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Highly diastereoselective Michael addition of lithium dior-
ganocuprates to the half-ester of 1,19-binaphthalene-8,89-diol
gave bb-substituted esters with high enantiomeric excess after
methanolysis. The optically active phenolic sesquiterpenes tur-
meronol A (1) and B (2) have been synthesized using this reac-
tion as a key step.
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Since optically active 8,89-disubstituted-1,19-binaphthyl
creates a highly dissymmetric microenvironment around the
substituents at C-8 and C-89,1,2) it has attracted increasing at-
tention in the field of catalytic3,4) and stoichiometric5) asym-
metric synthesis, as a chiral proton source,6) and in recogni-
tion of chiral molecules.7) We previously reported a one-step
synthesis of the optically active b-substituted ketones via
tandem 1,4- and 1,2-addition of lithium dialkylcuprates to a
half-ester of 1,19-binaphthalene-8,89-diol (8,89-BINOL).5a)

The reaction involves the Michael addition, followed by the
formation of a ketene that undergoes the 1,2-addition and 
finally gives a b-substituted ketone with high enantiomeric
excess (ee) (Chart 1). Temperature control was found to be
crucial for the elimination of 8,89-BINOL to yield an inter-
mediate ketene. These findings suggested that it might be
possible to obtain the 1,4-addition product by suppressing the
elimination step under the reaction conditions. In this paper,
we report this achievement and its application to the synthe-

sis of optically active turmeronol A (1) and turmeronol B (2).
a ,b-Unsaturated half-esters 3—8 were prepared by the

condensation of 8,89-BINOL with the corresponding acids8)

in the presence of 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide (WSC) and 4-dimethylaminopyridine (DMAP).
The half-esters were treated with lithium diorganocuprate in
Et2O while maintaining the temperature below 220 °C to 
afford the desired Michael addition product. The results are
shown in Table 1. Excellent diastereoselectivity and fair to
good chemical yields were observed, except for entry 8. In
the case of entry 8, the half-ester 7 had low reactivity against
Me2CuLi due to the neighboring methoxy group. Increasing
the reaction temperature and time did not improve the yield,
and instead the product generated by 1,4-addition followed
by 1,2-addition of the reagent was obtained.

Some of these products were easily converted to the chiral
synthetic intermediates of aromatic bisabolane sesquiter-
penes. Thus transesterification of optically active 13 and 17
using lithium methoxide gave the corresponding methyl 
esters 18 and 21 which were hydrolyzed to the acids 19 and
22 in high overall yield, respectively. Reduction of 18 with
DIBAL afforded 20 in 91% yield. The optically active 19, 
20, and 22 were previously transformed into a number of 
bisabolane sesquiterpenoids, as indicated in Chart 2.

To demonstrate the synthetic utility of the present asym-
metric Michael addition, we synthesized optically active 1
and 2, inhibitors of soybean lipoxygenase isolated from the
spice turmeric (Curcuma longa L.).17) To the best of our
knowledge, only one synthesis of optically active 19) and 
synthesis of racemic 218) have been reported. Chart 3 outlines
the syntheses of 1 and 2. Demethylation of optically active
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Chart 1



22 with boron tribromide gave 23 in good yield. The corre-
sponding Weinreb amide 24 prepared by treatment with N,O-
dimethylhydroxyl amine hydrochloride19) was reacted with 
2-methyl-1-propenylmagnesium bromide to afford (1)-
turmeronol A (1) in 90% overall yield from 23. Demethyla-
tion of 25, prepared from 16, gave the lactone 26, which was

transformed to (1)-2 via the sequence similar to that for
(1)-1. Physical data including 1H-NMR spectra, IR spectra,
and [a]D values for synthetic (1)-turmeronol A (1) and B (2)
were in satisfactory agreement with those of natural prod-
ucts.20)
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Table 1. Michael Additions to 3—8

Reaction conditions
Entry Ester

R 92CuLi (eq) Temp (°C) Time (h) Product Yield (%)a) de (%)b)

1 (dl)-3 Ph2CuLi (4) 278 1 9 88 .99
2 (dl)-3 n-Bu2CuLi (10) 278c) 2 10 72 98
3 (R)-4 Ph2CuLi (8) 278 2 11 97 .99
4 (dl)-5 Ph2CuLi (8) 220 5 12 47 .99
5 (R)-5 Me2CuLi (10) 220 2 13 87 .99
6 (dl)-6 Ph2CuLi (8) 220 5 14 75 .99
7 (R)-6 Me2CuLi (10) 220 2 15 59 92
8 (R)-7 Me2CuLi (10) 220 2 16 29 .99
9 (R)-8 Me2CuLi (10) 220 2 17 81 .99

a) Isolated yield. b) Determined by 200 or 400 MHz 1H-NMR. c) Gradually increased to 220 °C.

Chart 2. Bisabolane Sesquiterpenoids Previously Synthesized from 19, 20, and 22

Chart 3. Syntheses of (1)-Turmeronol A (1) and (1)-Turmeronol B (2)
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termined to be 99% ee by HPLC (Daicel Chiralcel OJ column,
1 ml/min, hexane/2-propanol598/2).
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