A Novel Rearranged Type of Secoeudesmane Sesquiterpenoide from the Root of *Lindera strychnifolia* (SIEB. et ZUCC.) F. VILLARS

Isao Kouno,* Asuka Hirai, Akiko Fukushige, Zhi-Hong Jiang, and Takashi Tanaka

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyomachi 1–14, Nagasaki 852–8521, Japan. Received May 21, 1999; accepted June 8, 1999

A novel type of sesquiterpene lactone, called strychnilactone, has been isolated from the root of *Lindera strychnifolia*. Its structure was determined by 2D NMR techniques and X-ray analysis.

Key words *Lindera strychnifolia*, Lauraceae, sesquiterpene, strychnilactone, X-ray analysis

We have reported the isolation of a bisesquiterpene, bislindestenolide,¹⁾ from the root of *Lindera strychnifolia* (SIEB. et ZUCC.) F. VILLARS, which has a strong fragrance and is used in Chinese folk medicine as a palliative and an antispasmodic. Takeda and co-workers reported the isolation of about 20 sesquiterpenes from this plant around 1970.²⁾ Our further investigation of the constituent from the root of *L. strychnifolia* has resulted in the isolation of another novel type of rearranged secoeudesmane sesquiterpene, called strychnilactone (1).

The ether-soluble part of the MeOH extract of the root of *L. strychnifolia* (2.9 kg) afforded strychnilactone (1) (17.1 mg) after chromatography on silica gel, medium-pressure liquid chromatography (MPLC) column, and purification by recrystallization.

Compound 1, colorless rods, mp $181-182 \,^{\circ}C$, $[\alpha]_{D}^{20}$ -267.6°, was crystallized from CHCl₃-MeOH (98:2). Electron-impact mass spectrometry (EIMS) showed a molecular ion peak at m/z 262 [M⁺] and the ¹³C-NMR spectrum showed 17 carbon signals, confirming its molecular formula to be C₁₇H₂₄O₆. The ¹H-NMR spectrum of 1 showed the signals of CH₃-groups at $\delta_{\rm H}$ (CDCl₃) 1.31, 1.66 (with a neighboring oxygen group), and 2.02 (vinyl methyl group), and an ethoxyl group at $\delta_{\rm H}$ 1.26 (3H) and 4.22, 4.17 (each 1H). ¹H-¹H COSY confirmed the presence of oxygenated methylene group ($\delta_{\rm H}$ 3.51, 3.48 [each 1H]) and cyclopropane ring $(\delta_{\rm H} 1.25 \text{ [H-1]}, 1.58, 0.51 \text{ [H}_2-2], 1.49 \text{ [H-3]})$. The ¹³C-NMR spectrum of **1** indicated two signals of ester and/or lactone carbonyl carbons at $\delta_{\rm C}$ 167.1 and 169.5, which was in good agreement with the IR spectrum ($\lambda_{\rm max}$ 1751 and 1641 cm⁻¹), indicating that one of the esters is conjugated.

Intensive analysis of the HSQC and HMBC spectra of 1 indicated the partial structure shown in Fig. 1. In the HMBC spectrum, no connectivity was shown between the H-9 methylene group and C-8 carbonyl carbon, indicating that a lactone ring was formed between C-4 and C-8 (δ -lactone). This was confirmed by the proton chemical shifts of the H-9 methylene group at $\delta_{\rm H}$ 3.51 and 3.48. The NOE correlation analyzed by NOESY spectrum revealed the stereostructure shown in Fig. 2, except for the configuration of 6-OH. To elucidate the configuration at C-6 and confirm the entire sug-

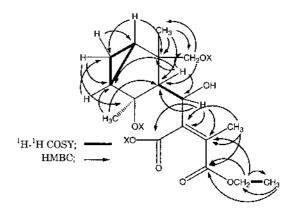


Fig. 1. Correlations of Compound 1

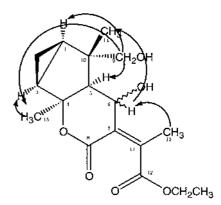


Fig. 2. NOE Correlations of Compound 1

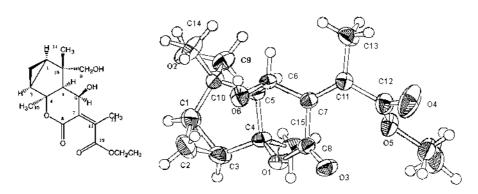


Fig. 3. Structure and ORTEP Drawing of Compound 1

gested structure, a single crystal X-ray analysis was performed. A single crystal belonging to a space group P2₁2₁2₁ (Z=4) was obtained by recrystallization from CHCl₃. Data collection was performed on a RIGAKU AFC 7S diffractometer, and the structure was solved by direct method (SIR92),³ then refined by full-matrix least-squares based on 1925 observed reflections (I>3.00 σ [I]). Hydrogen atoms were refined isotropically, and nonhydrogen atoms were treated anisotropically. The final refinement converged at R=0.032.⁴ Thus the suggested whole structure (Fig. 3) including the configuration of 6 β -OH was established, although the absolute structure remains to be clarified.

More than 10 secoeudesmane-type sesquiterpenes have been identified so far, but compound **1** is a unique and the first example of a secoeudesmanolide, cleaving between the C-8 and C-9 bond of the eudesmane skeleton.

Acknowledgment We thank Mrs. Junko Nagaoka, of Faculty of Engineering of Nagasaki University, for measurement of X-ray diffractometer measurements and analysis of the structure.

References and Notes

- Kouno I., Hirai A., Jiang Z.-H., Tanaka T., *Phytochemistry*, **46**, 1283 (1997).
- 2) Takeda K., Ishii H., Tozyo T., Minato H., J. Chem. Soc. (C), **1969**, 1920, and references cited therein.
- Altomare A., Burla M. C., Camalli M., Cascarano M., Giacovazzo C., Guagliardi A., Polidori G., *J. Appl. Crstallogr.*, 27, 435 (1994).
- 4) The weighted agreement factor is Rw=0.035.