Four New Sesquiterpenes from the Heartwood of *Juniperus formosana* var. concolor

Yueh-Hsiung Kuo*,*a*,*b* and Ming-Tsang Yu^{*a*}

Department of Chemistry, National Taiwan University,^a Taipei, Taiwan, R.O.C. and National Research Institute of Chinese Medicine,^b Taipei, Taiwan, R.O.C. Received January 7, 1999; accepted March 29, 1999

Four new sesquiterpenes, *cis*-4,5-dihydroxycorocalane (1), *trans*-4,5-dihydroxycorocalane (2), calamenen-10 α -ol (3), and 15-hydroxycadalene (4) together with two know compounds, calamenen-10 β -ol (5) and cadalene (6) were isolated from the heartwood of *Juniperus formosana* HAY. var. *concolor* HAY.

Key words Juniperus formosana var. concolor; Cupressaceae; cis-4,5-dihydroxycorocalane; trans-4,5-dihydroxycorocalane; calamenen- 10α -ol; 15-hydroxycadalene

Only ten species of *Juniperus* (Cupressaceae) are indigenous to Taiwan. The chemical components of the heartwood of *J. squamata* LAMB. var. *morrisonicola* HAY.,¹⁾ *J. formosana* HAY.,²⁾ *J. chinensis* LINN.,³⁾ *J. chinense* LINN. var. *kaizuca* HORT. *ex* ENDL.,⁴⁾ *J. chinensis* var. *tsukusiensis*,⁵⁾ and the bark of *J. formosana* HAY. var. *concolor* HAY.⁶⁾ have been studied in our laboratory. Recently, we reported the isolation of new diterpenes and sesquiterpenes from the heartwood of the latter species.⁷⁾ Using the same extract, we have now purified in detail and have isolated four new sesquiterpenes, *cis*-4,5-dihydroxycorocalane (1), *trans*-4,5-dihydroxycorocalane (2), calamenen-10 α -ol (3), and 15-hydroxycadalene (4) together with two known compounds, calamenen-10 β -ol (5)^{8,9)} and cadalene (6).⁸⁾ This paper deals with the structural elucidation of these compounds.

Compound 1 was isolated as an amorphous solid with the molecular formula C₁₅H₂₂O₂, on the basis of the exact mass peak at m/z 234.1617. It showed infrared (IR) absorption bands at 3388 (-OH), 3035, 1609, 1504 (aromatic), 1385 and 1372 cm⁻¹ (geminal dimethyl). The ¹H-NMR spectrum (Table 1) revealed one methyl ($\delta 2.17$, s) and one isopropyl group [δ 1.19 and 1.28 (d, each 3H, J=6.8 Hz), 3.43 (sep, 1H, J=6.8 Hz)] attached to a phenyl group, a singlet methyl group (δ 1.14) geminal to a hydroxyl group, a methine proton (δ 4.55, s) bearing a hydroxyl group, and two 1,2,3,4tetrasubstituted phenyl protons [δ 7.13 and 7.10 (d, each 1H, J=8.0 Hz)]. The remaining ¹H-NMR signals were present at δ 2.56 (ddd, 1H, J=18.0, 12.4, 6.8 Hz, H_a-2), 2.82 (dd, 1H, $J=18.0, 6.8 \text{ Hz}, \text{H}_{B}-2), 1.76 \text{ (dd, 1H, } J=12.4, 6.8 \text{ Hz}, \text{H}_{a}-3)$ and 2.07 (td, 1H, J=12.4, 6.8 Hz, H_B-3). From the heteronuclear multiple quantum coherence (HMQC) experiments, proton and carbon correlation of 1 was assigned as shown in Table 1. The signals at $\delta 2.56$ and 2.82 were assigned as benzylic protons due to the chemical shift and larger geminal coupling constant (J=18.0 Hz). Nuclear Overhauser enhancement and exchange spectroscopy (NOESY) correlations were apparent between $\delta 2.17$ (H₃-14) and 2.82 (H_B-2), 2.82 and 1.76 (H_{α} -3) and 1.76 and 1.14 (H_3 -15). From these results the structure of 1 can be assigned as 4,5-dihydroxycorocalane. The heteronuclear multiple bond connective (HMBC) spectrum of 1 also confirmed the assigned structure. Relative stereochemistry was determined by the nuclear Overhauser effect (NOE) technique (see structure 7). H-5 was determined to be in an equatorial orientation, due to 18.3% NOE with H-11. H₃-15 exhibited 12.7% NOE with H_{α} -5 and 17.5% NOE with H_{α} -2, which suggested that H_{3} -15 was located in an axial orientation. Therefore, compound **1** is a *cis*-4,5-dihydroxycorocalane.

Compound **2** was shown to be an isomer of **1** (the molecular formula $C_{15}H_{22}O_2$ was derived from HR-MS), and had hydroxyl, aromatic, and geminal dimethyl absorption bands in the IR spectrum. The ¹H- and ¹³C-NMR data (Table 1) of **2** were closely related to those of **1**, the only slight difference being the signal for H₃-15, which resonated at lower field (δ 1.47, s) than the corresponding proton in **1**. The evidence indicated that **2** was a stereoisomer of **1**, a conclusion that was also proven by HMQC and HMBC techniques. The H-5 signal of **2** was present at δ 4.53 (H-5) and had 28.2% NOE with H-11. This indicated that H-5 was in an equatorial orientation. H₃-15 was assigned as equatorial, due to 9.6% NOE with H-5 and no NOE with H_{\alpha}-2 (see structure **8**). Hence, compound **2** was identified as *trans*-4,5-dihydroxycorocalane.

Compounds 3 and 5 were isomers with the same formula $C_{15}H_{22}O_{15}$, as deduced from their electron impact-mass spectra (EI-MS) and ¹³C-NMR spectral data (Table 1). Hydroxyl, aromatic, and geminal absorption bands were present in their IR spectra. In their ¹H-NMR spectra, the C-10 methyl was a singlet at $\delta 1.48$ in 3, and at $\delta 1.53$ in 5. Both compounds had the same chemical shift signal at $\delta 2.29$ (3H, s), which was assigned to H₃-15. Two geminal dimethyl signals were present at $\delta 0.69$ and 1.01 (d, each 3H, J=6.8 Hz) in 3 and at $\delta 0.75$ and 1.05 (d, each 3H, J=7.4 Hz) in 5. The aromatic region showed a typical 1,2,4-substitution pattern in the both compounds. Compound 3 spontaneously dehydrated in CDCl₃ solution over one month to give the known compound α -calacorene but 5 afforded α -calacorene on the same solution in only three days. This evidence supported the conclusion that both compounds are calamenen-10-ol. It was assumed that 3 and 5 have the 7S-configuration, since all calamenene derivatives isolated from the same source show 7S-configuration.^{7b,d} The NOE correlation between H-5 and H-7 in both 3 and 5 is about 14.5%. The major difference between 3 and 5 was the NOE between H-2 and H_2 -14; 10.6% for 3 and 24.3% for 5. A product named calamenen-10-ol has been isolated from *Siparuna macrotepala* by El-Seedi.⁸⁾ Daniewski⁹⁾ assigned the C-10 hydroxyl group of calamenen-10-ol as β -configuration, based on the biosynthetic assumption that the product is an aromatized derivative of T-cadinol (9) (both compounds were isolated from the same plant, En-

© 1999 Pharmaceutical Society of Japan

Table 1. ¹H- and ¹³C-NMR Data for 1-5 (300 MHz and 75 MHz in CDCl₃)

No.		1		2	3		4		5	
	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ ext{H}}$
1	133.9		134.0		141.5		132.0		140.2	
2	26.2	2.56 ddd (18.0, 12.4, 6.8) 2.82 dd (18.0, 6.8)	23.5	2.72 dd (9.3, 4.3)	128.2	7.48 d (8.5)	124.4	8.01 d (8.7)	128.4	7.46 d (7.9)
3	30.0	1.76 dd (12.4, 6.8) 2.07 td (12.4, 6.8)	28.5	1.82 dt (13.6, 4.3) 2.05 dt (13.6, 9.6)	125.7	7. 01 br d (8.5)	125.5	7.50 br d (8.7)	126.0	7.00 br d (7.9)
4	71.1		71.1		136.3		137.6		136.5	
5	71.1	4.55 s	71.0	4.53 s	126.9	7.00 s	121.6	8.10 br s	126.9	7.04 br s
6	147.3		147.4		138.8		132.5		139.9	
7	133.4		133.8		43.3	2.67 m	142.9		43.3	2.60 m
8	123.5	7.10 d (8.0)	123.7	7.10 d (8.1)	20.3		121.8	7.31 d (7.4)	19.5	
9	130.1	7.13 d (8.0)	130.0	7.14 d (8.1)	38.2		126.6	7.24 d (7.4)	37.6	
10	133.1		132.6		70.8		131.4		70.1	
11	27.8	3.43 sep (6.8)	26.5	3.42 sep (6.8)	21.1	2.03 m	28.3	3.73 sep (6.6)	21.2	1.98 m
12	23.7	1.19 d (6.8)	24.0	1.21 d (6.8)	17.1	0.69 d (6.8)	23.6	1.37 d (6.6)	17.5	0.75 d (7.4)
13	25.4	1.28 d (6.8)	25.3	1.28 d (6.8)	21.2	1.01 d (6.8)	23.7	1.37 d (6.6)	21.3	1.05 d (7.4)
14	19.6	2.17 s	19.6	2.20 s	30.5	1.48 s	19.4	2.65 s	30.8	1.53 s
15	22.4	1.14 s	27.7	1.47 s	30.8	2.29 s	66.0	4.87 s	31.2	2.29 s

1 R₁=OH, R₂=CH₃ 2 R₁=CH₃, R₂=OH

3 R₁=CH₃, R₂=OH 5 R₁=OH, R₂=CH₃

4 R=OH 6 R⇒H

tandrophragma cyclindricum). The physical data of calamenen- 10β -ol⁸⁾ were identical with those of compound **5**. Therefore, the structure of compound **3** can be assigned as calamenen- 10α -ol.

The fourth new compound 4 was also a sesquiterpene with the formula $C_{15}H_{18}O$ based on its high resolution (HR)-MS. Hydroxyl and aromatic absorption bonds were present in its IR spectrum. Signals for methyl ($\delta 2.65$, s), isopropyl [$\delta 1.37$ (d, 6H, J=6.6 Hz), 3.73 (sep, 1H, J=6.6 Hz)], and hydroxymethyl groups (δ 4.87, 2H, s) attached to a naphthalene nucleus were apparent in the ¹H-NMR. The appearance of low field signals due to [δ 7.24 and 7.31 (d, each 1H, J=7.4 Hz)] and [δ 7.05 (br d, 1H, J=8.7 Hz), 8.01 (d, 1H, J=8.7 Hz), 8.10 (br s, 1H)] suggested naphthalenic protons. Comparison of ¹³C-NMR data of 4 with cadalene $(6)^{8}$ showed that 4 is a derivative of cadalene (6) except for an additional hydroxyl located at C-14 or C-15. Catalytic hydrogenation of 4 with Pd–C in acidic methanol solution yielded 6. The hydroxyl group was located on C-15 by the NOESY technique (see structure 10).

Experimental

Melting points were determined with a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H- and ¹³C-NMR spectra were obtained on a Bruker AM 300 spectrometer. EI-MS and specific rotations were taken on a JEOL-JMS-HX300 spectrometer and a JASCO DIP-180 polarimeter, respectively.

Extraction and Isolation The heartwood of *J. formosana* HAY. var. *concolor* HAY. (2 kg) was extracted with MeOH (201) at room temperature 3 times. The MeOH extract was evaporated *in vacuo* to leave a black residue (189 g), which was chromatographed on silica gel (2 kg) with hexane/EtOAc, EtOAc, and EtOAc/MeOH gradient solvent systems. Six sesquiterpenes, cadalene (6) (5 mg) (2% EtOAc in hexane), calamenen-10*β*-ol (5)^{8,9} (5 mg) and calamenen-10*α*-OH (3) (7 mg) (10% EtOAc in hexane), *trans*-4,5-dihydroxycorocalane (2) (6 mg) (10% EtOAc in hexane), *and* 15-hydroxycadalene (4) (8 mg) (30% EtOAc in hexane) were obtained.

cis-4,5-Dihdroxycorocalane (1): Amorphous solid, $[\alpha]_{D}^{20} - 3.7^{\circ}$ (*c*=0.3, CHCl₃). IR (KBr) cm⁻¹: 3388, 3035, 1609, 1504, 1385, 1372, 1039. ¹H- and ¹³C-NMR: Table 1. EI-MS (70 eV) *m/z* (rel. int. %) 234 (M⁺, 20), 216 (40), 198 (18), 176 (52), 163 (85), 145 (100), 131 (46), 91 (50). HR-MS Calcd for C₁₅H₂₂O₂: 234.1620. Found 234.1618.

trans-4,5-Dihydroxycorocalane (2): Amorphous solid, $[\alpha]_D^{20}$ +1.5° (*c*=0.3, CHCl₃). IR (KBr) cm⁻¹: 3432, 3041, 1605, 1510, 1384, 1370, 1245,

1111. ¹H- and ¹³C-NMR: Table 1. EI-MS (70 eV) m/z (rel. int. %) 234 (M⁺, 30), 216 (65), 176 (50), 163 (90), 145 (100), 131 (45), 91 (40). HR-MS Calcd for C₁₅H₂₂O₂: 234.1620. Found 234.1617.

Calamenen-10 α -ol (3): Amorphous solid, $[\alpha]_D^{20} - 95^\circ$ (c=0.2, CHCl₃). IR (KBr) cm⁻¹: 3400, 3035, 1615, 1505, 1375, 1360. ¹H- and ¹³C-NMR: Table 1. EI-MS (70 eV) m/z (rel. int. %) 218 (M⁺, 18), 201 (100), 175(20), 157 (70), 145 (8), 121 (10).

15-Hydroxycadalene (4): Oil. IR (neat) cm⁻¹: 3404, 3045, 1599, 1500, 1385, 1369, 1265, 1161, 888. ¹H- and ¹³C-NMR: Table 1. EI-MS (70 eV) m/z (rel. int. %) 214 (M⁺, 52), 199 (100), 169 (30), 154 (30), 73 (52). HR-MS Calcd for C₁₅H₁₈O: 214.1358. Found: 214.1360.

Catalytic Hydrogenolysis of 4: A solution of 4 (4 mg) and TsOH (3 mg) in 5 ml of MeOH was hydrogenated in the presence of 10% Pd–C (5 mg). After 8 h, the catalyst was removed by filtration and washed several times with MeOH. The combined filtrate and washings gave a product (3 mg) which was identical with cadalene.⁸⁾

Acknowledgement This research was supported by the National Science Council of the R.O.C.

References

- Kuo Y. H., Yang I. C., Chen C. S., Lin Y. T., J. Chin. Chem. Soc., 34, 125–134 (1987).
- Kuo Y. H., Wu T. R., Cheng M. C., Wang Y., Chem. Pharm. Bull., 38, 3195–3201 (1990).
- a) Kuo Y. H., Chen W. C., J. Chem. Res. (S), 382–383 (1992); b) Idem, Chem. Express, 7, 833–836 (1992); c) Idem, Chem. Pharm. Bull., 42, 1774–1776, 2187–2189 (1994).
- Lee S. M., Chen W. C., Lai J. S., Kuo Y. H., Chem. Express, 7, 829– 832 (1992).
- 5) Kuo Y. H., Shiu L. L., Chem. Pharm. Bull., 44, 1758-1760 (1996).
- a) Kuo Y. H., Yu M. T., *Heterocycles*, **36**, 529–535 (1993); b) Idem, Chem. Pharm. Bull., **44**, 1242–1244 (1996); c) Idem, Phytochemistry, **42**, 779–781 (1996).
- a) Kuo Y. H., Yu M. T., Chem. Pharm. Bull., 44, 1431—1435 (1996);
 b) Idem, Chem. Pharm. Bull., 44, 2150—2152 (1996); c) Idem, J. Nat. Prod., 60, 648—650 (1997); d) Yu M. T., Kuo Y. H., Chem. Pharm. Bull., 45, 1385—1386 (1997).
- El-Seedi H., Ghia F., Torssell K. B. G., *Phytochemistry*, 35, 1495– 1497 (1994).
- 9) Daniewski W. M., Anczewski W., Gumulka M., Daniewicz W., Jacobsson U., Norin T., *Phytochemistry*, **43**, 811–814 (1996).