Limonoids from Citrus sudachi

Hiroyuki Nakagawa, Hongquan Duan, and Yoshihisa Takaishi*

Faculty of Pharmaceutical Sciences, University of Tokushima, Shoumachi 1–78, Tokushima 770–8505, Japan. Received December 27, 2000; accepted February 28, 2001

Four new limonoid derivatives, 1-O-methylichangensin (1), sudachinoid A (2), B (3), and C (4) were isolated from the seeds of *Citrus sudachi*, together with the known compounds ichangensin, obacunone, obacunoic acid and limonin, and the structures of the new compounds were elucidated based on spectroscopic and chemical evidence.

Key words Citrus sudachi; Rutaceae; limonoid; sudachinoid

Citrus sudachi (Rutaceae) is an evergreen tree that is found mainly in Tokushima prefecture in Japan. The immature fruits are often used for cooking. Several limonoids and their glucosides are found in its seeds.¹⁾

Recently limonoids have attracted much attention because of the marked insect antifeedant and growth regulating (IGR) activities of azadirachtin and related highly oxidized C-seco limonoids from the neem tree *Azadirachta indica* and the chinaberry tree *Melia azedarach*.²⁾ Limonoids also possess anticancer activity. Inhibition of chemically induced carcinogenesis associated with the limonoid aglycones has been summarized by Lam *et al*.³⁾

In this paper, we report the isolation and structural determination of four new limonoids, 1-O-methylichangensin (1), sudachinoid A (2), B (3), and C (4), as well as four known limonoids (5–8) from the methanol extract of the seeds of *C. sudachi*.

Compound 1 was determined to have a molecular formula of $C_{26}H_{34}O_7$ based on its high-resolution (HR) FAB-mass spectrum, and the IR spectrum showed a lactone carbonyl band (1745 cm^{-1}) and a ketone carbonyl band (1709 cm^{-1}) . The ¹H-NMR spectrum of 1 showed six methyl groups [$\delta_{\rm H}$] 1.12, 1.20, 1.21, 1.25, 1.28, 1.33 (each 3H, s)], one methoxyl group [$\delta_{\rm H}$ 3.25 (3H, s)], one furan ring [$\delta_{\rm H}$ 6.33, 7.38, 7.41 (each 1H, s)], and two methine protons [$\delta_{\rm H}$ 4.56, 5.60 (each 1H, s)] attached to the oxygen function. The ¹³C-NMR spectrum (Table 1) of 1 indicated the presence of two carbonyl carbons [$\delta_{\rm C}$ 168.0, 209.0], one methoxyl [$\delta_{\rm C}$ 48.9], and one furan ring [$\delta_{\rm C}$ 110.0, 120.7, 141.2, 142.9]. In addition, there were six methyl groups, two oxygenated methines, three quaternary carbons attached to the oxygen function, three methylenes, two methine, and three quaternary carbons. Based on the above observations, compound 1 was assumed to be a limonoid-type compound which had previously been isolated from Rutaceae plants.²⁾ The ¹³C-NMR spectrum of 1 was very similar to that of ichangensin⁴) except for the presence of one methoxy in 1. In the HMBC spectrum, the methyl proton signal at $\delta_{\rm H}$ 3.25 (OCH₃) was correlated with the carbon signal at $\delta_{\rm C}$ 108.4 (C-1), and the proton signal at $\delta_{\rm H}$ 1.20 (H-25) was correlated with the carbon signal at $\delta_{\rm C}$ 108.4 (C-1), 53.9 (C-5), and 40.5 (C-9). These facts indicated that the methoxy group was located at C-1. In the NOESY spectrum, the proton signal at $\delta_{\rm H}$ 1.72 (H-11) was correlated with the proton signals at $\delta_{\rm H}$ 1.33 (H-24) and 1.20 (H-25). Thus, the relative stereochemistry of methoxyl group was elucidated as α -configuration. The structure of 1 was determined to be as shown (Fig. 1).

Compound **2** was assigned the molecular formula as $C_{26}H_{34}O_9$ based on HR-FAB-MS of its acetate (**2a**), and the IR spectrum showed a lactone carbonyl band (1749 cm⁻¹) and a ketone carbonyl band (1701 cm⁻¹). Its ¹H-NMR spectrum showed six methyl groups [$\delta_{\rm H}$ 1.12, 1.19, 1.20, 1.25, 1.29, 1.33 (each 3H, s)], one methoxyl group [$\delta_{\rm H}$ 3.26 (3H, s)], one olefinic proton [$\delta_{\rm H}$ 7.30 (1H, s)], and two methines attached to the oxygen function [$\delta_{\rm H}$ 4.65, 5.53 (each 1H, s)].

The ¹³C-NMR spectrum (Table 1) of 2 contained resonances corresponding to three carbonyl carbons [$\delta_{\rm C}$ 168.1, 169.9, 209.1], one methoxyl [$\delta_{\rm C}$ 48.0], one double bond suggested to be the conjugated enone [$\delta_{\rm C}$ 135.0, 151.0], two acetal carbon signals [$\delta_{\rm C}$ 98.0, 108.5], and two oxygenated methine carbon signals [$\delta_{\rm C}$ 55.9, 76.1]. Compound **2** also had a limonid-type framework, and its ¹³C-NMR spectral data (Table 1) were very similar to those of 1 except for a furan ring moiety. In contrast to 1, 2 showed signals based on an α substituted α , β -unsaturated butyrolactol which was observed in limonexic acid.⁵⁾ In the HMBC spectrum of **2**, the proton signal at $\delta_{\rm H}$ 5.53 (H-17) was correlated with the carbon signals at $\delta_{\rm C}$ 135.0 (C-18), 169.9 (C-19), and 151.0 (C-20), and the proton signal at $\delta_{\rm H}$ 7.30 (H-20) was correlated with the carbon signal at $\delta_{\rm C}$ 169.9 (C-19). On the other hand, the proton signal at $\delta_{\rm H}$ 7.30 (H-20) showed NOE correlation with the proton signals at $\delta_{\rm H}$ 1.19 (H-27) and 6.36 (H-21), the proton signal at $\delta_{\rm H}$ 1.27 (H-12 α) was correlated with the proton signal at $\delta_{\rm H}$ 1.19 (H-27), and the proton signal at $\delta_{\rm H}$ 1.92 (H-12 β) was correlated with the proton signal at $\delta_{\rm H}$ 5.53 (H-17). Furthermore, acetylation of 2 in the usual way gave monoacetate 2a. Therefore, the presence of an α -substituted α,β -unsaturated butyrolactol with a 17 α -configuration was determined. Thus, the structure of 2 was determined to be as shown (Fig. 1).

Compound **3** was assigned the molecular formula as $C_{25}H_{32}O_9$ based on HR-FAB-MS of its acetate (**3a**).

It was also a limonoid derivative, and its ¹H- and ¹³C-NMR spectral data were very similar to those of compound 2, except for the presence of a methoxyl group in compound 2 (Table 1). Acetylation of 3 gave monoacetate 3a, which also supported the presence of a butyrolactol group. The 2D NMR spectral data of 3 suggested that sudachinoid B was 1-O-demethylsudachinoid A.

The IR spectrum of **4**, $C_{26}H_{30}O_9$, showed a lactone carbonyl band (1765 cm⁻¹) and a ketone carbonyl band (1702 cm⁻¹). The ¹H-NMR spectrum of **4** showed five methyl groups [δ_H 1.13, 1.24, 1.47 (each 3H, s), 1.52 (6H, s)], two double bonds [δ_H 6.00, 6.58 (each 1H, d, *J*=11.7 Hz); δ_H

Table 1. ¹H- and ¹³C-NMR Spectral Data (δ) of Compounds 1—4

Position	1		2		3		4	
	H (<i>J</i> : Hz)	С						
1	_	108.4	_	108.5	_	108.3	6.58 (d, 11.7)	156.8
2	—		—	_	—		6.00 (d, 11.7)	123.1
3	_						_	167.2
4	_	80.0	_	80.0	_	80.0	_	84.2
5	2.68 (br d, 6.3)	53.9	2.63 (br d, 5.9)	53.5	2.66 (br d, 6.4)	53.8	2.64 (dd, 14.0, 4.6)	57.4
6	β 2.66 (br d, 6.6)	36.9	β 2.65 (br d, 7.6)	37.0	β 2.64 (br d, 7.4)	37.0	β 2.99 (t, 14.0)	39.9
	α 2.29 (dd, 6.8, 6.6)		α 2.27 (dd, 7.6, 5.9)		α 2.29 (dd, 7.4, 6.4)		α 2.31 (dd, 13.9, 4.7)	
7	_	209.0	_	209.1	_	209.0	_	207.5
8	_	50.2	_	49.7	_	49.7	_	53.2
9	3.00 (t, 8.6)	40.5	2.96 (dd, 11.2, 6.4)	40.2	2.97 (dd, 11.3, 6.3)	40.4	2.15 (s)	49.1
10	_	50.1	—	50.1	—	50.2	—	43.2
11	1.72 (2H, m)	16.5	1.74 (2H, m)	16.2	1.75 (2H, m)	16.2	1.96 (2H, br d, 7.5)	19.5
12	β 1.64 (m)	27.5	β 1.92 (m)	25.9	β 1.95 (m)	25.9	β 2.13 (br d, 2.4)	32.3
	α 1.45 (m)		α 1.27 (m)		α 1.22 (m)		α 1.67 (m)	
13		39.8		40.8	_	40.8		37.9
14	_	69.3	_	69.8	_	69.8	_	65.0
15	4.56 (s)	55.9	4.65 (s)	55.9	4.70 (s)	56.0	3.61 (s)	52.8
16	—	168.0	_	168.1	—	169.8	—	165.7
17	5.60 (s)	78.1	5.53 (s)	76.1	5.54 (s)	76.0	5.42 (s)	78.4
18	—	120.7	_	135.0	—	134.0	—	162.9
19	7.41 (s)	141.2	_	169.9	_	169.7	6.04 (s)	97.8
20	6.33 (s)	110.0	7.30 (s)	151.0	7.35 (s)	151.5	6.31 (s)	123.3
21	7.38 (s)	142.9	6.36 (s)	98.0	6.19 (s)	97.5	_	169.2
22	1.25 (s)	30.8	1.25 (s)	30.9	1.25 (s)	31.0	1.47 (s)	32.1
23	1.12 (s)	23.6	1.12 (s)	23.7	1.12 (s)	23.8	1.52 (s)	26.9
24	1.33 (s)	17.9	1.33 (s)	18.0	1.36 (s)	18.7	1.52 (s)	16.6
25	1.20 (s)	15.1	1.20 (s)	14.9	1.20 (s)	14.9	1.24 (s)	16.8
26	1.28 (s)	19.3	1.29 (s)	19.8	1.31 (s)	19.7	1.13 (s)	21.6
27	1.21 (s)	19.6	1.19 (s)	18.9	1.18 (s)	18.7		
OMe	3.25 (s)	48.9	3.26 (s)	48.0	—	_		

6.31 (s)], two methine protons attached to the oxygen function [$\delta_{\rm H}$ 3.61, 5.42 (each 1H, s)], and one hemiacetal proton $[\delta_{\rm H} 6.04 \text{ (s)}]$. The ¹³C-NMR spectrum of 4 contained resonances corresponding to four carbonyl carbons [$\delta_{\rm C}$ 165.7, 167.2, 169.2, 207.5], two double bonds [$\delta_{\rm C}$ 123.1, 123.3, 156.8, 162.9], one hemiacetal carbon signal at $\delta_{\rm C}$ 97.8, and two oxygenated methine carbon signals [$\delta_{\rm C}$ 52.8, 78.4]. A comparison of the ¹³C-NMR spectral data of 4 and obacunone⁶ (**6**) showed almost the same chemical shift values, except for a furan ring moiety in 6. In the HMBC spectrum of 4, the proton signals at $\delta_{\rm H}$ 6.04 (H-19) and 6.31 (H-20) were correlated with the carbon signal at $\delta_{\rm C}$ 169.2 (C-21). This fact and the chemical shifts of C-20 and C-18 [$\delta_{\rm C}$ 123.3 (d), 162.9 (s)] confirmed the presence of a β -substituted α , β unsaturated butyrolactol. Moreover, the proton signal at $\delta_{
m H}$ 5.42 (H-17) was correlated with the signals at $\delta_{\rm C}$ 37.9 (C-13), 65.0 (C-14), 162.9 (C-18), 123.3 (C-20), and 21.6 (C-26). Thus, the unsaturated butyrolactol moiety was located at C-17. The structure of 4 was determined to be as shown. Compounds 5, 6, 7, and 8 were identified to be ichangensin, obacunone, obacunoic acid, and limonin, respectively.

Experimental

NMR experiments were run on a Bruker ARX-400 instrument. ¹H-NMR, 400 MHz; ¹³C-NMR, 100 MHz, both used tetramethylsilane as internal standard. MS were obtained on a JEOL JMSD-300 instrument. Chromatography column, Silica gel 60 (Merck), TOYOPEARL (HW-40c, TOSOH) and Sephadex LH-20 (Pharmacia); HPLC, JASCO Gulliver Series, PU-986/987 (pump), RI930 and UV970 (detector). Column type, LiChrosorb Si 60 HPLC (Hibar RT 250-25, 20.0×250 mm, Kanto Chemical Co., Inc.), ODS (Hibar RT 250-25, RP-18 (7 μ m), Kanto Chemical Co., Inc.). IR spectra were recorded on a 1720 Infrared Fourier Transform spectrometer (Perkin-Elmer), UV spectra on a UV 2100 UV-VIS recording spectrometer (Shi-madzu). Optical rotation were measured with a JASCO DIP-370 digital polarimeter.

Plant Material The seeds of *Citrus sudachi* HORT. ex TANAKA were collected in 1999 from Kamiyama, Tokushima prefecture in Japan.

Extraction and Isolation The seeds (4.3 kg) of *Citrus sudachi* were crushed and extracted with MeOH (151×3) at 60 °C for 6 h. The MeOH extracts were concentrated *in vacuo* to give a residue (900 g), which was partitioned between EtOAc and H₂O. The EtOAc layer was concentrated to give a residue (286 g), which was chromatographed on silica gel column [1.2 kg, 11×100 cm]. The column was eluted with solvent of increasing polarity (hexane–EtOAc, EtOAc, EtOAc–MeOH, and MeOH) to give 14 major fractions (frs. 1—14).

Fraction 5 (4.9 g) was chromatographed on silica gel with CHCl₃–MeOH (95:5) to give 4 fractions (frs. 5.1–5.4). Fraction 5.3 (4.6 g) was chromatographed on TOYOPEARL (CHCl₃–MeOH, 1:1) to give 6 fractions (frs. 5.3.1–5.3.6). Fraction 5.3.4 was chromatographed by a medium-pressure liquid chromatography (MPLC) on a silica column eluting with CHCl₃–MeOH (98:2) to give 673 mg of 1-*o*-Methylichangensin (1), and other 5

fractions (frs. 5.3.4.1-5.3.4.5). Fraction 5.3.4.3 was separated by HPLC (hexane-AcOEt, 2:3, 3:2) give 4 fractions (frs. 5.3.4.3.1-5.3.4.3.4). Fractions were monitored by TLC (silica gel, CHCl₃-MeOH, 95:5) and those giving identical spots were combined and separated by ODS (MeOH-H₂O, 8:2) to give 12.5 mg of Sudachinoid A (2), and other 2 fractions. Fraction 5.3.4.4 was separated by ODS (MeOH-H2O, 8:2) to give 12.0 mg of Sudachinoid B (3), and other 3 fractions. Fraction 7 (13.0 g) was chromatographed on silica gel with CHCl3-MeOH (99:1-8:2) to give 5 fractions (frs. 7.1-7.5). Fraction 7.1 was chromatographed on Sephadex LH-20 with MeOH to give 3 fractions. (frs. 7.1.1-7.1.3). Fraction 7.1.2 was chromatographed on using HPLC (CHCl₃-MeOH, 97:3) to give 3 fractions. (frs. 7.1.2.1-7.1.2.3). Fraction 7.1.2.3 was chromatographed on using GPC (MeOH) to give 3.8 mg of Sudachinoid C (4). Fraction 7.1.2.1 was chromatographed using GPC (CHCl₃) to give 196 mg of obacunone (6). Fraction 7.2 was separated by LH-20 (MeOH), HPLC (CHCl₃-MeOH, 97:3) and ODS (MeOH-H₂O, 9:1) to give 1 (211 mg), 90 mg of ichangensin (5), 32 mg of 6. Fraction 11 was chromatographed by MPLC eluting with CHCl₃-MeOH (97:3) to give 384 mg of isoobacunoic acid (7), 492 mg of limonin (8).

Comopound 1: Colorless needle, $[\alpha]_{25}^{25}$ +20.0° (*c*=1.2, MeOH). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3441, 2964, 1745, 1709, 1631, 1454, 1385, 1272, 1155, 1038, 925, 877, 755, 607. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 207 (3.67). ¹H-NMR (CDCl₃): see Table 1. ¹³C-NMR (CDCl₃): see Table 1. HR-FAB-MS *m/z*: 481.2235 [M+Na]⁺. C₂₆H₃₄O₇Na required 481.2202.

Comopound 2: Colorless oil, $[\alpha]_{25}^{25} + 51.1^{\circ}$ (c=0.6, MeOH). IR v_{max}^{KBr} cm⁻¹: 3445, 2925, 1749, 1701, 1635, 1541, 1457, 1120, 1027. UV λ_{max}^{MeOH} nm (log ε): 206 (3.95). ¹H-NMR (CDCl₃): see Table 1. ¹³C-NMR (CDCl₃): see Table 1. HR-FAB-MS (**2a**) m/z: 555.2115 [M+Na]⁺. C₂₈H₃₆O₁₀Na required 555.2217.

Comopound **3**: Colorless oil, $[\alpha]_D^{25} + 18.5^{\circ}$ (c=0.7, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁺¹: 3435, 1782, 1623, 1455, 1202, 1127, 1037, 908, 757. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm ($\log \varepsilon$): 207 (3.91). ¹H-NMR (CDCl₃): see Table 1. ¹³C-NMR (CDCl₃): see Table 1. HR-FAB-MS (**3a**) m/z: 541.2092 [M+Na]⁺. C₂₇H₃₄O₁₀Na required 541.2050.

Compound 4: Colorless oil, $[\alpha]_D^{25} -31.7^{\circ}$ (*c*=0.4, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3422, 2926, 2362, 1765, 1702, 1458, 1395, 1282, 1121, 1044. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 201 (4.52). ¹H-NMR (CDCl₃): see Table 1. ¹³C-NMR: (CDCl₃): see Table 1. HR-FAB-MS *m/z*: 509.1762 [M+Na]⁺. C₂₆H₃₀O₉Na required 509.1788.

References

- Nakasugi T., Nakashima M., Komai K., Natural Medicines, 54, 26– 28 (2000).
- Donald E. C., Opender K., Murray B. I., Geoffrey G. E. S., *Phyto-chemistry*, 31, 377–394 (1992).
- Lam L. K. T., Zhang J., Hasegawa S., Schut H. A. J., ACS Symposium Series, American Chemical Society, Washington D.C., 546, 209–219 (1993).
- Raymond D. B., Zareb H., Hasegawa S., *Phytochemistry*, 27, 1543– 1545 (1988).
- Sook-Young L., Morita H., Takeya K., Itokawa H., Fukaya H., Natural Medicines, 53, 255–258 (1999).
- Dreyer D. L., Bennett R. D., Basa S. C., *Tetrahedron*, **32**, 2367–2373 (1976).