Bufadienolides and a New Lignan from the Bulbs of Urginea maritima

Masaru IIZUKA, Tsutomu WARASHINA,* and Tadataka Noro

Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Shizuoka 422–8526, Japan. Received August 28, 2000; accepted November 20, 2000

Thirty three compounds were obtained from the bulbs of *Urginea maritima* (Liliaceae). The compounds were identified by means of fast atom bombardment mass spectrometry (FAB-MS), nuclear magnetic resonance (¹H-NMR), (¹³C-NMR), nuclear overhauser effects (NOE) and two dimensional (2D) NMR. Ten of them were new natural compounds. Nine were bufadienolides and only one was lignan in these compounds.

Key words Urginea maritima; Liliaceae; bufadienolide; lignan

Urginea maritima (Liliaceae) is cultivated in the Mediterranean area.¹⁾ It is used as a cardiotonic diuretic in Europe for the treatment of cardiac marasmus and edema.²⁾ From these facts, it was expected that this plant inhibited Na⁺, K⁺adenosine triphosphatase (Na⁺, K⁺-ATPase: EC 3.6.1.3).³⁾ On the basis of this expectation, we started this study. In this paper, we report on the structure of 10 new compounds, and in the following paper, we will report on the inhibitory effect on enzymic activity. We have found 23 known compounds and 10 new compounds through extraction and isolation using the bulbs of Urginea maritima. Scillaren A (1),⁴⁾ scillirubroside (15),⁵⁾ scilliroside (16),⁵⁾ scillarenin 3-O- β -D-glucopyranoside (18),⁶⁾ 6-desacetyl-scilliroside (20),¹⁾ scillarenin bis-rhamnopyranoside (21),⁷⁾ 5- α -4,5-dihydro-scillaren A (27),⁴⁾ proscillaridin A (28),⁸⁾ 5- α -4,5-dihydro-scillirosidin 3-O- β -D-glucopyranoside (29),¹⁾ scillirosidin 3-O- α -L-rhamnopyranoside (30),⁶⁾ and 5- α -4,5-dihydro-scillirosidin 3-*O*- α -L-quinovopyranoside (**33**)¹) were known as bufadienolide glycosides; especially 1, 16 and 28 were major components. Scillarenin (2),⁹⁾ scillirosidin (3),¹⁰⁾ scilliglaucosidin (4),¹¹⁾ 3-methoxy-scilliphaeosidin (5), $5-\beta-14$ -dihydroxy-bufa-3,20,22-trienolide (7), scilliglaucogenin (8),⁶⁾ scilliglaucosidone (9),¹¹⁾ 3-oxo-scilliphaeosidin (10),¹²⁾ 3-episcilliglaucosidin (11),¹³⁾ 3-epi-scillarenin (12),¹⁴⁾ 12-epi-scilliphaeosidin (13),⁶⁾ and 14,19-dihydroxy-3-oxo-bufa-4,20,22trienolide $(31)^{15}$ were known bufadienolides which had the absence of sugars. On the other hand, compounds 6, 14, 17, 19, 22–26 and 32 were new compounds. Compounds 6, 14 and 17 were bufadienolides which had the absence of sugars and 32 was lignan glycoside, which is rare in Urginea maritima (L). Compounds 19 and 22-26 were unknown bufadienolide glycosides. The structures of these new compounds were determined by means of FAB-MS, high resolution (HR)-FAB-MS, $[\alpha]_D$, circular dichroism (CD), ultraviolet (UV), infrared (IR), ¹H-NMR, ¹³C-NMR, nuclear Overhauser effects (NOE) and two dimensional (2D) NMR spectra.

For the determination of the component sugars, a mixture of bufadienolide glycosides was subjected to acid hydrolysis. The sugars to be obtained by the reaction were identified as glucose and/or rhamnose for comparison with authentic samples by analysis of gas chromatography(GC).

All these compounds, except for compound **32**, were suggested to have unsaturated lactone rings by indicating good agreement with the data of scillaren A(1), which had signals defined at δ 123.3 (C-20), δ 149.5 (C-21), δ 147.5 (C-22), δ 115.3 (C-23), δ 162.1 (C-24), δ 7.46 (1H, d, *J*=2.5 Hz, H-

21), δ 8.20 (1H, dd, J=10, 2.5 Hz, H-22) and δ 6.35 (1H, d, J=10 Hz, H-23).⁴⁾ And this lactone ring has a characteristic maximum absorption around 298 nm by UV spectrum.²⁾

Compound 6 was suggested to have the molecular formula $C_{25}H_{34}O_5$, based on FAB-MS [positive FAB-MS ion at m/z415 $[M+H]^+$]. In the ¹³C-NMR spectrum of 6, the signals due to the aglycone moiety were very similar to that of the known compound, scilliphaeosidin 3-O- β -D-glucoside.⁶⁾ The methoxy group was deduced from ¹H- and ¹³C-NMR spectra data observed at δ 3.34 (3H, s) and δ 55.8. The linkage position at C-3 was confirmed by 2D-NMR, the heteronuclear multiple quantum coherence (HMQC) spectrum between δ 73.2 (C-3)/ δ 3.60 (H-3) and the heteronuclear multiple bond connectivity (HMBC) spectrum between δ 73.2 (C-3)/ δ 3.34 (methoxy proton); δ 55.8 (methoxy carbon)/ δ 3.60 (H-3). The configuration of the methoxy group was determined to be α based on proton signals correlation between δ 3.60 (1H, br s, H-3) and δ 5.65 (1H, d, J=4.5 Hz, H-4).^{14,16)} Thus, the structure of 6 was determined to be 3-epi-O-methyl-scilliphaeosidin.

Compound 14 would be expected to have the molecular

	R ₁ (β)	$\mathbf{R}_{i}(\alpha)$	R,	R,	R,	R,	R,
1	O-α-L-Rha ⁺¹ β-D-Glc	H	Н	н	н	н	н
2	OH	н	н	н	н	H	н
6	н	OCH,	Н	н	Н	н	OH
14	=0		н	н	ОH	н	н
17	н	ОН	н	н	H	OH	н
19	O-β-D-Gle	Н	OAc	н	н	н	н
22	O-α-L-Rha ^{▲1} β-D-Gl¢	в	ОΛс	н	н	Ħ	H
23	O-α-tRha ⁵³ tt-tRha	н	Н	OH	н	н	н
24	O-α-λ-Rha ^{±1} β-D-Gl¢	н	OAc	он	н	н	н
25	O-3'-O-Ac-α-1Rha ^{±1} β-1>-Glc	н	н	н	н	Н	Н
26	O-2'-O-Ac-α-L-Rha ⁺¹ β-D-Glc	Н	н	н	н	н	н

Chart 1

formula C₂₄H₃₀O₅, based on FAB-MS. As compared to the C-3 hydroxyl compound, scillarenin(2),⁹⁾ the ¹H- and ¹³C-NMR signals of H-3 (δ 4.53) and C-3 (δ 67.4) were not observed in 14, although the signal (δ 199.0) derived from ketone was observed. On the basis of these facts, it was assumed that C-3 was ketone which was also confirmed by the 2D-NMR, HMQC and HMBC spectra between δ 199.0 (C-3)/ δ 3.27, 2.24 (H-1); δ 199.0 (C-3)/ δ 2.62, 2.54 (H-2). Since both δ 1.63 (1H, t, J=11.5 Hz) and δ 4.16 (1H, td, J= 11.5, 4.0 Hz) were observed by ¹H-NMR, and δ 68.2 was observed by ¹³C-NMR, these were assigned as H-9, H-11 and C-11, respectively. So, it would seem to have the hydroxyl group at C-11. These facts were confirmed by the HMQC and HMBC spectra between δ 68.2 (C-11)/ δ 1.63 (H-9); δ 68.2 (C-11)/ δ 2.01, 1.84 (H-12). With respect to H-11, β configuration was determined by strong NOE between H-11 and H-18, and H-19. As a result, these facts proved to be α configuration with the hydroxyl group at C-11. Thus, the structure of 14 was elucidated.

The molecular formula of compound 17 was $C_{24}H_{32}O_5$, based on FAB-MS. Compared to 12-*epi*-scilliphaeosidin 3-*O*- β -D-glucoside,⁶⁾ the carbon signals of 17 were similar, with a range of glycosylation shifts at C-2 (+1.3 ppm), C-3 (-11.9 ppm), and C-4 (+1.9 ppm).⁶⁾ With respect to the configurations of the two hydroxyl groups at C-3 and C-12, α configuration was determined at C-3 by the proton signals correlation between δ 4.38 (1H, br s, H-3) and δ 5.79 (1H, d, J=5.0 Hz, H-4),¹⁶⁾ and also at C-12 by NOE between δ 3.92 (H-12) and δ 1.00 (H-18). Hence, these facts suggested that the structure of 17 is epimer of scilliphaeosidin.⁸⁾ Finally, we determined the present compound to be 3- α , 12- α -scilliphaeosidin.

Compounds 19 and 22-24 had the molecular formulae $C_{32}H_{44}O_{11}$, $C_{38}H_{54}O_{15}$, $C_{36}H_{52}O_{13}$ and $C_{38}H_{54}O_{16}$, respectively, based on FAB-MS. In **19** and **22** the acetyl group was explained by ¹H-NMR, δ 1.76 (s); δ 1.75 (s) and ¹³C-NMR, δ 170.0, 21.3; δ 170.0, 21.2, respectively. Also, linkage position and β -configuration of the acetyl group were established by HMOC, HMBC between acetyl carbon and H-6, and NOE between the 6-O-acetyl proton and H-19/H-8. In the ¹H-NMR and ¹³C-NMR spectra of **19** and **22**, one anomeric proton and carbon signals and two anomeric protons and carbon signals, respectively, were observed, so these compounds were thought to be monoglycoside and diglycosides. The sugar moiety of each compound was determined by acid hydrolysis as described in the experimental section. The acid hydrolysis of 19 afforded glucose as the component sugar, so the sugar moiety of 19 was composed of glucose alone, and the coupling constant of anomeric proton δ 5.04 (1H, d, J= 8.0 Hz) and the chemical shift of anomeric carbon δ 104.0 were indicative of one glucose. The sugar linkage was determined by the consequence of the HMQC and HMBC spectra between δ 5.04 (anomeric proton of β -D-glucopyranose)/ δ 75.6 (C-3 of the aglycone); δ 104.0 (anomeric carbon of β -Dglucopyranose)/ δ 4.57 (H-3 of the aglycone). In conclusion, we found that the structure of 19 was 6- β -acetoxy scillarenin 3-O- β -D-glucopyranoside. The component sugars of 22 were one rhamnose and glucose which were composed of one α -Lrhamnopyranose and β -D-glucopyranose from the results of acid hydrolysis and the ¹H- and ¹³C-NMR spectra. The sugar sequence was determined by the NOE difference spectrum.

The NOEs were observed between δ 5.48 (H-1' of α -Lrhamnopyranose)/4.38 (H-3 of the aglycone); δ 5.22 (H-1" of β -D-glucopyranose)/4.39 (H-4' of α -L-rhamnopyranose). Based on the above evidence, the structure of 22 was elucidated to be 6- β -acetoxy scillarenin 3-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranoside. In compounds 23 and 24, the aglycones showed good agreement with the ¹³C-NMR spectra data of scillirubrosidin¹⁷⁾ and scillirosidin(3),¹⁰⁾ respectively, as compared to the published report.¹⁾ On acid hydrolysis of 23, rhamnose was obtained as the component sugar. The sugar was identified as two α -L-rhamnose based on the ¹³C-NMR spectral data and the chemical shift, and the coupling constant of each anomeric proton signal H-1' δ 5.50 (1H, d, J=1.5 Hz) and H-1" δ 6.27 (1H, d, J=1.5 Hz).⁶⁾ This sugar linkage was confirmed based on the NOEs between δ 5.50 (H-1' of α -L-rhamnopyranose)/4.45 (H-3 of the aglycone); δ 6.27 (H-1" of α -L-rhamnopyranose)/4.40 (H-4' of α -L-rhamnopyranose). From these results, the structure of 23 proved to be scillirubrosidin 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranoside. Rhamnose and glucose were obtained by acid hydrolysis of 24. It was expected that the sequence of the sugar moiety was the same as that of compound 22 because the ¹H- and ¹³C-NMR spectra data were very similar to those of 22. Experimental evidence for the above expectation was obtained by examining the NOE of 24. Thus, the structure of 24 was determined to be scillirosidin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranoside.

The molecular formulae of compounds 25 and 26 were suggested to be $C_{38}H_{54}O_{14}$ by the observation of $[M+Na]^+$ ion peaks in FAB-MS. From the ¹H- and ¹³C-NMR spectral data, the aglycones of 25 and 26 were determined to be scillarenin(2),⁹⁾ which was the same as that of scillaren A(1).⁴⁾ Compound 25, as well as 26, had one acetyl rhamnose and one glucose with respect to the component sugars from the results of the ¹H-, ¹³C-NMR, ¹H-¹H correlation spectroscopy (¹H–¹H COSY), HMQC, HMBC spectra and acid hydrolysis. The acetylated position of 25 was determined by the H-3' proton coupling constant δ 5.88 (1H, dd, J=9.5, 3.5 Hz), the range of acylation shift at C-2' (-1.7 ppm), C-3' (+3.1 ppm) and C-4' (-6.7 ppm) when compared to compound 22 and the HMBC, HMQC and ¹H-¹H COSY spectra; while that of 26 was determined by the H-2' proton coupling constant δ 5.71 (1H, br d, J=2.5 Hz), the range of acylation shift at C-2' (+1.7 ppm), C-3' (-2.3 ppm) and C-1' (-3.5 ppm) when compared to compound 22, HMBC and ¹H-¹H COSY. The sugar sequence of 25 and 26 were established on the basis of the NOE between δ 5.47 (H-1' of α -L-rhamnopyranose)/4.36 (H-3 of the aglycone), δ 5.16 (H-1" of β -D-glucopyranose)/4.62 (H-4' of α -L-rhamnopyranose), δ 5.38 (H-1' of α -L-rhamnopyranose)/4.35 (H-3 of the aglycone), δ 5.34 (H-1" of β -D-glucopyranose)/4.27 (H-4' of α -L-rhamnopyranose), respectively. Thus, the structures of 25 and 26 were

Table 1. ¹H-NMR Spectral Data

	6 ^{<i>a</i>)} 14 ^{<i>a</i>)}		17 ^{<i>a</i>)}	19 ^{<i>a</i>)}		22 ^{<i>a</i>)}	
Aglycone m	noiety						
H- 3	3.60 (br s)	_	4.38 (br s)	4.57 (m)		4.38 (m)	
4	5.65 (d, 4.5)	5.90 (s)	5.79 (d, 5.0)	6.17 (br s)		5.97 (brs)	
6	2.14^{c}	2.62^{c}	2.23 (m)	5.54 (t, 3.0)		5.57 (br t, 3.0)	
	1.76^{c}	2.22^{c}	2.15 (m)	())			
8	1.91 (td. 12.0, 3.0)	1.97 (td. 11.5, 3.0)	1.95^{c}	2.23 (td. 12	.0. 2.5)	2.24 (td. 12.0, 2.5)	
9	1.28 (td, 12.0, 3.0)	1.63 (t, 11.5)	$1.97^{c)}$	1.12 (td, 12	0, 2.5)	1.14 (td, 12.0, 2.5)	
11	1.98 ^{c)}	4.16 (td, 11.5, 4.0)	1.93^{c}	1.45 ^c)	· ·	1.46^{c}	
	1.68 ^{c)}		1.72^{c}	1.35 ^c)		1.37^{c}	
12	3.63 (dd, 12.0, 4.0)	2.01 (dd, 11.5, 4.0)	3.92 (br s)	1.49^{c}		1.52^{c}	
		1.84 ^c)		1.33 ^{c)}		1.38 ^{c)}	
17	3.45 (dd, 10.0, 7.0)	2.61 (dd, 10.5, 6.0)	3.60 (dd, 9.5, 6.0)) 2.50 (dd, 9.1	5, 6.0)	2.51 (dd, 10.0, 6.5)	
18	1.16 (s)	1.04 (s)	1.00 (s)	0.94 (s)		0.95 (s)	
19	0.94 (s)	1.34 (s)	1.01 (s)	1.18 (s)		1.25 (s)	
21	7.59 (d, 2.5)	7.44 (d, 2.5)	7.44 (d, 2.5)	7.47 (d, 2.5))	7.47 (d, 2.5)	
22	8.21 (dd, 10.0, 2.5)	8.15 (dd, 10.0, 2.5)	8.31 (dd, 10.0, 2.1	5) 8.20 (dd, 10	.0, 2.5)	8.20 (dd, 10.0, 2.5)	
23	6.35 (d, 10.0)	6.33 (d, 10.0)	6.37 (d, 10.0)	6.35 (d, 10.	0)	6.35 (d, 10.0)	
Ac				1.76 (s)		1.75 (s)	
OMe	3.34 (s)			_			
Sugar moie	ty						
				Glc		Rha	
H-1'	_	_	—	5.04 (d, 8.0))	5.48 (br s)	
2'	_	_	—	4.02^{c}		4.49 ^{c)}	
3'	_	_	—	4.28 ^c)		4.54 (dd, 9.0, 2.5)	
4'	—	—	—	4.26 ^c)		4.39 (t, 9.0)	
5'	—	—	—	4.01 ^c)	a a =`	4.24 (dq, 9.0, 6.0)	
6'	—	—	—	4.58 (dd, 12	.0, 2.5)	1.72 (d, 6.0)	
				4.40 (dd, 12	.0, 5.0)		
						Gle	
H-1″				—		5.22 (d, 8.0)	
2"				—		4.10 (t, 8.0)	
3″		—		—		4.19 (t, 8.0)	
4″		—		—		4.24	
5″		—		—		3.81 (m)	
6″		—		—		4.46 (dd, 12.0, 2.5)	
						4.36 (dd, 12.0, 5.0)	
	23 ^{<i>a</i>)}	24 ^{<i>a</i>)}	25 ^{<i>a</i>)}	26 ^{<i>a</i>)}		4.36 (dd, 12.0, 5.0) 32 ^{b)}	
Aglycone m	23 ^{<i>a</i>)}	24 ^{<i>a</i>)}	25 ^{<i>a</i>)}	26 ^{<i>a</i>)}		4.36 (dd, 12.0, 3.0) 32 ^{b)}	
Aglycone m H- 3	$23^{a)}$	24 ^{a)}	25 ^{<i>a</i>})	26 ^{<i>a</i>)}	Н-2	32 ^{b)}	
Aglycone m H- 3 4	23 <i>^a</i>) noiety 4.45 (m) 5.58 (hr s)	4.37 (m) 6.01 (br.s)	25 ^{<i>a</i>)}	26 ^{<i>a</i>)}	H-2 5	4.36 (dd, 12.0, 5.0) 32 ^b) 7.03 (d, 2.0) 7 15 (d 8 0)	
Aglycone m H- 3 4 6	23 <i>^a</i>) noiety 4.45 (m) 5.58 (br s) 2.84 (br t. 12.0)	24 ^{<i>a</i>)} 4.37 (m) 6.01 (br s) 5.62 (t. 3.0)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>})	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)}	H-2 5 6	4.36 (dd, 12.0, 5.0) 32 ^b) 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0)	
Aglycone m H- 3 4 6	23 ^{<i>a</i>}) noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^{<i>c</i>})	24 ^{<i>a</i>}) 4.37 (m) 6.01 (br s) 5.62 (t, 3.0)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)}	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)}	H-2 5 6 7	4.36 (dd, 12.0, 5.0) 32 ^b) 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0)	
Aglycone m H- 3 4 6 8	23 <i>a</i>) noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^c)	24 ^{<i>a</i>}) 4.37 (m) 6.01 (br s) 5.62 (t, 3.0)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 [°] 1.26 [°] 1.79 [°])	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.66 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)}	H-2 5 6 7 8	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m)	
Aglycone m H- 3 4 6 8 9	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c} - 1.37^{c}	24 ^{<i>a</i>}) 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.66 ^(c) 1.79 ^{<i>c</i>)} 1.06 (td. 12.0, 3.5)	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5)	H-2 5 6 7 8 9	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^c)	
Aglycone m H- 3 4 6 8 9 12	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^c - 1.37 ^c 1.54 ^c)	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) $-$ 1.32 ^c 1.49 ^c)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)}	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)}	H-2 5 6 7 8 9	32 ^b 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^c 3.78 (dd, 11.0, 7.0)	
Aglycone m H- 3 4 6 8 9 12	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c} 1.37^{c} 1.54^{c} 1.39^{c})	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) $-$ 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)}	25 ^{<i>a</i>}) 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>}) 1.26 ^{<i>c</i>}) 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>}) 1.28 ^{<i>c</i>})	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)}	H-2 5 6 7 8 9 2'	4.36 (dd, 12.0, 5.0) 32 ^b 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^c) 3.78 (dd, 11.0, 7.0) 6.95 (s)	
Aglycone m H- 3 4 6 8 9 12 17	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^c 1.37 ^c 1.54 ^c 1.39 ^c 2.48 (dd, 10.0, 6.5)	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>}) 1.26 ^{<i>c</i>}) 1.79 ^{<i>c</i>}) 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>}) 1.28 ^{<i>c</i>}) 2.48 (dd, 10.0, 7.0)	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.47 (dd, 10.0, 6.5)	H-2 5 6 7 8 9 2' 6'	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s)	
Aglycone m H- 3 4 6 8 9 12 17 18	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s)	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0) 1.09 (s)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.48 (dd, 10.0, 7.0) 0.93 (s)	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.47 (dd, 10.0, 6.5) 0.93 (s)	H-2 5 6 7 8 9 2' 6' 7'	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0)	
Aglycone m H- 3 4 6 8 9 12 17 18 19	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s)	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^c 1.49 ^c 1.38 ^c 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s)	H-2 5 6 7 8 9 2' 6' 7' 8'	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5)	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5)	H-2 5 6 7 8 9 2' 6' 7' 8' 9'	$\begin{array}{r} \textbf{32}^{(b)}\\ \hline \textbf{32}^{(b)}\\ \hline \textbf{32}^{(b)}\\ \hline \textbf{32}^{(b)}\\ \hline \textbf{332}^{(b)}\\ \hline \textbf{333}^{(b)}\\ \hline \textbf{333}^{(c)}\\ \hline \textbf{3.48} (m)\\ \hline \textbf{3.48} (m)\\ \hline \textbf{3.48} (m)\\ \hline \textbf{3.85}^{(c)}\\ \hline \textbf{3.78} (dd, 11.0, 7.0)\\ \hline \textbf{6.95} (s)\\ \hline \textbf{6.97} (s)\\ \hline \textbf{6.56} (d, 16.0)\\ \hline \textbf{6.16} (dt, 16.0, 6.0)\\ \hline \textbf{4.05} (dd, 6.0, 1.5)\\ \hline \end{array}$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5)	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^(c) 1.49 ^(c) 1.38 ^(c) 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5)	H-2 5 6 7 8 9 2' 6' 7' 8' 9'	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0)	24^{c} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32^{c} 1.49^{c} 1.38^{c} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^c 1.37 ^c 1.54 ^c 1.39 ^c 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0)	24^{c} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32^{c} 1.49^{c} 1.38^{c} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) —	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ 4.35 \ (m) \\ 5.48 \ (s) \\ 1.69^{c)} \\ 1.26^{c)} \\ 1.79^{c)} \\ 1.06 \ (td, 12.0, 3.5) \\ 1.45^{c)} \\ 1.28^{c)} \\ 2.47 \ (dd, 10.0, 6.5) \\ 0.93 \ (s) \\ 0.96 \ (s) \\ 7.46 \ (d, 2.5) \\ 8.20 \ (dd, 10.0, 2.5) \\ 6.35 \ (d, 10.0) \\ \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	4.36 (dd, 12.0, 5.0) 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^{c)} - 1.37 ^{c)} 1.54 ^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0)	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$\begin{array}{c} \textbf{25}^{a)} \\ \hline \textbf{4.36 (m)} \\ \textbf{5.50 (s)} \\ \textbf{1.69}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.79}^{c)} \\ \textbf{1.06 (td, 12.0, 3.5)} \\ \textbf{1.45}^{c)} \\ \textbf{1.28}^{c)} \\ \textbf{2.48 (dd, 10.0, 7.0)} \\ \textbf{0.93 (s)} \\ \textbf{0.96 (s)} \\ \textbf{7.46 (d, 2.5)} \\ \textbf{8.20 (dd, 10.0, 2.5)} \\ \textbf{6.35 (d, 10.0)} \\ \end{array}$	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ 4.35 \ (m) \\ 5.48 \ (s) \\ 1.69^{c)} \\ 1.26^{c)} \\ 1.79^{c)} \\ 1.06 \ (td, 12.0, 3.5) \\ 1.45^{c)} \\ 1.28^{c)} \\ 2.47 \ (dd, 10.0, 6.5) \\ 0.93 \ (s) \\ 0.96 \ (s) \\ 7.46 \ (d, 2.5) \\ 8.20 \ (dd, 10.0, 2.5) \\ 6.35 \ (d, 10.0) \\ \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{7.03} (d, 2.0) \\ \textbf{7.15} (d, 8.0) \\ \textbf{6.93} (dd, 8.0, 2.0) \\ \textbf{5.58} (d, 7.0) \\ \textbf{3.48} (m) \\ \textbf{3.85^{c}} \\ \textbf{3.78} (dd, 11.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.36} (s) \end{array}$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet	23^{a} noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95 ^{c)} - 1.37 ^{c)} 1.54 ^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) - ty Pl	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0) ty Rha 5.50 (d, 1.5)	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^c 1.49 ^c 1.38 ^c 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.26 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.45 ^{<i>c</i>)} 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.36 (s) Glc 4.95 (d, 7.5)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2'	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 1.39^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c)}	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.40 ^c)	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (tr c)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.36 (s) Glc 4.88 (d, 7.5) 2.48c)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 2'	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c)} 4.55^{c})	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49 ^{c)} 4.54 (dd 0.0, 2.5)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (br s) 5.89 (dd 0.5, 2.5)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.71 (dd, 0.0, 2.5)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 2	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.48 ^{c)} 3.76 (dd, 7.5) 3.48 ^{c)}	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4'	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c)} 4.40 (c, 0.5)	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^(c) 1.49 ^(c) 1.38 ^(c) 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49 ^(c) 4.54 (dd, 9.0, 2.5) 4.30 (d, 9.0)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	26 ^{<i>a</i>}) 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>}) 1.26 ^{<i>c</i>}) 1.79 ^{<i>c</i>}) 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>}) 1.28 ^{<i>c</i>}) 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.48 ^{c)} 3.47 ^{c)} 3.20 ^{c)}	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5'	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c)} 4.55^{c)} 4.28 (dz, 9.5, 60)	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	26 ^{<i>a</i>)} 4.35 (m) 5.48 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.47 (dd, 10.0, 6.5) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.47 ^{c)} 3.39 ^{c)} 3.82	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6'	$23^{a)}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c)} 1.37^{c)} 1.54^{c)} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c)} 4.55^{c)} 4.40 (t, 9.5) 4.28 (dq, 9.5, 6.0) 1.64 (d, 6.0)	24^{c} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^c 1.49 ^c 1.38 ^c 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49 ^c 4.54 (dd, 9.0, 2.5) 4.39 (t, 9.0) 4.24 (dq, 9.0, 6.0) 1.72 (d, 6.0)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (brs) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 9.5)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.71 (dd, 9.0, 2.5) 4.27 (t, 9.0) 4.26 (dq, 9.0, 6.0) 1.73 (d, 6.0)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.47 ^{c)} 3.39 ^{c)} 3.8 ^{c)} 3.8 ^{c)} 3.8 ^{c)}	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6'	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{boiety} \\ 4.45 (m) \\ 5.58 (br s) \\ 2.84 (br t, 12.0) \\ 1.95^{c)} \\ \hline \textbf{1.37}^{c)} \\ 1.54^{c)} \\ 1.39^{c)} \\ 2.48 (dd, 10.0, 6.5) \\ 1.11 (s) \\ 1.42 (s) \\ 7.43 (d, 2.5) \\ 8.09 (dd, 10.0, 2.5) \\ 6.35 (d, 10.0) \\ \hline \textbf{1.42} \\ \textbf{1.55} \\ 8.09 (dd, 10.0, 2.5) \\ 6.35 (d, 10.0) \\ \hline \textbf{1.55} \\ 4.45^{c)} \\ 4.55^{c)} \\ 4.40 (t, 9.5) \\ 4.28 (dq, 9.5, 6.0) \\ 1.64 (d, 6.0) \\ \hline \textbf{1.51} \\ \textbf{1.51} \\$	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (br s) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 6.0)	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ \textbf{4.35 (m)} \\ \textbf{5.48 (s)} \\ \textbf{1.69}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.79}^{c)} \\ \textbf{1.06 (td, 12.0, 3.5)} \\ \textbf{1.45}^{c)} \\ \textbf{1.28}^{c)} \\ \textbf{2.47 (dd, 10.0, 6.5)} \\ \textbf{0.93 (s)} \\ \textbf{0.96 (s)} \\ \textbf{7.46 (d, 2.5)} \\ \textbf{8.20 (dd, 10.0, 2.5)} \\ \textbf{6.35 (d, 10.0)} \\ \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$32^{b)}$ 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.38 ^{c)} 3.37 ^{c)} 3.38 ^{c)}	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6'	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{boiety} \\ 4.45 (m) \\ 5.58 (br s) \\ 2.84 (br t, 12.0) \\ 1.95^{c)} \\ \hline $	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	25 ^{<i>a</i>)} 4.36 (m) 5.50 (s) 1.69 ^{<i>c</i>)} 1.26 ^{<i>c</i>)} 1.79 ^{<i>c</i>)} 1.06 (td, 12.0, 3.5) 1.45 ^{<i>c</i>)} 1.28 ^{<i>c</i>)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (brs) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 6.0) 2.17 (c)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.71 (dd, 9.0, 2.5) 4.71 (dd, 9.0, 2.5) 4.27 (t, 9.0) 4.26 (dq, 9.0, 6.0) 1.73 (d, 6.0) 2.09 (s)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{33}^{b)} \\ \textbf{33}^{b)} \\ \textbf{348} (m) \\ \textbf{3.85}^{c)} \\ \textbf{3.78} (dd, 11.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.97} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.36} (s) \\ \hline \\ \hline \\ \hline \\ \textbf{Glc} \\ \textbf{4.88} (d, 7.5) \\ \textbf{3.48}^{c)} \\ \textbf{3.47}^{c)} \\ \textbf{3.39}^{c)} \\ \textbf{3.38}^{c)} \\ \textbf{3.68} (m) \\ \hline \end{array}$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{10} \\ $	24^{a} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^{c)} 1.49 ^{c)} 1.38 ^{c)} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49 ^{c)} 4.54 (dd, 9.0, 2.5) 4.39 (t, 9.0) 4.24 (dq, 9.0, 6.0) 1.72 (d, 6.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.71 (dd, 9.0, 2.5) 4.27 (t, 9.0) 4.26 (dq, 9.0, 6.0) 1.73 (d, 6.0) 2.09 (s) Glc	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{348} (m) \\ \textbf{3.85}^{c)} \\ \textbf{3.78} (dd, 8.0, 2.0) \\ \textbf{5.58} (d, 7.0) \\ \textbf{3.48} (m) \\ \textbf{3.85}^{c)} \\ \textbf{3.78} (dd, 11.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.97} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.36} (s) \\ \hline \\ \hline \\ \textbf{Glc} \\ \textbf{4.88} (d, 7.5) \\ \textbf{3.48}^{c)} \\ \textbf{3.47}^{c)} \\ \textbf{3.39}^{c)} \\ \textbf{3.38}^{c)} \\ \textbf{3.87}^{c)} \\ \textbf{3.68} (m) \\ \hline \\ \end{array}$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac	$23^{a^{a}}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c^{-}} 1.37^{c^{-}} 1.54^{c^{-}} 1.39^{c^{-}} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c^{+}} 4.55^{c^{-}} 4.40 (t, 9.5) 4.28 (dq, 9.5, 6.0) 1.64 (d, 6.0) Rha 6.27 (d, 1.5)	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (br s) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 6.0) 2.17 (s) Glc 5.16 (d 8.0)	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.27 (t, 9.0) 4.26 (dq, 9.0, 6.0) 1.73 (d, 6.0) 2.09 (s) Glc 5.34 (d, 8.0)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	32 ^{b)} 34 8 (m) 3.85 c ⁰ 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 6.16 (dt, 16.0, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.38 (s) 3.38 (s) 3.34 (c) 3.38 c ¹ 3.68 (m)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2"	$23^{a^{a}}$ noiety 4.45 (m) 5.58 (br s) 2.84 (br t, 12.0) 1.95^{c^{b}} 1.37^{c^{b}} 1.54^{c^{b}} 1.39^{c^{b}} 2.48 (dd, 10.0, 6.5) 1.11 (s) 1.42 (s) 7.43 (d, 2.5) 8.09 (dd, 10.0, 2.5) 6.35 (d, 10.0) ty Rha 5.50 (d, 1.5) 4.45^{c^{b}} 4.40 (t, 9.5) 4.28 (dq, 9.5, 6.0) 1.64 (d, 6.0) Rha 6.27 (d, 1.5) 4.86^{c^{b}}	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32 ^(c) 1.49 ^(c) 1.38 ^(c) 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49 ^(c) 4.54 (dd, 9.0, 2.5) 4.39 (t, 9.0) 4.24 (dq, 9.0, 6.0) 1.72 (d, 6.0) Glc 5.23 (d, 8.0) 4.10 (t, 8.0) 4.10 (t, 8.0)	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	26 <i>a</i> ^{<i>a</i>}) 4.35 (m) 5.48 (s) 1.69 <i>c</i> ⁰ 1.26 <i>c</i> ⁰ 1.79 <i>c</i> ⁰ 1.06 (td, 12.0, 3.5) 1.45 <i>c</i> ⁰ 1.28 <i>c</i> ⁰ 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	32 ^{b)} 32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^c) 3.47 ^{c)} 3.38 ^c) 3.68 (m)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2" 3"	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{10} \\ \hline \textbf{10} \\ \textbf{10} $	$24^{(r)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (brs) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 6.0) 2.17 (s) Glc 5.16 (d, 8.0) 3.97 (t, 8.0) 4.17 (t 8 0)	26 <i>a</i> ^{<i>a</i>}) 4 .35 (m) 5 .48 (s) 1 .06 ^{<i>c</i>}) 1 .26 ^{<i>c</i>}) 1 .79 ^{<i>c</i>}) 1 .06 (td, 12.0, 3.5) 1 .45 ^{<i>c</i>}) 1 .28 ^{<i>c</i>}) 2 .47 (dd, 10.0, 6.5) 0 .96 (s) 7 .46 (d, 2.5) 8 .20 (dd, 10.0, 2.5) 6 .35 (d, 10.0) 	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	32 ^{b)} 32 ^{b)} 7 .03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c)} 3.47 ^{c)} 3.39 ^{c)} 3.87 ^{c)} 3.68 (m)	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2" 3" 4"	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{10} \\ \hline \textbf{10} \\ \textbf{10} $	24^{c} 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 1.32^{c} 1.49^{c} 1.38^{c} 2.47 (dd, 10.0, 6.0) 1.09 (s) 1.55 (s) 7.42 (d, 2.5) 8.07 (dd, 10.0, 2.5) 6.34 (d, 10.0) 1.90 (s) Rha 5.48 (d, 1.5) 4.49^{c} 4.54 (dd, 9.0, 2.5) 4.39 (t, 9.0) 4.24 (dq, 9.0, 6.0) 1.72 (d, 6.0) Glc 5.23 (d, 8.0) 4.10 (t, 8.0) 4.19 (t, 8.0) 4.23^{c})	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 3'-O-Ac-Rha 5.47 (d, 1.5) 4.68 (brs) 5.88 (dd, 9.5, 3.5) 4.62 (t, 9.5) 4.27 (dq, 9.5, 6.0) 1.72 (d, 6.0) 2.17 (s) Glc 5.16 (d, 8.0) 3.97 (t, 8.0) 4.17 (t, 8.0) 4.24^{c)}	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ \textbf{4.35 (m)} \\ \textbf{5.48 (s)} \\ \textbf{1.69}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.79}^{c)} \\ \textbf{1.06 (td, 12.0, 3.5)} \\ \textbf{1.45}^{c)} \\ \textbf{1.28}^{c)} \\ \textbf{2.47 (dd, 10.0, 6.5)} \\ \textbf{0.96 (s)} \\ \textbf{7.46 (d, 2.5)} \\ \textbf{8.20 (dd, 10.0, 2.5)} \\ \textbf{6.35 (d, 10.0)} \\ \hline \\ \hline \\ \textbf{2'-O-Ac-Rha} \\ \textbf{5.38 (br s)} \\ \textbf{5.71 (br d, 2.5)} \\ \textbf{4.71 (dd, 9.0, 2.5)} \\ \textbf{4.27 (t, 9.0)} \\ \textbf{4.26 (dq, 9.0, 6.0)} \\ \textbf{1.73 (d, 6.0)} \\ \textbf{2.09 (s)} \\ \textbf{Glc} \\ \textbf{5.34 (d, 8.0)} \\ \textbf{4.11 (t, 8.0)} \\ \textbf{4.18 (t, 8.0)} \\ \textbf{4.24}^{c)} \\ \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{7.03} (d, 2.0) \\ \textbf{7.15} (d, 8.0) \\ \textbf{6.93} (dd, 8.0, 2.0) \\ \textbf{5.58} (d, 7.0) \\ \textbf{3.48} (m) \\ \textbf{3.85^{c}} \\ \textbf{3.78} (dd, 11.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.97} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.36} (s) \\ \hline \\ \hline \\ \textbf{Glc} \\ \textbf{4.88} (d, 7.5) \\ \textbf{3.48^{c}} \\ \textbf{3.37^{c}} \\ \textbf{3.39^{c}} \\ \textbf{3.38^{c}} \\ \textbf{3.37^{c}} \\ \textbf{3.68} (m) \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2" 3" 4" 5"	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{boiety} \\ 4.45 (m) \\ 5.58 (br s) \\ 2.84 (br t, 12.0) \\ 1.95^{c)} \\ \hline \textbf{1.37}^{c)} \\ 1.54^{c)} \\ 1.39^{c)} \\ 2.48 (dd, 10.0, 6.5) \\ 1.11 (s) \\ 1.42 (s) \\ 7.43 (d, 2.5) \\ 8.09 (dd, 10.0, 2.5) \\ 6.35 (d, 10.0) \\ \hline \textbf{1.42} \\ \textbf{5.50} \\ (d, 10.0) \\ \hline \textbf{1.51} \\ \textbf{4.55}^{c)} \\ 4.45^{c)} \\ 4.55^{c)} \\ 4.40 (t, 9.5) \\ 4.28 (dq, 9.5, 6.0) \\ 1.64 (d, 6.0) \\ \hline \textbf{1.64} \\ \textbf{4.54}^{c)} \\ 4.30 (t, 9.5) \\ 4.39 (da, 9.5, 6.0) \\ 1.64 (d, 9.5) \\ 4.39 (da, 9.5, 6.0) \\ \hline \textbf{1.64} \\ \textbf{4.54}^{c)} \\ 4.30 (t, 9.5) \\ 4.39 (da, 9.5, 6.0) \\ \hline \textbf{1.64} \\ \textbf{4.54}^{c)} \\ 4.30 (t, 9.5) \\ 4.39 (da, 9.5, 6.0) \\ \hline \textbf{1.64} \\ \textbf{4.54}^{c)} \\ 4.30 (t, 9.5) \\ \hline \textbf{4.59} \\ \textbf{5.59} \\ \textbf{4.59} \\ \textbf{5.59} \\ \textbf{4.59} \\ \textbf{5.59} \\ 5.59$	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ \textbf{4.35 (m)} \\ \textbf{5.48 (s)} \\ \textbf{1.69}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.79}^{c)} \\ \textbf{1.06 (td, 12.0, 3.5)} \\ \textbf{1.45}^{c)} \\ \textbf{1.28}^{c)} \\ \textbf{2.47 (dd, 10.0, 6.5)} \\ \textbf{0.93 (s)} \\ \textbf{0.96 (s)} \\ \textbf{7.46 (d, 2.5)} \\ \textbf{8.20 (dd, 10.0, 2.5)} \\ \textbf{6.35 (d, 10.0)} \\ \hline \\ \hline \\ \textbf{2'-O-Ac-Rha} \\ \textbf{5.38 (br s)} \\ \textbf{5.71 (br d, 2.5)} \\ \textbf{4.71 (dd, 9.0, 2.5)} \\ \textbf{4.71 (dd, 9.0, 2.5)} \\ \textbf{4.26 (dq, 9.0, 6.0)} \\ \textbf{1.73 (d, 6.0)} \\ \textbf{2.09 (s)} \\ \textbf{Glc} \\ \textbf{5.34 (d, 8.0)} \\ \textbf{4.11 (t, 8.0)} \\ \textbf{4.18 (t, 8.0)} \\ \textbf{4.24}^{c)} \\ \textbf{3.88 (m)} \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	32 ^{b)} 7.03 (d, 2.0) 7.15 (d, 8.0) 6.93 (dd, 8.0, 2.0) 5.58 (d, 7.0) 3.48 (m) 3.85 ^{c)} 3.78 (dd, 11.0, 7.0) 6.95 (s) 6.97 (s) 6.56 (d, 16.0) 6.16 (dt, 16.0, 6.0) 4.05 (dd, 6.0, 1.5) 3.89 (s) 3.83 (s) 3.36 (s) Glc 4.88 (d, 7.5) 3.48 ^{c1} 3.47 ^{c1} 3.39 ^{c2} 3.38 ^{c1} 3.87 ^{c2} 3.68 (m) —	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2" 3" 4" 5" 6"	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{10} \\ $	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	$26^{a)}$ 4.35 (m) 5.48 (s) 1.69^{c)} 1.26^{c)} 1.79^{c)} 1.06 (td, 12.0, 3.5) 1.45^{c)} 1.28^{c)} 2.47 (dd, 10.0, 6.5) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 2'-O-Ac-Rha 5.38 (br s) 5.71 (br d, 2.5) 4.71 (dd, 9.0, 2.5) 4.71 (dd, 9.0, 2.5) 4.26 (dq, 9.0, 6.0) 1.73 (d, 6.0) 2.09 (s) Glc 5.34 (d, 8.0) 4.11 (t, 8.0) 4.18 (t, 8.0) 4.18 (t, 8.0) 4.14 (t, 8.0) 4.24^{c)} 3.88 (m) 4.51 (dd, 12.0, 2.5)	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{332}^{b)} \\ \hline \\ \hline \\ \textbf{335}^{c)} \\ \textbf{3.78} (dd, 2.0) \\ \textbf{5.58} (d, 7.0) \\ \textbf{3.48} (m) \\ \textbf{3.85}^{c)} \\ \textbf{3.78} (dd, 11.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.97} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.336} (s) \\ \hline \\ \hline \\ \textbf{Glc} \\ \textbf{4.88} (d, 7.5) \\ \textbf{3.48^{c)}} \\ \textbf{3.47^{c)}} \\ \textbf{3.39^{c)}} \\ \textbf{3.38^{c)}} \\ \textbf{3.87^{c)}} \\ \textbf{3.68} (m) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	
Aglycone m H- 3 4 6 8 9 12 17 18 19 21 22 23 Ac Sugar moiet H-1' 2' 3' 4' 5' 6' Ac H-1" 2" 3" 4" 5" 6"	$\begin{array}{c} \textbf{23}^{a)} \\ \hline \textbf{boiety} \\ 4.45 (m) \\ 5.58 (br s) \\ 2.84 (br t, 12.0) \\ 1.95^{c)} \\ \hline \textbf{1.39}^{c)} \\ 1.54^{c)} \\ 1.39^{c)} \\ 2.48 (dd, 10.0, 6.5) \\ 1.11 (s) \\ 1.42 (s) \\ 7.43 (d, 2.5) \\ 8.09 (dd, 10.0, 2.5) \\ 6.35 (d, 10.0) \\ \hline \textbf{1.44} \\ (s) \\ 7.43 (d, 2.5) \\ 8.09 (dd, 10.0, 2.5) \\ 6.35 (d, 10.0) \\ \hline \textbf{1.44} \\ (s) \\ 4.55^{c)} \\ 4.40 (t, 9.5) \\ 4.28 (dq, 9.5, 6.0) \\ 1.64 (d, 6.0) \\ \hline \textbf{1.64} \\ (d, 9.5) \\ 4.39 (dq, 9.5, 6.0) \\ 1.64 (d, 6.0) \\ \hline \end{array}$	$24^{a)}$ 4.37 (m) 6.01 (br s) 5.62 (t, 3.0) 	$25^{a)}$ 4.36 (m) 5.50 (s) 1.69 ^{c)} 1.26 ^{c)} 1.79 ^{c)} 1.06 (td, 12.0, 3.5) 1.45 ^{c)} 1.28 ^{c)} 2.48 (dd, 10.0, 7.0) 0.93 (s) 0.96 (s) 7.46 (d, 2.5) 8.20 (dd, 10.0, 2.5) 6.35 (d, 10.0) 	$\begin{array}{c} \textbf{26}^{a)} \\ \hline \\ \textbf{4.35 (m)} \\ \textbf{5.48 (s)} \\ \textbf{1.69}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.26}^{c)} \\ \textbf{1.79}^{c)} \\ \textbf{1.06 (td, 12.0, 3.5)} \\ \textbf{1.45}^{c)} \\ \textbf{1.28}^{c)} \\ \textbf{2.47 (dd, 10.0, 6.5)} \\ \textbf{0.93 (s)} \\ \textbf{0.96 (s)} \\ \textbf{7.46 (d, 2.5)} \\ \textbf{8.20 (dd, 10.0, 2.5)} \\ \textbf{6.35 (d, 10.0)} \\ \hline \\ \hline \\ \textbf{2'-O-Ac-Rha} \\ \textbf{5.38 (br s)} \\ \textbf{5.71 (br d, 2.5)} \\ \textbf{4.71 (dd, 9.0, 2.5)} \\ \textbf{4.27 (t, 9.0)} \\ \textbf{4.26 (dq, 9.0, 6.0)} \\ \textbf{1.73 (d, 6.0)} \\ \hline \\ \textbf{2.09 (s)} \\ \textbf{Glc} \\ \textbf{5.34 (d, 8.0)} \\ \textbf{4.11 (t, 8.0)} \\ \textbf{4.18 (t, 8.0)} \\ \textbf{4.18 (t, 8.0)} \\ \textbf{4.51 (dd, 12.0, 2.5)} \\ \textbf{4.37 (dd, 12.0, 5.0)} \end{array}$	H-2 5 6 7 8 9 2' 6' 7' 8' 9' OMes G-1 2 3 4 5 6	$\begin{array}{c} \textbf{32}^{b)} \\ \hline \\ \hline \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \hline \\ \textbf{32}^{b)} \\ \hline \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{33}^{b)} \\ \hline \\ \textbf{348} (m) \\ \textbf{3.85}^{c)} \\ \textbf{3.78} (dd, 10.0, 7.0) \\ \textbf{6.95} (s) \\ \textbf{6.97} (s) \\ \textbf{6.56} (d, 16.0) \\ \textbf{6.16} (dt, 16.0, 6.0) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{4.05} (dd, 6.0, 1.5) \\ \textbf{3.89} (s) \\ \textbf{3.83} (s) \\ \textbf{3.36} (s) \\ \hline \\ \hline \\ \textbf{Glc} \\ \textbf{4.88} (d, 7.5) \\ \textbf{3.48}^{c)} \\ \textbf{3.47}^{c)} \\ \textbf{3.39}^{c)} \\ \textbf{3.38}^{c)} \\ \textbf{3.87}^{c)} \\ \textbf{3.68} (m) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	

Measured at 400 MHz, δ , ppm in a) pyridine- d_5 . b) CD₃OD solution at 35 °C. c): Overlapping with other signals. Rha: α -L-rhamnopyranosyl. Glc: β -D-glucopyranosyl.

Table 2. ¹³ C-NMR Spectral Data (Measured at 100.40 MHz,	δ , ppm 35 °C, in Pyridine-d ₅ Except for 32 (CD ₂ OD) as Solvent
---	---

	6	14	17	19	22	23	24	25	26		32
Aglvcon n	noietv										
C- 1	32.6	38.5	32.4	37.3 ^{a)}	37.2 ^{a)}	37.1	37.9	33.0 ^{a)}	33.0 ^{a)}	C-1	138.1
2	24.4	34.8	29.2	27.7	27.4	27.4	27.0	27.6	27.5	2	111.4
3	73.2	199.0	64.1	75.6	73.7	74 0 ^{b)}	73.6	73.8	74.6	3	151.1
4	119.8	124.6	123.4	130.2	129.5	121.4	130.3	121.4	121.1	4	147.8
5	149.1	170.9	147.5	142.3	142.6	147.8	142.3	147.0	147.4	5	118.3
6	33.0	34.2	33.2	76.1	76.1	28.8	76 5 ^{a)}	35.8	35.7	6	110.5
07	20 3 ^a)	28.2	20.3	33 /	33 /	26.0	38.3	20 3 ^b)	20 3 ^b)	7	88.8
, 8	42.3	12 5	43.2	37 7a)	37.6	76.3	76 5 ^a)	42.6	42.6	8	55.3
0	46 Q ^b)	54.0	43.2	50.2	50.2	51 Q ^a)	52.0	42.0 50.5	42.0 50.4	0	65.0
10	27.9	J4.9 40.4	43.5	27 2 ^a)	27 2 ^a)	28.2	32.0	27.8	277	9 17	122.4
10	21.4	40.4 68 2	37.0	21.5	21.5	18.7	197	21.7	21.6	2'	112.4
12	75.2	51.0	75.4	40.6	40.6	10.7	10.7	21.7	21.0	21	112.5
12	15.2	J1.0 40.4	52.4	40.0	40.0	41.5	41.1	40.7	40.0	5 1'	143.0
13	33.3 94.9	49.4	52.0 84.5	40.9	40.9	49.4	49.3	40.0	40.0	4 5'	149.5
14	04.0 22.2	03.0	04.J	63.9 22.9	03.9	83.4 24.7	83.4 24.6	04.Z	04.2	5	130.1
15	33.3 20.4a)	33.Z	34.8	32.8	32.8	34.7	34.0	32.8 ³	32.7%	0	110.7
10	29.4 [%]	29.5	31.0	29.3	29.3	29.8	29.6	29.4	29.4	/	134.5
1/	46.9%	51.3	45.7	51.5	51.5	52.04	51.2	51.4	51.4	8	124.4
18	10.9	18.2	18.7	17.3	17.3	19.5	19.5	17.1	17.1	9'	74.3
19	18.5	18.4	19.0	21.1%	21.1%	20.9	22.1	19.0	19.0		
20	123.4	122.8	124.2	123.5	123.4	123.4	124.0	123.3	123.3		
21	150.0	149.8	149.3	149.5	149.5	149.4	149.4	149.4	149.4		
22	147.8	147.2	148.2	147.5	147.4	147.1	147.1	147.5	147.5		
23	115.2	115.4	115.4	115.3	115.3	115.4	115.4	115.3	115.3		
24	162.1	162.0	162.2	162.1	162.1	162.0	162.0	162.1	162.1		
Ac				170.0	170.0	_	169.7	—			
				21.3%	21.26		21.4				
OMe	55.8					_	_	—		OMes	58.0
											56.9
Sugar mai	otri										56.8
Sugar mor	ety			Glc	Rha	Rha	Rha	3'-O-Ac-Rha	2'-O-Ac-Rha		Glc
C-1′				104.0	100.9	100.6	100.8	100.4	97.4	G-1	102.9
2'	_	_		75.3	72.1	73 3 ^{c)}	72.1	70.4	73.8	2	74 9
3'	_	_		78 6 ^{c)}	72.5	73 4 ^{c)}	72.5	75.6	70.2	3	77.9
4'	_	_		71.9	85.1	80.3	85.0	78.4	84.8	4	71.4
5'		_		78.6°	68.4	68.2	68.4	68.5	68.2	5	78.2
6'		_		63.0	18.4	19.0	18.4	18.7	18.3	6	62.6
Ac		_						170.9	170.7	0	
110								21.5	21.0		
					Glc	Rha	Glc	Glc	Glc		
C-1″					106 7	103 3	106 7	105 5	106.5		
2"					76.5	72.6	76.4	75.1	76.4		
3"					78.6	72.0	78.6	78.6	78 5 ^{c)}		
5 4″		_	_		71 7	74 1 ^{b)}	71.6	71.8	71.6		
					78.5	70.4	78.5	78.0	78 5 ^{c)}		
5 6"					62.8	18.5	62.8	63.0	62.8		
0					02.0	10.5	02.0	05.0	02.0		

a—c): Assignments may be interchangeable in each column. Rha: α -L-rhamnopyranosyl. Glc: β -D-glucopyranosyl.

determined to be scillarenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-3'-O-acetyl- α -L-rhamnopyranoside and scillarenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-2'-O-acetyl- α -L-rhamnopyranoside, respectively.

Compound **32** was found to have the formula $C_{27}H_{34}O_{11}$ based on the FAB-MS spectra and confirmed by its ¹H- and ¹³C-NMR data. The ¹H-NMR spectrum showed the presence of five aromatic proton signals at δ 7.15 (1H, d, *J*=8.0 Hz, H-5), δ 7.03 (1H, d, *J*=2.0 Hz, H-2), δ 6.97 (1H, s, H-6'), δ 6.95 (1H, s, H-2') and δ 6.93 (1H, dd, *J*=8.0, 2.0 Hz, H-6); the signals three methoxy groups at δ 3.89, 3.83 and 3.36 (each 3H, s, C-3', C-3, C-9'-OMe, respectively); two trans olefinic proton signals at δ 6.56 (1H, d, *J*=16.0 Hz, H-7') and δ 6.16 (1H, dt, *J*=16.0, 6.0 Hz, H-8'); two methine proton signals at δ 5.58 (1H, d, *J*=7.0 Hz, H-7) and δ 3.48 (1H, d, J=7.0 Hz, H-8) and an anomeric proton signal at δ 4.88 (1H, d, J=7.5Hz, H-1"). The sugar moiety was identified by acid hydrolysis to glucose. These results showed that compound **32** is a dihydro-benzofuran-type neolignan glucoside in combination with its ¹³C-NMR spectrum data. The sugar linkage was confirmed by the NOE between δ 4.88 (H-1" of β -D-glucopyranose)/7.15 (H-5 of aromatic proton). The HMQC and HMBC spectra provided strong support for the structure of **32**. The CD spectrum showed negative cotton effects ([θ]₂₇₀ -8117 and [θ]₂₈₄ -12175), so it was found that compound **32** had the 7*S*,8*R*-configuration.¹⁸

Experimental

Optical rotation was determined by measurement with a JASCO-DIP 1000 digital polarimeter. CD spectra were determined by a JASCO J-20A. FAB-MS and HR-FAB-MS spectra were taken on a JEOL JMS-SX 120 and JEOL JMS-700 spectrometer in *m*-nitrobenzyl alcohol, respectively. IR spectra were recorded on a JASCO FT/IR-230 spectrometer. UV spectra were obtained by BECKMAN DU 640 spectrophotometer. ¹H- and ¹³C-NMR were recorded on a JEOL JNM A-400 (400 and 100.40 MHz, respectively) spectrometer. Chemical shifts were given on the δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. GC was run on a Hitachi G-3000 gas chromatograph, and HPLC was run on a JASCO 980 system instrument.

Plant Material Urginea maritima (L.) were collected from the plants garden, University of Shizuoka in Japan.

Extraction and Isolation The dried bulbs of *Urginea maritima* (2.5 kg) were extracted three times with MeOH under reflux. The methanol extract (315 g) was partitioned between diethyl ether and water. The water layer was passed through a Diaion HP-20 column and then after being passed MeOH, the MeOH elute was concentrated under reduced pressure. The residue (9.7 g) was chromatographed on a silica gel column with CHCl₃–MeOH (98:2–>8:2) to give thirteen fractions.

Fraction 1 (193 mg) was subjected to HPLC [YMC ODS-AQ ($20 \times 250 \text{ mm}$), CH₃CN-H₂O ($25 - 75 \rightarrow 40 - 60$), MeOH-H₂O ($40 - 60 \rightarrow 67.5 - 32.5$), 205 nm] to give 2 (11 mg), 3 (8 mg), 9 (7.5 mg) and 12 (36 mg). Fraction 2 (311 mg) to give 5 (6 mg), 6 (6.6 mg), 7 (17 mg) and 11 (29 mg). Fraction 3 (663 mg) to give 4 (20 mg) and 8 (41 mg). Fraction 4 (211 mg) to give 10 (24 mg), 13 (4 mg) and 14 (2.8 mg). Fraction 5 (130 mg) to give 17 (11 mg), 31 (3 mg) and 33 (3 mg). Fraction 8 (1.15 g) to give 28 (22 mg), 29 (9 mg), and 30 (5 mg). Fraction 9 (660 mg) to give 15 (13 mg), 16 (59 mg), 18 (66 mg), 19 (80 mg) and 32 (6.7 mg). Fraction 10 (167 mg) to give 2 (5 mg), 21 (7 mg), 25 (5.7 mg) and 26 (5 mg). Fraction 11 (817 mg) to give 1 (35 mg), 22 (6 mg), 24 (9 mg) and 27 (5 mg).

Compound **6**: Amorphous powder. $[\alpha]_{D}^{28} + 49.9^{\circ}$ (*c*=0.66, MeOH). UV λ_{max}^{MeOH} nm (log ε): 299 (3.54), 216 (*sh*). IR (KBr) cm⁻¹: 1717. FAB-MS *m/z*: 415 [M+H]⁺. HR-FAB-MS *m/z*: 415.2507 (Calcd for C₂₅H₃₅O₅: 415.2484). ¹H- and ¹³C- NMR: Tables 1 and 2.

Compound 14: Amorphous powder. $[\alpha]_{D}^{24} + 32.0^{\circ}$ (c=0.28, CHCl₃– MeOH 1:1). UV $\lambda_{max}^{CHCl3-MeOH1:1}$ nm (log ε): 298 (3.43), 243 (3.90). IR (KBr) cm⁻¹: 1721,1655. FAB-MS m/z: 399 [M+H]⁺. HR-FAB-MS m/z: 399.2197 (Calcd for C₂₄H₃₁O₅: 399.2171). ¹H-NMR (pyridine- d_5 at 35 °C): δ 2.24 (m, H-1), 2.54 (m, H-2), 2.62 (m, H-2), 3.27 (dt, H-1). Other data of ¹H- and ¹³C-NMR are in Tables 1 and 2.

Compound **17**: Amorphous powder. $[\alpha]_D^{26} + 110.3^{\circ} (c=1.07, \text{ MeOH})$. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm $(\log \varepsilon)$: 299 (3.66), 215 (*sh*). IR (KBr) cm⁻¹: 1715. FAB-MS *m/z*: 401 [M+H]⁺. HR-FAB-MS *m/z*: 401.2354 (Calcd for C₂₄H₃₃O₅: 401.2328). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **19**: Amorphous powder. $[\alpha]_{Da}^{2b} - 52.4^{\circ}$ (*c*=8.04, MeOH). UV λ_{max}^{MeOH} nm (log ε): 298 (3.60). IR (KBr) cm⁻¹: 1735, 1717. FAB-MS *m/z*: 605 [M+H]⁺. HR-FAB-MS *m/z*: 605.2944 (Calcd for C₃₂H₄₅O₁₁: 605.2962). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **22**: Amorphous powder. $[\alpha]_D^{26} - 83.4^{\circ}$ (*c*=0.6, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 298 (4.17), 204 (4.96). IR (KBr) cm⁻¹: 1735, 1718. FAB-MS *m/z*: 773 [M+Na]⁺. HR-FAB-MS *m/z*: 773.3346 (Calcd for C₃₈H₅₄O₁₅+ Na: 773.3360). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **23**: Amorphous powder. $[\alpha]_D^{26} - 94.5^{\circ}$ (*c*=2.5, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 299 (3.67). IR (KBr) cm⁻¹: 1718. FAB-MS *m/z*: 715 [M+ Na]⁺. HR-FAB-MS *m/z*: 715.3334 (Calcd for C₃₆H₅₂O₁₃+Na: 715.3306). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **24**: Amorphous powder. $[\alpha]_{D}^{26} - 71.1^{\circ}$ (*c*=1.0, MeOH). UV λ_{max}^{MeOH} nm (log ε): 298 (3.71). IR (KBr) cm⁻¹: 1735, 1718. FAB-MS *m/z*: 789 [M+Na]⁺. HR-FAB-MS *m/z*: 789.3325 (Calcd for C₃₈H₅₄O₁₆+Na: 789.3310). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **25**: Amorphous powder. $[\alpha]_{D}^{26} - 60.6^{\circ}$ (c=0.57, MeOH). UV λ_{\max}^{MeOH} nm (log ε): 298 (3.71). IR (KBr) cm⁻¹: 1735, 1718. FAB-MS m/z: 757 [M+Na]⁺. HR-FAB-MS m/z: 757.3414 (Calcd for C₃₈H₅₄O₁₄+Na: 757.3411). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **26**: Amorphous powder. $[\alpha]_{D}^{26}$ -67.3° (*c*=0.50, MeOH). UV λ_{max}^{MeOH} nm (log ε): 298 (3.70). IR (KBr) cm⁻¹: 1735, 1718. FAB-MS *m/z*: 757

 $[M+Na]^+$. HR-FAB-MS *m/z*: 757.3401 (Calcd for $C_{38}H_{54}O_{14}+Na$: 757.3411). ¹H- and ¹³C-NMR: Tables 1 and 2.

Compound **32**: Amorphous powder. $[\alpha]_D^{28} - 54.8^{\circ}$ (c=0.67, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 292 (sh), 278 (4.26), 219 (4.51), 204 (4.84). IR (KBr) cm⁻¹: 1655, 1600, 1510, 1458. CD [θ] (nm): -12175 (284), -8117 (270) ($c=0.5 \times 10^{-3}$ g/ml). FAB-MS m/z: 557 [M+Na]⁺. HR-FAB-MS m/z: 557.1996 (Calcd for C₂₇H₃₄O₁₁+Na: 557.1999). ¹H- and ¹³C-NMR: Tables 1 and 2.

Acid Hydrolysis of Compounds 19, 22—26 and 32 A solution of each compound (*ca.* 0.1 mg) in dioxane (4 drops) and 1% H_2SO_4 (4 drops) was heated at 100 °C for 1 h. After hydrolysis, this solution was passed through an Amberlite IRA-60E column and the elute was concentrated to give a residue. For sugar analysis the residue was reduced with NaBH₄ (*ca.* 1 mg) for 1 h at room temperature. The reaction mixture was passed through an Amberlite IR-120B column and the elute was concentrated to dryness. Boric acid was removed by co-distillation with MeOH, and the residue was acetylated with acetic anhydride and pyridine (4 drops each) at room temperature for one night. The reagents were evaporated off *in vacuo*. From each glycoside, glucitol acetate and/or rhamnitol acetate were detected by GC [conditions: column, Supelco SP-2380 capillary column 0.25 mm×30 m, column temperature 250 °C, carrier gas N₂, *t*_R (min); glucitol acetate 12.32, rhamnitol acetate 5.36].

Acknowledgements We thank Dr. Mitsuo Uchida, the staff of the Central Analytical Laboratory of this University for measurement of mass spectra.

References and Notes

- Kopp B., Krenn L., Draxler M., Hoyer A., Terkola R., Vallaster P., Robien W., *Phytochemistry*, 42, 513—522 (1996).
- Mitsuhashi H., Tanaka O., Nozoe S., Nagai M. (ed.), "Chemistry of Organic Natural Products," 4th ed., Nankoudou Press, Tokyo, 1994, pp. 168—174.
- Schoenfeld W., Weiland J., Lindig C., Masnyk M., Kabat M. M., Kurek A., Wicha J., Repke K. R. H., *Naunyn Schmiedeberg's Arch. Pharmacol.*, 329, 414–426 (1985).
- Majinda R. R. T., Waigh R. D., Waterman P. G., *Planta Med.*, 63, 188–190 (1997).
- Kopp B., Unterluggauer M., Robien W., Kubelka W., *Planta Med.*, 56, 193–197 (1990).
- Krenn L., Kopp B., Deim A., Robien W., Kubelka W., *Planta Med.*, 60, 63–69 (1994).
- Krishna Rao R. V., Rangaswami S., Tetrahedron Lett., 1967, 4563– 4565.
- 8) Krenn L., Jambrits M., Kopp B., Planta Med., 54, 227-232 (1988).
- Tanase T., Nagatsu A., Murakami N., Nagai S., Ueda T., Sakakibara J., Ando H., Hotta Y., Takeya K., Asano M., *Chem. Pharm. Bull.*, 42, 2256–2262 (1994).
- Verbiscar A. J., Patel J., Banigan T. F., Schatz R. A., J. Agric. Food Chem., 34, 973—979 (1986).
- Shimada K., Umezawa E., Nambara T., Kupchan S. M., *Chem. Pharm. Bull.*, 27, 3111–3114 (1979).
- 12) Jha S., Sen S., *Phytochemistry*, **20**, 524–526 (1981).
- Lichti H., Niklaus P., von Wartburg A., *Helv. Chim. Acta*, 56, 2083– 2087 (1973).
- 14) Gorlich B., Durr F. H., Wolter J., Justus Liebigs Ann. Chem., 753, 116—134 (1971).
- 15) Goerlich B., Planta Med., 23, 39-63 (1973).
- 16) Kupchan S. M., Moniot J. L., Sigel C. W., Hemingway R. J., J. Org. Chem., 36, 2611—2616 (1971).
- 17) von Gsell L., Tamm Ch., Helv. Chim. Acta, 52, 551-568 (1969).
- Uchiyama T., Miyase T., Ueno A., Usmanghani K., *Phytochemistry*, 30, 655–657 (1991).