Water-Soluble Constituents of Fennel. IX. Glucides and Nucleosides

Junichi KITAJIMA,^{*,a} Toru Ishikawa,^a Yasuko Tanaka,^a and Yoshiteru Ida^b

Showa College of Pharmaceutical Sciences,^a Higashi-Tamagawagakuen 3, Machida, Tokyo 194–8543, Japan and School of Pharmaceutical Sciences, Showa University,^b Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan. Received March 1, 1999; accepted April 27, 1999

From the water-soluble portion of the methanolic extract of fennel, seven new sugar alcohols (two deoxybutitols, four deoxypentitols and one deoxyhexitol) and a sugar lactone were isolated, together with seven known glucides, four nucleosides, (3*R*)-2-hydroxymethylbutane-1,2,3,4-tetrol and uracil. From the results of spectral investigation, the new compounds were characterized as 1-deoxythreitol (9), (2*R*)-butane-1,2,4-triol (10), 1-deoxy-pribitol (11), 1-deoxy-p-xylitol (12), 2-deoxy-p-ribitol (13), 3-deoxyarabinitol (14), 1-deoxy-p-glucitol (16) and 2deoxy-p-ribono-1,4-lactone (15), respectively.

Key words fennel; Foeniculum vulgare fruit; glucide; sugar alcohol; sugar lactone; nucleoside

In previous papers, we reported the isolation and characterization of alkyl glycosides,¹⁾ glycosides of aromatic compounds²⁾ and glycosides of monoterpenoids of different types³⁾ of fennel. In this paper we discuss the isolation and structural elucidation of glucides and nucleosides.

The methanolic extract of commercial fennel [prepared from the fruit of *Foeniculum vulgare* MILLER (Umbelliferae)] was treated as described in the Experimental section, and fourteen glucides, four nucleosides, (3R)-2-hydroxymethylbutane-1,2,3,4-tetrol (8)⁴⁾ and uracil (21) were isolated from the water-soluble portion. Molecular formulae of the new compounds were established from the accurate mass number of $[M+H]^+$ or $[M+Na]^+$ ion peaks in high-resolution positive FAB-MS.

Glucides **1**, **2**, **3**, **4**, **5**, **6** and **7** were identified as glycerol, erythritol,⁵⁾ D-threitol,⁵⁾ D-mannitol, D-glucose, D-fructose and sucrose by direct comparison with authentic compounds.

Glucides 9 (an amorphous powder, $[\alpha]_D^{23} + 3.0^\circ$) and 10 (a colorless syrup, $[\alpha]_D^{23} + 25.0^\circ$) had the same molecular formula: $C_4H_{10}O_3$. Glucide 9 was obtained as a mixture which included a trace of a compound which was considered to be the epimer of 9(9'); however, this trace epimer was excluded in the isolation process. The ¹H-, ¹³C- and ¹³C-¹H correlation spectroscopy (COSY) NMR spectral data for 9 (Tables 1 and 2) revealed the presence of one sec-methyl, one hydroxymethyl, and two hydroxylated methines. From these data, 9 was characterized as butane-1,2,3-triol. The relation between C-2 and C-3 in 9 was considered to be three by comparison of the methyl proton chemical-shift with that of 9'. In the ¹H-NMR spectrum, the methyl proton signal of 1-deoxy-2,3threo-additols in pyridine- d_5 appeared in a higher field than those of 2,3-erythro isomers [fucitol (threo, δ 1.59),⁶ quinovitol (erythro, δ 1.68)⁶; 1-deoxyglucitol (threo, δ 1.53), rhamnitol (erythro, δ 1.68)⁶; 1-deoxyxylitol (threo, δ 1.56), 1-deoxyarabinitol (threo, δ 1.60),⁷⁾ 1-deoxyribitol (*erythro*, δ 1.70)]. As the methyl proton signal of 9 appeared in a higher region than that of 9' (9 for δ 1.53, 9' for δ 1.65), 9 was suggested to be 1-deoxythreitol.⁸⁾ However, the absolute configuration of 9 could not be established from the available data.

Glucide **10** was revealed to contain two hydroxymethyls, one hydroxylated methine and one methylene, and was concluded to be butane-1,2,4-triol from the analysis of the ¹H-, ¹³C- and ¹³C-¹H COSY NMR spectral data (Tables 1 and 2).

As the synthesized (2*R*)-form of butane-1,2,4-triol was reported to have a positive optical rotation ($[\alpha]_D + 27.9^\circ$),⁹⁾ the configuration at C-2 of **10** was revealed to be *R*.¹⁰⁾ Therefore, **10** was characterized as (2*R*)-butane-1,2,4-triol.

Glucides 11 (a colorless syrup, $[\alpha]_D^{23} + 6.5^\circ)$, 12 (a colorless syrup, $[\alpha]_D^{23} - 4.0^\circ)$, 13 (a colorless syrup, $[\alpha]_D^{22} - 17.0^\circ)$ and 14 (a colorless syrup, $[\alpha]_D^{23} - 34.5^\circ)$ had the same molecular formula: $C_5H_{12}O_4$. The ¹H-, ¹³C- and ¹³C-¹H COSY NMR spectral data for 11 and 12 showed them to have one *sec*-methyl, one hydroxymethyl and three hydroxylated me-

Fig. 1. Structures of 2, 3, 4, 8-21

© 1999 Pharmaceutical Society of Japan

Table 1. ¹H-NMR Chemical Shifts of **2**, **3**, **8**–**16** (in Pyridine-*d*₅, 500 MHz)

	2	3	9	10
H-1	4.37 1H, dd (5.0, 11.0) 4 50 1H, dd (3 0, 11.0)	4.32 1H, dd (6.0, 11.0) 4 38 1H, dd (4 5, 11.0)	1.53 3H, d (6.5)	4.25 2H, m
H-2	4.48 1H, ddd (3.0, 5.0, 7.5)	4.51 1H, ddd (4.5, 4.5, 6.0)	4.37 1H, dq (5.0, 6.5)	4.48 1H, m
H-3	4.48 1H, ddd (3.0, 5.0, 7.5)	4.51 1H, ddd (4.5, 4.5, 6.0)	4.05 1H, ddd (4.5, 5.0, 6.0)	2.19 1H, dddd (6.0, 6.0, 7.0, 14.0) 2.27 1H, dddd (4.0, 6.0, 7.0, 14.0)
H-4	4.37 1H, dd (5.0, 11.0)	4.32 1H, dd (6.0, 11.0)	4.17 1H, dd (6.0, 11.0)	4.06 2H, br d (6.0)
	4.50 1H, dd (3.0, 11.0)	4.38 1H, dd (4.5, 11.0)	4.28 1H, dd (4.5, 11.0)	_
	11	12	13	14
H-1	1.70 3H, d (6.5)	1.56 3H, d (6.5)	4.32 1H, br dd (5.0, 11.0) 4 33 1H br dd (6.0, 11.0)	4.07 2H, br d (5.5)
H-2	4.64 1H, dq (6.0, 6.5)	4.52 1H, dq (4.0, 6.5)	2.32 1H, dddd (5.0, 6.0, 7.5, 14.0) 2.58 1H, dddd (3.0, 6.0, 7.5, 14.0)	4.56 1H, br ddd (5.5, 8.5, 8.5)
H-3	4.27 1H, dd (6.0, 6.5)	4.08 1H, dd (3.5, 4.0)	4.54 1H, ddd (3.0, 7.5, 7.5)	2.19 1H, ddd (8.5, 8.5, 14.0) 2.37 1H, ddd (5.5, 5.5, 14.0)
H-4	4.45 1H, ddd (4.0, 6.0, 6.5)	4.44 1H, ddd (3.5, 5.0, 6.0)	4.27 1H, ddd (4.0, 7.5, 7.5)	4.56 1H, br ddd (5.5, 8.5, 8.5)
H-5	4.38 1H, dd (6.0, 11.0)	4.33 1H, dd (6.0, 11.0)	4.34 1H, dd (7.5, 11.0)	4.07 2H, br d (5.5)
	4.55 1H, dd (4.0, 11.0)	4.36 1H, dd (5.0, 11.0)	4.44 1H, dd (4.0, 11.0)	—
	15	8	16	
H-1	_	4.46 ^{<i>a</i>)} 2H, d (9.5)	1.53 3H, d (6.0)	
H-2	2.86 1H, dd (2.5, 17.5)	_	4.52 1H, dq (6.0, 6.0)	
	3.33 1H, dd (6.5, 17.5)	_	_	
H-3	5.00 1H, ddd (2.0, 2.5, 6.5)	4.64 1H, dd (4.5, 6.0)	4.38 1H, br d (6.0)	
H-4	4.91 1H, ddd (2.0, 3.5, 3.5)	4.48 1H, dd (6.0, 11.5) 4.55 1H, dd (4.5, 11.5)	4.43 1H, br d (6.0)	
H-5	4.34 1H, dd (3.5, 12.0) 4.13 1H, dd (3.5, 12.0)	4.42^{a} 2H, d (9.5)	4.61 1H, ddd (3.0, 6.0, 6.0)	
H-6	_	_	4.39 1H, dd (6.0, 12.0) 4.52 1H, dd (3.0, 12.0)	

 δ in ppm from TMS [coupling constants (J) in Hz are given in parentheses]. a) Assignments may be interchanged.

Table 2. ¹³C-NMR Chemical Shifts of **2**—**4**, **8**—**16** (in Pyridine-*d*₅, 125 MHz)

	2	3	9	9′	10	11	12	13	14	15	8	16	4
C-1	65.19	64.67	20.24	20.34	67.65	19.59	20.44	60.25	67.61	177.11	64.61 ^{<i>a</i>)}	20.32	64.13
C-2	74.29	73.50	68.52	69.43	70.99	69.91	69.23	37.35	72.16	39.46	76.46	70.01	70.37
C-3	74.29	73.50	77.02	77.17	37.79	76.77	75.95	72.04	38.22	69.23	75.16	74.03	71.90
C-4	65.19	64.67	64.63	65.13	59.84	75.07	74.03	76.28	72.16	89.76	63.69	74.86	71.90
C-5						65.31	64.81	65.15	67.61	62.07	65.33 ^{a)}	73.21	70.37
C-6												65.23	64.13

 δ in ppm from TMS. *a*) Assignments may be interchanged.

Table 3. ¹H-NMR Chemical Shifts of **17–21** (in Pyridine-*d*₅, 500 MHz)

	17	18	19 ^{<i>a</i>)}	20	21
H-2	8.73 1H, s	8.74 1H, s	_	_	_
H-5	_	_		5.81 1H, d (8.0)	5.82 1H, d (8.0)
H-6	_	_	8.17 1H, d (1.0)	8.55 1H, d (8.0)	7.55 1H, d (8.0)
H-8	8.61 1H, s	8.71 1H, s			_
CH ₃	_	_	1.88 3H, d (1.0)	_	_
NH_2	8.37 2H, s	8.43 2H, s			_
Sug-1	6.73 1H, d (6.0)	7.01 1H, dd (6.0, 7.5)	7.05 1H, d (6.5)	6.83 1H, d (4.0)	
Sug-2	5.50 1H, dd (3.5, 6.0)	2.82 1H, ddd (3.0, 6.0, 13.0)	2.66 2H, m	4.92 1H, dd (4.0, 9.0)	
-		3.23 1H, ddd (6.0, 7.5, 13.0)			
Sug-3	5.07 1H, dd (3.5, 6.0)	5.25 1H, ddd (3.0, 3.0, 6.0)	5.05 1H, m	4.91 1H, dd (4.5, 9.0)	
Sug-4	4.78 1H, ddd (3.0, 3.0, 6.0)	4.69 1H, ddd (3.0, 3.0, 3.0)	4.48 1H, ddd (3.0, 3.0, 3.0)	4.67 1H, ddd (2.5, 2.5, 4.5)	
Sug-5	4.15 1H, dd (3.0, 12.0)	4.20 1H, dd (3.0, 12.0)	4.15 1H, dd (3.0, 12.0)	4.21 1H, dd (2.5, 12.0)	
	4.33 1H, dd (3.0, 12.0)	4.31 1H, dd (3.0, 12.0)	4.24 1H, dd (3.0, 12.0)	4.32 1H, dd (2.5, 12.0)	

 δ in ppm from TMS [coupling constants (J) in Hz are given in parentheses]. a) Measured at 67.5 MHz.

Table 4. ¹H-NMR Chemical Shifts of **17–21** (in Pyridine-*d*₅, 125 MHz)

	17	18	19 ^{<i>a</i>)}	20	21
C-2	153.30	153.28	151.96	152.20	153.24
C-4	150.00	150.15	164.99	164.44	165.83
C-5	121.44	121.11	110.46	102.38	101.23
C-6	157.67	157.53	136.65	141.11	142.18
C-8	140.58	140.07			_
CH ₃			12.76		_
Sug-1	90.83	85.99	85.30	90.27	
Sug-2	75.54	41.24	41.39	76.04	
Sug-3	72.40	72.20	71.45	71.14	
Sug-4	87.80	89.77	88.87	86.19	
Sug-5	63.03	63.13	62.31	61.66	

 δ in ppm from TMS. *a*) Measured at 67.5 MHz.

thines (Tables 1 and 2), and suggested them to be diastereomers of pentane-1,2,3,4-tetrol. Since the ¹H-NMR spectra of **11** and **12** in deuterium oxide showed identical patterns with those of tetrols which were obtained in the reduction of ribose and xylose,¹¹ they were concluded to be 1-deoxyribitol and 1-deoxyxylitol, respectively. The absolute configuration of **11** was revealed to be a D-form since 1-deoxy-Dribitol was reported to have a positive $[M]_D$ value in water $(+14^\circ,^{12}) + 12.9^\circ$ for **11**). On the other hand, the absolute configuration of **12** could not be assigned by consideration of the $[M]_D$ value, as the D-form of 1-deoxyxylitol was reported to show zero $[M]_D$ value in water.¹² However, **12** was considered to be a D-form since only the D-form of xylose is known in nature. From the above facts, **11** and **12** were characterized as 1-deoxy-D-ribitol and 1-deoxy-D-xylitol, respectively.

The ¹H-, ¹³C- and ¹³C–¹H COSY NMR spectral data for **13** showed the presence of two hydroxymethyls, one methylene and two hydroxylated methines (Tables 1 and 2), and were indicated to be pentane-1,2,3,5-tetrol. The absolute configuration of this sugar alcohol was confirmed by direct comparison with tetrol obtained by NaBH₄ reduction of 2-deoxy-D-ribose. Therefore, **13** was characterized as 2-deoxy-D-ribitol.

The ¹³C-NMR spectrum of **14** showed only three signals, but analysis of the ¹H- and ¹³C–¹H COSY NMR spectral data revealed the presence of one methylene, one pair of hydroxymethyl and one pair of hydroxylated methine (Tables 1 and 2). So, **14** was suggested to be pentane-1,2,4,5-tetrol, which has an intermolecular symmetry plane or center. The relation between C-2 and C-4 was considered to be *threo* since **14** showed a negative optical rotation. Therefore, **14** was characterized as deoxyarabinitol. However, the absolute configuration of **14** could not be established from the available data.

Glucide **15** ($C_5H_8O_4$, a colorless syrup, $[\alpha]_D^{22} + 3.5^\circ$) showed $[2M+H]^+$, $[M+K]^+$, $[M+Na]^+$, $[M+H]^+$, $[M-H_2O]^+$, $[M-2H_2O]^+$ ion peaks at m/z 265, 171, 155, 133, 115, 97 in the positive FAB-MS, and $[2M+H]^+$, $[M+H]^+$, $[M-H_2O]^+$ ion peaks at m/z 265, 133, 115 in the CI-MS. The ¹H-, ¹³C- and ¹³C-¹H COSY NMR spectral data for **15** (Tables 1 and 2) revealed the presence of one hydroxymethyl, one methylene and two oxygenated methines and one carbonyl carbon. From the heteronuclear multiple-bond correlation (HMBC) spectrum, which showed H–C long-range correlations between the methylene protons (H₂-2) and the C-1, C-3, C-4 carbons, and between the hydroxymethyl protons (H₂-5) and the C-3, C-4 carbons, and from the unsaturation degree of this compound, **15** was indicated to be 3,5-dihydroxypentono-1,4-lactone. Han *et al.*¹³⁾ prepared some pentonolactones, and the ¹³C-NMR data in deuterium oxide was identical with those of 2-deoxy-D-ribono-1,4-lactone which was prepared from 2-deoxy-D-ribose. As the synthetic lactone was reported to have a positive optical rotation in water ($[\alpha]_D + 19.9^{\circ}, {}^{13}][\alpha]_D^{22} + 13.5^{\circ}$ for **15**), glucide **15** was identified as 2-deoxy-D-ribono-1,4-lactone.

Glucide **16** ($C_6H_{12}O_5$, mp 123—126 °C, $[\alpha]_D^{23} - 3.0^\circ$) was observed to have one *sec*-methyl, one hydroxymethyl and four hydroxylated methines from the NMR spectral data (Tables 1 and 2). So, **16** was suggested to be 6-deoxyhexitol. And the ¹H-NMR spectrum in deuterium oxide was identical with that of 1-deoxyglucitol, which was prepared from a reduction of D-glucose.¹¹ Since the 1-deoxy-D-glucitol was reported to have a positive $[M]_D$ value in water $(+7^\circ, ^{12}) + 8.3^\circ$ for **16**) and a negative $[M]_D$ value in methanol $(-2^\circ, ^{12}) - 5.0^\circ$ for **16**), **16** was characterized as 1-deoxy-D-glucitol. This characterization was also supported by the fact that the ¹Hand ¹³C-NMR spectra of deoxyhexitols which were obtained by the NaBH₄ reduction of quinovitol, rhamnose and fucose were not identical with that of **16**.

Nucleosides 17, 18, 19 and 20 were identified as adenosine, 2'-deoxyadenosine, thymidine and uridine, respectively.

This is the first paper to present the isolation of sugar alcohols corresponding to deoxytetrose, deoxypentose and deoxyhexose, and a sugar lactone corresponding to deoxypentose from natural sources.

Experimental

NMR spectra in deuterium oxide were taken with 3-(trimethylsilyl)-1propane sulfonic acid sodium salt, while FAB-MS spectra of 9, 10, 13, 15 and 16 were recorded without a matrix. The instruments used and the other experimental conditions for obtaining spectral data and for chromatography were the same as in the preceding paper.¹⁾

Extraction and Isolation of 1 to 21 As reported in the previous paper, commercial fennel (2.0 kg) was extracted with MeOH. The MeOH extract (329.4 g) was partitioned into Et₂O/H₂O and then EtOAc/H₂O, and the resulting aqueous portion was subjected to Amberlite XAD-II (H₂O→MeOH). The Amberlite XAD-II MeOH eluate (29.5 g) was chromatographed over Sephadex LH-20 (MeOH) to give seven fractions (frs. A-G). Fraction C (16.9 g) was chromatographed over silica gel [CHCl₃-MeOH-H₂O (4:1: 0.1) \rightarrow MeOH] to give fifteen fractions (frs. C₁--C₁₅). Fraction C₅ (1.7 g) was subjected to a Lobar RP-8 column [CH3CN-H2O (3:17)] to give twelve fractions (frs. C5-1-C5-12). Fraction C5-2 was subjected to HPLC [carbohydrate analysis (Waters), CH₃CN-H₂O (14:1)] to give 19 (20 mg). Fraction E (1.8 g) was subjected to a Lobar RP-8 column [CH₂CN-H₂O (1:19 \rightarrow 1:9)] to give six fractions (frs. E1-E6). Fraction E4 was chromatographed over Sephadex LH-20 (MeOH) to give 17 (150 mg). Fraction E₅ was chromatographed over silica gel [CHCl3-MeOH-H2O (7:3:0.5)] to give 18 (5 mg).

The Amberlite XAD-II water eluate (71.5 g) was chromatographed over Sephadex LH-20 [MeOH-H₂O (9:1)] to give six fractions (frs. H-M). Fraction I (56.9 g) was chromatographed over silica gel [CHCl₃-MeOH- $H_2O(17:3:0.2\rightarrow4:1:0.1\rightarrow7:3:0.5\rightarrow MeOH]$ to give eleven fractions (frs. I₁—I₁₁). Fraction I₄ (0.3 g) was subjected to a Lobar RP-8 column [CH₃CN- $H_2O(1:19)$] to give four fractions (frs. I_{4-1} — I_{4-4}). Fraction I_{4-2} was subjected to HPLC [carbohydrate analysis, CH₃CN-H₂O (99:1)] to give 15 (35 mg) and 21 (20 mg). Fraction I_{4-3}^{14} was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [ODS, MeOH-H₂O (2:3)] to give four fractions (frs. I4-3-1-I4-3-4). Fraction I4-3-3 was deacetylated by heating in a water bath with 5% NH,OH-MeOH for 2h to give 9 (3 mg). Fraction I₅ (0.2 g) was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:99)] to give four fractions (frs. I_{5-1} — I_{5-4}). Fraction I_{5-3}^{14} was acetylated with Ac2O and pyridine, and the acetylated fraction was subjected to HPLC [ODS, MeOH—H₂O (2:3)] to give four fractions (frs. I_{5-2-1} — I_{5-2-4}). Fraction I₅₋₂₋₂ was deacetylated by heating in a water bath (80 °C) with 5% NH₄OH-MeOH for 2 h to give 10 (3 mg). Fraction I_6 (0.7 g) was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:99 \rightarrow 1:19)] to give seven fractions (frs.

 $I_{6,1}$ — $I_{6,7}$). Fraction $I_{6,5}$ was subjected to HPLC [carbohydrate analysis, $CH_3CN-H_2O(24:1)$] to give 20 (110 mg). Fraction I₇ (11.5 g) was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:99)] to give four fractions (frs. I7-1-I7-4). Fraction I7-2 was subjected to HPLC [carbohydrate analysis, CH_3CN-H_2O (97:3)] to give 1 (3 g) and other fractions (frs. $I_{7,2,2}-I_{7,2,4}$). Fraction I_{7-2-2}^{-14} was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C₁₈ (Waters), MeOH-H₂O (1:1)] to give four fractions (frs. I_{7-2-2a} — I_{7-2-2d}). Fractions I_{7-2-2c} and I_{7-2-2d} were each deacetylated by heating in a water bath (80 °C) with 5% NH₄OH-MeOH for 2h to give 12 (2 mg) and 11 (3 mg). Fraction $I_{7,2,3}^{14)}$ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C₁₈, MeOH-H₂O (1:1)] to give two fractions (frs. $I_{7\text{-}2\text{-}3a}$ and $I_{7\text{-}2\text{-}3b}).$ Fractions $I_{7\text{-}2\text{-}3a}$ and $I_{7\text{-}2\text{-}3b}$ were deacetylated by heating with 5% NH₄OH-MeOH for 2 h in a water bath (80 °C) to give 14 (2 mg) and 13 (4 mg). Fraction I₈ was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:99)] to give four fractions (frs. I_{8-1} — I_{8-4}), respectively. Fraction I_{8-2} was subjected to HPLC [carbohydrate analysis, CH3CN-H2O (97:3)] to give four fractions (frs. $I_{8.2.1}$ — $I_{8.2.4}$). Fraction $I_{8.2.3}^{(4)}$ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C₁₈, MeOH-H₂O (1:1)] to give two fractions (frs. I_{8-2-3a} and I_{8-2-3b}). Fractions $I_{\text{8-2-3a}}$ and $I_{\text{8-2-3b}}$ were deacetylated by heating with 5% NH_4OH-MeOH for 2 h in a water bath (80 °C) to give 3 (20 mg) and 2 (15 mg), respectively. Fraction $I_{8-2.4}^{(14)}$ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to HPLC [symmetryprep C18, MeOH-H2O (3:2)] and was deacetylated by heating with 5% NH₄OH-MeOH for 2h in a water bath (80 °C) to give 16 (30 mg). Fraction I_o was subjected to a Lobar RP-8 column [CH₃CN-H₂O (1:99)] to give four fractions (frs. $I_{9,1}$ -I₉₋₄). Fraction I₉₋₂ was subjected to HPLC [carbohydrate analysis, CH₃CN-H₂O (19:1)] to give 8 (45 mg). Fraction I₁₀ was treated with hot MeOH to give a MeOH soluble portion and insoluble crystal 4 (1.5 g). The MeOH soluble portion was subjected to a Lobar RP-8 column [CH3CN-H2O (1:99)] to give three fractions (frs. I_{10-1} — I_{10-3}). Fraction I_{10-2} was subjected to HPLC [carbohydrate analysis, CH₃CN-H₂O (17:3)] to give 6 (100 mg), 5 (1 g) and 7 (2 g).

Glycerol (1) A colorless syrup, $[\alpha]_{D}^{21} 0^{\circ}(c=1.0, H_2O)$. ¹³C-NMR (pyridine-d₅, 125 MHz) δ: 64.87 (C-1,3), 74.09 (C-2).

Erythritol (2) An amorphous powder, $[\alpha]_D^{23} 0^{\circ}(c=0.7, \text{MeOH})$. **D-Threitol (3)** An amorphous powder, $[\alpha]_D^{23} + 4.0^{\circ} (c=0.9, \text{H}_2\text{O}), [\alpha]_D^{23}$ $-7.0^{\circ}(c=0.9, \text{MeOH}).$

D-Mannitol (4) Colorless needles (MeOH), mp 168—169 °C, $\left[\alpha\right]_{D}^{22}$ 30.0° (c=1.0, pyridine).

D-Glucose (5) Colorless needles (MeOH), mp 80–83 °C, $[\alpha]_D^{22}$ +49.0° (c=1.3, H₂O).

D-Fructose (6) A colorless syrup, $[\alpha]_{D}^{22} - 93.0^{\circ}$ (*c*=1.0, H₂O).

Sucrose (7) A colorless syrup, $[\alpha]_D^{22} + 66.0^{\circ} (c=1.2, H_2O)$.

(3R)-2-Hydroxymethylbutane-1,2,3,4-tetrol (8) A colorless syrup, $[\alpha]_{\rm D}^{25}$ +4.4° (c=0.5, MeOH).

1-Deoxythreitol (9) An amorphous powder, $[\alpha]_{D}^{23} + 3.0^{\circ}$ (c=0.1, MeOH). Positive FAB-MS m/z: 137 [M+CH₃O]⁺ (base), 129.0543 [M+ Na]⁺ (Calcd for C₄H₁₀O₃Na; 129.0528), 89 [M-H₂O+H]⁺, 71 [M-2H₂O+ H]⁺, 53 [M-3H₂O+H]⁺. Epimer of 9 (9') ¹H-NMR (pyridine- d_5 , 270 MHz) δ : 1.65 (3H, d, J=6.5 Hz, H₃-1).

(2*R*)-Butane-1,2,4-triol (10) A colorless syrup, $[\alpha]_D^{23} + 25.0^\circ$ (c=0.1, MeOH). Positive FAB-MS m/z: 129.0519 $[M+Na]^+$ (base; Calcd for $C_4H_{10}O_3Na$; 129.0528), 107 $[M+H]^+$, 89 $[M-H_2O+H]^+$, 71 $[M-2H_2O+H]^+$ $H]^{+}$, 53 $[M-3H_2O+H]^{+}$.

1-Deoxy-D-ribitol (11) A colorless syrup, $[\alpha]_{D}^{22}$ +9.5° (*c*=0.2, H₂O), $[\alpha]_{D}^{22}$ +6.5° (c=0.2, MeOH). Positive FAB-MS m/z: 175 $[M+K]^+$, 159 $[M+Na]^+$, 137.0801 $[M+H]^+$ (base, Calcd for $C_5H_{13}O_4$; 137.0814), 119 $[M-H_2O+H]^+$, 101 $[M-2H_2O+H]^+$. ¹H-NMR (D₂O, 500 MHz) δ : 1.18 (3H, d, J=6.4 Hz, H₃-1), 3.57 (1H, dd, J=4.6, 7.7 Hz, H-3), 3.62 (1H, dd, J=6.7, 11.3 Hz, H-5a), 3.66 (1H, ddd, J=2.2, 6.7, 7.7 Hz, H-4), 3.80 (1H, dd, J=2.2, 11.3 Hz, H-5b), 3.99 (1H, dq, J=4.6, 6.4 Hz, H-2). ¹³C-NMR (D₂O, 125 MHz) δ: 18.63 (C-1), 65.49 (C-5), 70.26 (C-2), 74.84 (C-4), 77.13 (C-3).

1-Deoxy-D-xylitol (12) A colorless syrup, $[\alpha]_D^{22} 0^\circ$ (c=0.1, H₂O), $[\alpha]_D^{22}$ -4.0° (c=0.1, MeOH). Positive FAB-MS m/z: 273 $[2M+H]^+$, 159 [M+ $Na]^+$, 137.0826 $[M+H]^+$ (base, Calcd for $C_5H_{13}O_4$; 137.0814), 119 [M- $H_2O+H^{+}_1$, 101 $[M-2H_2O+H^{+}_1$. ¹H-NMR (D₂O, 500 MHz) δ : 1.20 (3H, d, J=6.4 Hz, H₃-1), 3.40 (1H, dd, J=3.7, 5.8 Hz, H-3), 3.63 (1H, dd, J=7.0, 11.6 Hz, H-5a), 3.69 (1H, dd, J=4.6, 11.6 Hz, H-5b), 3.78 (1H, ddd, J=3.7, 4.6, 7.0 Hz, H-4), 3.90 (1H, dq, J=5.8, 6.4 Hz, H-2). ¹³C-NMR (D₂O,

125 MHz) δ: 21.02 (C-1), 65.60 (C-5), 70.79 (C-2), 74.43 (C-4), 77.45 (C-3).

2-Deoxy-D-ribitol (13) A colorless syrup, $[\alpha]_{D}^{22} - 20.0^{\circ}$ (c=0.3, H₂O), $[\alpha]_{\rm D}^{22}$ -17.0° (c=0.3, MeOH). Positive FAB-MS m/z: 159.0618 [M+Na]⁺ (base, Calcd for $C_5H_{12}O_4Na$; 159.0633).

NaBH₄ Reduction of 2-Deoxy-D-ribose 2-Deoxy-D-ribose (Kanto Chemical Co. Inc., lot No. 812S4166, 40 mg) was dissolved in methanol (7.5 ml) and stirred with NaBH₄ (10 mg) for 5 h at room temperature. After the usual work-up, the residue was purified by silica gel [CHCl3-MeOH (11:9)] to give 2-deoxy-D-ribitol (35 mg); a colorless syrup, $\left[\alpha\right]_{D}^{22} - 20.5^{\circ}$ $(c=1.3, H_2O)$, $[\alpha]_D^{22} - 18.0^\circ$ (c=1.3, MeOH). The results of ¹H- and ¹³C-NMR were identical with those of 13.

3-Deoxyarabinitol (14) A colorless syrup, $[\alpha]_{D}^{22} - 11.0^{\circ}$ (*c*=0.1, H₂O), $[\alpha]_{D}^{22}$ -34.5° (c=0.1, MeOH). Positive FAB-MS m/z: 229 [M+H+ glycerol]⁺, 159 $[M+Na]^+$, 137.0802 $[M+H]^+$ (base, Calcd for C₅H₁₃O₄; 137.0814).

2-Deoxy-D-ribono-1,4-lactone (15) A colorless syrup, $[\alpha]_{D}^{22} + 3.5^{\circ}$ $(c=0.8, \text{ MeOH}), [\alpha]_{D}^{22} + 13.5^{\circ} (c=0.8, H_2O).$ Positive FAB-MS m/z: 265 [2M+H]⁺, 171 [M+K]⁺, 155 [M+Na]⁺ (base), 133.0500 [M+H]⁺ (Calcd for $C_5H_9O_4$; 133.0501), 115 $[M-H_2O+H]^+$, 97 $[M-2H_2O+H]^+$, CI-MS (isobutane) m/z: 265 $[2M+H]^+$, 133 $[M+H]^+$ (base), 115 $[M-H_2O+H]^+$. ¹³C-NMR (D₂O, 67.5 MHz) δ: 37.52 (C-2), 60.03 (C-5), 68.03 (C-3), 88.74 (C-4), 179.23 (C-1).

1-Deoxy-D-glucitol (16) Colorless needles (MeOH), mp 123-126 °C, $[\alpha]_{D}^{23} - 3.0^{\circ}$ (c=0.5, MeOH), $[\alpha]_{D}^{23} + 5.0^{\circ}$ (c=0.5, H₂O). Positive FAB-MS m/z: 189.0733 [M+Na]⁺ (base, Calcd for C₆H₁₄O₅Na; 189.0739). ¹H-NMR (D₂O, 500 MHz) δ : 1.49 (3H, d, J=6.4 Hz, H3-1), 3.60 (1H, dd, J=1.8, 7.0 Hz, H-3), 3.62 (1H, dd, J=1.8, 8.5 Hz, H-4), 3.64 (1H, dd, J=6.4, 11.8 Hz, H-6a), 3.75 (1H, ddd, J=3.0, 6.4, 8.5 Hz, H-5), 3.82 (1H, dd, J=3.0, 11.8 Hz, H-6b), 3.90 (1H, dq, J=6.4, 7.0 Hz, H-2).¹³C-NMR (D₂O, 125 MHz) δ: 20.90 (C-1), 65.66 (C-6), 71.53 (C-2), 73.42 (C-5), 73.66 (C-3), 76.55 (C-4).

Adenosine (17) Colorless needles (MeOH), mp 233–235 °C. $[\alpha]_D^{21}$ -62.0° (c=1.2, H₂O).

2'-Deoxyadenosine (18) Colorless needles (MeOH), mp 187-189 °C, $[\alpha]_{\rm D}^{23}$ -53.7° (c=0.2, MeOH).

Thymidine (19) Colorless needles (MeOH), mp 186–187 °C, $[\alpha]_D^{21}$ $+24.3^{\circ}$ (c=0.7, MeOH).

Uridine (20) Colorless needles (MeOH), mp 164—166°C, $[\alpha]_D^{22} + 4.0^\circ$ (c=1.8, MeOH).

Urasil (21) Colorless needles (MeOH), mp>300 °C, $[\alpha]_{\rm D}^{22}$ 0° (c=0.4, pyridine).

Acknowledgments The authors thank Messrs. Y. Takase and H. Suzuki of the Central Analytical Department of this college for NMR and MS measurements.

References and Notes

- Kitajima J., Ishikawa T., Tanaka Y., Chem. Pharm. Bull., 46, 1643-1) 1646 (1998).
- a) Kitajima J., Ishikawa T., Tanaka T., Ono M., Ito Y., Nohara T., 2) Chem. Pharm. Bull., 46, 1587-1590 (1998); b) Kitajima J., Ishikawa T., Tanaka Y., ibid., 46, 1591-1594 (1998).
- 3) Ono M., Ito Y., Ishikawa T., Kitajima J., Tanaka Y., Niiho Y., Nohara T., Chem. Pharm. Bull., 44, 337-342 (1996); Ishikawa T., Kitajima J., Tanaka Y., ibid., 46, 1599-1602 (1998); idem, ibid., 46, 1603-1606 (1998); idem, ibid., 46, 1748-1751 (1998); Ishikawa T., Kitajima J., Tanaka Y., Ono M., Ito Y., Nohara T., ibid., 46, 1738-1742 (1998); Ishikawa T., Tanaka Y., Kitajima J., Ida Y., *ibid.*, 47, 805-808 (1999).
- 4) Kitajima J., Suzuki N., Ishikawa T., Tanaka Y., Chem. Pharm. Bull., 46, 1583-1586 (1998).
- Ritchie R. G. S., Cyr N., Korch B., Koch H. J., Perlin A. S., Can. J. 5) Chem., 53, 1424-1433 (1975); Hawkes G. E., Lewis D., J. Chem. Soc., Perkin Trans. 2, 1984, 2073-2078.
- Prepared by NaBH₄ reduction from the corresponding aldoses.
- 1-Deoxyarabinitol was isolated from the fruit of Carum ajowan by us. 7)
- Synthetic 1-deoxythreitol was obtained by Chaby et al., but the NMR 8) data was not reported; Chaby R., Szabo L., Tetrahedron, 27, 3197-3205 (1971).
- 9) Yamada O., Ogasawara K., Synthesis, 1995, 1291-1294.
- 10)(2S)-form ($[\alpha]_{\rm D}$ -29°) was synthesized from (S)-malic acid; Hungerbuhler E., Seebach D., Wasmuth D., Angew. Chem., Int. Ed. Engl., 18,

953 (1979).

- 11) Gillies D. G., Lewis D., J. Chem. Soc., Perkin Trans. 2, 1985, 1155– 1159.
- 12) Lewis D., J. Chem. Soc., Perkin Trans. 2, 1991, 197–200.
- 13) Han S. Y., Joullie M. M., Petasis N. A., Bigorra J., Font J., Ortuno R.

M., *Tetrahedron*, **49**, 349—362 (1993); Han S. Y., Joullie M. M., Fokin V. V., Petasis N. A., *Tetrahedron: Asymmetry*, **5**, 2535—2562 (1994).

 No acetoxyl group was detectable by NMR spectral data for these fractions.