) An amorphous powder, $[\alpha]_D^{23}$ 0°(c =0.7, MeOH).

D-Threitol (3) An amorphous powder, $[\alpha]_D^{23} + 4.0^{\circ}$ (*c*=0.9, H₂O), $[\alpha]_D^{23}$ -7.0° (c =0.9, MeOH).

D-Mannitol (4) Colorless needles (MeOH), mp $168-169 \degree C$, $[\alpha]_D^{22}$ 20.0° ($c=1.0$, pyridine).

D-Glucose (5) Colorless needles (MeOH), mp 80—83 °C, $[\alpha]_D^{22} + 49.0^\circ$ $(c=1.3, H₂O)$.

D-Fructose (6) A colorless syrup, $[\alpha]_D^{22} - 93.0^{\circ}$ (*c*=1.0, H₂O).

Sucrose (7) A colorless syrup, $[\alpha]_D^{22} + 66.0^{\circ}$ (*c*=1.2, H₂O).

(3*R***)-2-Hydroxymethylbutane-1,2,3,4-tetrol (8)** A colorless syrup, $[\alpha]_D^{25}$ +4.4° (*c*=0.5, MeOH).

1-Deoxythreitol (9) An amorphous powder, $[\alpha]_D^{23}$ +3.0° (*c*=0.1, MeOH). Positive FAB-MS m/z : 137 $[M + CH₃O]$ ⁺ (base), 129.0543 $[M +$ Na]⁺ (Calcd for C₄H₁₀O₃Na; 129.0528), 89 [M-H₂O+H]⁺, 71 [M-2H₂O+ H]⁺, 53 [M-3H₂O+H]⁺. Epimer of **9** (**9**') ¹H-NMR (pyridine- d_5 , 270 MHz) δ : 1.65 (3H, d, J=6.5 Hz, H₃-1).

(2*R***)-Butane-1,2,4-triol (10)** A colorless syrup, $[\alpha]_D^{23} + 25.0^{\circ}$ (*c*=0.1, MeOH). Positive FAB-MS m/z : 129.0519 $[M+Na]^+$ (base; Calcd for $C_4H_{10}O_3$ Na; 129.0528), 107 $[M+H]^+$, 89 $[M-H_2O+H]^+$, 71 $[M-2H_2O+$ H ⁺, 53 $[M-3H₂O+H]$ ⁺.

1-Deoxy-D-ribitol (11) A colorless syrup, $[\alpha]_D^{22} + 9.5^{\circ}$ ($c=0.2$, H₂O), $[\alpha]_D^{22}$ +6.5° (*c*=0.2, MeOH). Positive FAB-MS *m*/*z*: 175 $[M+K]^+$, 159 [M+Na]⁺, 137.0801 [M+H]⁺ (base, Calcd for C₅H₁₃O₄; 137.0814), 119 $[M-H_2O+H]^+$, 101 $[M-2H_2O+H]^+$. ¹H-NMR (D₂O, 500 MHz) δ : 1.18 (3H, d, J=6.4 Hz, H₃-1), 3.57 (1H, dd, J=4.6, 7.7 Hz, H-3), 3.62 (1H, dd, *J*56.7, 11.3 Hz, H-5a), 3.66 (1H, ddd, *J*52.2, 6.7, 7.7 Hz, H-4), 3.80 (1H, dd, $J=2.2$, 11.3 Hz, H-5b), 3.99 (1H, dq, $J=4.6$, 6.4 Hz, H-2). ¹³C-NMR (D2O, 125 MHz) d: 18.63 (C-1), 65.49 (C-5), 70.26 (C-2), 74.84 (C-4), 77.13 (C-3).

1-Deoxy-D-xylitol (12) A colorless syrup, $[\alpha]_D^{22}$ 0° (*c*=0.1, H₂O), $[\alpha]_D^{22}$ -4.0° (*c*=0.1, MeOH). Positive FAB-MS *m/z*: 273 [2M+H]⁺, 159 [M+ Na]⁺, 137.0826 [M+H]⁺ (base, Calcd for C₅H₁₃O₄; 137.0814), 119 [M- $\text{H}_{2}\text{O} + \text{H}$]⁺, 101 [M-2H₂O+H]⁺. ¹H-NMR (D₂O, 500 MHz) δ : 1.20 (3H, d, *J*=6.4 Hz, H₃-1), 3.40 (1H, dd, *J*=3.7, 5.8 Hz, H-3), 3.63 (1H, dd, *J*=7.0, 11.6 Hz, H-5a), 3.69 (1H, dd, *J*=4.6, 11.6 Hz, H-5b), 3.78 (1H, ddd, *J*=3.7, 4.6, 7.0 Hz, H-4), 3.90 (1H, dq, J=5.8, 6.4 Hz, H-2). ¹³C-NMR (D₂O,

125 MHz) d: 21.02 (C-1), 65.60 (C-5), 70.79 (C-2), 74.43 (C-4), 77.45 (C-3).

2-Deoxy-D-ribitol (13) A colorless syrup, $[\alpha]_D^{22} - 20.0^{\circ}$ (*c*=0.3, H₂O), $[\alpha]_D^{22}$ –17.0° (*c*=0.3, MeOH). Positive FAB-MS *m/z*: 159.0618 [M+Na]⁺ (base, Calcd for $C_5H_{12}O_4Na$; 159.0633).

NaBH4 Reduction of 2-Deoxy-D-ribose 2-Deoxy-D-ribose (Kanto Chemical Co. Inc., lot No. 812S4166, 40 mg) was dissolved in methanol (7.5 ml) and stirred with N a $BH₄$ (10 mg) for 5 h at room temperature. After the usual work-up, the residue was purified by silica gel $[CHCl₃–MeOH]$ $(11:9)$] to give 2-deoxy-p-ribitol (35 mg); a colorless syrup, $[\alpha]_D^{22}$ -20.5° $(c=1.3, H₂O), [\alpha]_{D}^{22} - 18.0^{\circ}$ ($c=1.3$, MeOH). The results of ¹H- and ¹³C-NMR were identical with those of **13**.

3-Deoxyarabinitol (14) A colorless syrup, $[\alpha]_D^{22} - 11.0^{\circ}$ (*c*=0.1, H₂O), $[\alpha]_D^{22}$ -34.5° (*c*=0.1, MeOH). Positive FAB-MS *m*/*z*: 229 [M+H+ glycerol]⁺, 159 [M+Na]⁺, 137.0802 [M+H]⁺ (base, Calcd for C₅H₁₃O₄; 137.0814).

2-Deoxy-D-ribono-1,4-lactone (15) A colorless syrup, $[\alpha]_D^{22}$ +3.5° $(c=0.8, \text{ MeOH})$, $[\alpha]_D^{22}$ +13.5° $(c=0.8, \text{ H}_2\text{O})$. Positive FAB-MS *m/z*: 265 $[2M+H]^+$, 171 $[M+K]^+$, 155 $[M+Na]^+$ (base), 133.0500 $[M+H]^+$ (Calcd for C₅H₉O₄; 133.0501), 115 [M-H₂O+H]⁺, 97 [M-2H₂O+H]⁺, CI-MS (isobutane) *m*/z: 265 [2M+H]⁺, 133 [M+H]⁺ (base), 115 [M-H₂O+H]⁺. ¹³C-NMR (D₂O, 67.5 MHz) δ: 37.52 (C-2), 60.03 (C-5), 68.03 (C-3), 88.74 (C-4), 179.23 (C-1).

1-Deoxy-D-glucitol (16) Colorless needles (MeOH), mp 123—126 °C, $[\alpha]_D^{23}$ –3.0° (*c*=0.5, MeOH), $[\alpha]_D^{23}$ +5.0° (*c*=0.5, H₂O). Positive FAB-MS *m/z*: 189.0733 [M+Na]⁺ (base, Calcd for C₆H₁₄O₅Na; 189.0739). ¹H-NMR $(D_2O, 500 MHz)$ δ : 1.49 (3H, d, *J*=6.4 Hz, H3-1), 3.60 (1H, dd, *J*=1.8, 7.0 Hz, H-3), 3.62 (1H, dd, J=1.8, 8.5 Hz, H-4), 3.64 (1H, dd, J=6.4, 11.8 Hz, H-6a), 3.75 (1H, ddd, J=3.0, 6.4, 8.5 Hz, H-5), 3.82 (1H, dd, *J*=3.0, 11.8 Hz, H-6b), 3.90 (1H, dq, *J*=6.4, 7.0 Hz, H-2). ¹³C-NMR (D₂O, 125 MHz) d: 20.90 (C-1), 65.66 (C-6), 71.53 (C-2), 73.42 (C-5), 73.66 (C-3), 76.55 (C-4).

Adenosine (17) Colorless needles (MeOH), mp $233-235$ °C. $[\alpha]_D^{21}$ -62.0° ($c=1.2,$ H₂O).

2'-Deoxyadenosine (18) Colorless needles (MeOH), mp 187-189 °C, $[\alpha]_{\text{D}}^{23}$ –53.7° (*c*=0.2, MeOH).

Thymidine (19) Colorless needles (MeOH), mp $186-187$ °C, $[\alpha]_D^{21}$ $+24.3^{\circ}$ ($c=0.7$, MeOH).

Uridine (20) Colorless needles (MeOH), mp $164-166^{\circ}$ C, $[\alpha]_D^{22} +4.0^{\circ}$ $(c=1.8, \text{MeOH})$.

Urasil (21) Colorless needles (MeOH), mp>300 °C, $[\alpha]_D^{22}$ 0° (*c*=0.4, pyridine).

Acknowledgments The authors thank Messrs. Y. Takase and H. Suzuki of the Central Analytical Department of this college for NMR and MS measurements.

References and Notes

- 1) Kitajima J., Ishikawa T., Tanaka Y., *Chem*. *Pharm*. *Bull*., **46**, 1643— 1646 (1998).
- 2) *a*) Kitajima J., Ishikawa T., Tanaka T., Ono M., Ito Y., Nohara T., *Chem*. *Pharm*. *Bull*., **46**, 1587—1590 (1998); *b*) Kitajima J., Ishikawa T., Tanaka Y., *ibid*., **46**, 1591—1594 (1998).
- 3) Ono M., Ito Y., Ishikawa T., Kitajima J., Tanaka Y., Niiho Y., Nohara T., *Chem*. *Pharm*. *Bull*., **44**, 337—342 (1996); Ishikawa T., Kitajima J., Tanaka Y., *ibid*., **46**, 1599—1602 (1998); *idem*, *ibid*., **46**, 1603—1606 (1998); *idem*, *ibid*., **46**, 1748—1751 (1998); Ishikawa T., Kitajima J., Tanaka Y., Ono M., Ito Y., Nohara T., *ibid*., **46**, 1738—1742 (1998); Ishikawa T., Tanaka Y., Kitajima J., Ida Y., *ibid*., **47**, 805—808 (1999).
- 4) Kitajima J., Suzuki N., Ishikawa T., Tanaka Y., *Chem*. *Pharm*. *Bull*., **46**, 1583—1586 (1998).
- 5) Ritchie R. G. S., Cyr N., Korch B., Koch H. J., Perlin A. S., *Can*. *J*. *Chem*., **53**, 1424—1433 (1975); Hawkes G. E., Lewis D., *J*. *Chem*. *Soc*., *Perkin Trans*. *2*, **1984**, 2073—2078.
- Prepared by NaBH₄ reduction from the corresponding aldoses.
- 7) 1-Deoxyarabinitol was isolated from the fruit of *Carum ajowan* by us.
- 8) Synthetic 1-deoxythreitol was obtained by Chaby *et al*., but the NMR data was not reported; Chaby R., Szabo L., *Tetrahedron*, **27**, 3197— 3205 (1971).
- 9) Yamada O., Ogasawara K., *Synthesis*, **1995**, 1291—1294.
- 10) (2*S*)-form ($[\alpha]_D$ -29°) was synthesized from (*S*)-malic acid; Hungerbuhler E., Seebach D., Wasmuth D., *Angew*. *Chem*., *Int*. *Ed*. *Engl*., **18**,

953 (1979).

- 11) Gillies D. G., Lewis D., *J*. *Chem*. *Soc*., *Perkin Trans*. *2*, **1985**, 1155— 1159.
- 12) Lewis D., *J*. *Chem*. *Soc*., *Perkin Trans*. *2*, **1991**, 197—200.
- 13) Han S. Y., Joullie M. M., Petasis N. A., Bigorra J., Font J., Ortuno R.

M., *Tetrahedron*, **49**, 349—362 (1993); Han S. Y., Joullie M. M., Fokin V. V., Petasis N. A., *Tetrahedron: Asymmetry*, **5**, 2535—2562 (1994).

14) No acetoxyl group was detectable by NMR spectral data for these fractions.