Triterpenoid Saponins from Berries of Hedera colchica

Vakhtang Mshvildadze,^{*a*} Riad Elias,^{*,*b*} Robert Faure,^{*c*} Laurent Debrauwer,^{*d*} Genri Dekanosidze,^{*a*} Etheri Kemertelidze,^{*a*} and Guy Balansard^{*b*}

Institute of Pharmacochemistry, Academy of Sciences of Georgia,^a 36, St. P. Sarajishvili, 380059 Tbilisi, Georgia, Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de la Méditeranée,^b 27 Boulevard Jean Moulin, 13385 Marseille, cedex 5, France, ESA 6009, Université d'Aix-Marseille III,^c Avenue Escadrille Normandie Niemen, 13397 Marseille, cedex 20, France, and INRA Centre de Recherche de Toulouse, Laboratoire des Xénobiotiques,^d 180, Chemin de Tournefeuille, BP 3, 31931 Toulouse, France. Received October 16, 2000; accepted February 10, 2001

Fifteen triterpenoid saponins were isolated from the berries of *Hedera colchica* and their structures established on the basis of chemical and spectroscopic evidence. Among them, two are new compounds: colchiside A (3) and colchiside B (15) and four are described for the first time in the berries of *Hedera colchica* (compounds 1, 8, 9 and 11).

Key words Hedera colchica; Araliaceae; triterpenoid saponin; NMR; MS; colchiside

Hedera colchica K. KOCH. (Araliaceae), a plant mainly growing in West Georgia, was used in traditional medicine as a bronchospasmolytic, secretolytic and antiinflammatory remedy.^{1,2)} The occurrence of triterpenoid saponins in the leaves of this plant has been previously reported.^{3a,b,4)} In this paper, we describe the isolation and structure elucidation of fifteen saponins from the berries of *Hedera colchica* (Fig. 1). Saponins **3** and **15**, respectively named colchisides A and B were new compounds, while saponins **1**, **8**, **9** and **11** were isolated for the first time from the berries of this plant. The *n*-butanolic extract of the berries containing crude saponins was subjected to repeated chromatography affording saponins **1**—**15** (see experimental part).

Compounds 8 and 11, which were obtained for the first time in the genus Hedera, were identified as staunoside A^{5} and scheffleraside II⁶ respectively, while triterpenoid saponins 1 and 9, identified as saponin 1⁷ and saponin I,⁸ were isolated for the first time from the berries of *Hedera colchica*. The other saponins 2, 4, 5, 6, 7, 10, 12, 13 and 14 were identified as saponin B,⁸ saponin 2,⁷ α -hederin,⁹ saponin 4,⁷ heteroside E2,¹⁰ heteroside I,¹¹ hederasaponin D,¹² hederasaponin B^{12,13} and hederasaponin C,^{13,14} respectively.

Colchiside A (3) was assigned the molecular formula $C_{35}H_{56}O_8$ (FAB-MS (m/z): 603 [M–H]⁻). Acid hydrolysis of 3 yielded xylose as the sugar and hederagenin as the aglycone. The ¹³C-NMR spectrum exhibited one anomeric carbon at δ 106. The resonances of C-3 at δ 83 and C-28 at δ 182 reflected the fact that the sugar chain was linked to C-3. Moreover, the ¹³C chemical shifts of the xylose moiety were indicative of a β -D-xylopyranosyl.^{15,16)} Thus 3 was a monodesmoside and its structure was elucidated as 3-O-(β -D-xylopyranosyl)-hederagenin.

The FAB-MS of colchiside B (15) gave the molecular ion at m/z 1247 [M–H]⁻ in agreement with a molecular formula of C₆₀H₉₆O₂₇. TLC analysis of the acid hydrolysis of 15 yielded the same sugars (glucose, rhamnose, glucuronic acid) and aglycone (oleanolic acid) as 11. The ¹³C-NMR spectrum of 15 exhibited five anomeric carbons (Table 1) located at δ 95.76, 102.72, 102.94, 104.27 and 106.83 ppm. Moreover, the ¹³C-NMR signal due to the C-28 genin moiety indicated esterification of the carboxyl group with a sugar, while the deshielded position of C-3 reflected a substitution by a sugar chain. Saponin **15** was consequently a bidesmoside. On alkaline hydrolysis **15** gave a prosapogenin. Acid hydrolysis of this prosapogenin yielded glucuronic acid and rhamnose as the sugars. Further analysis of the ¹³C-NMR data showed that the sugar chain linked at C-28 was identical for saponins **11** and **15**. Moreover, the downfield shift (83.6 ppm) of C-3 in the glucuronic acid moiety was indicative of a substitution at C-3 by a rhamnose unit. Indeed, these ¹³C-NMR results were in perfect agreement with the literature data for the sugar chain linked at C-28¹³ and for the sugar arrangement at C-3¹⁴ in which C-3 of glucuronic acid was found at δ 83.

Moreover, the values for the carboxylic group of the glucuronic part were found for compounds **11** and **15** at δ 176. In previously reported data,¹⁴⁾ the carboxylic signals res-

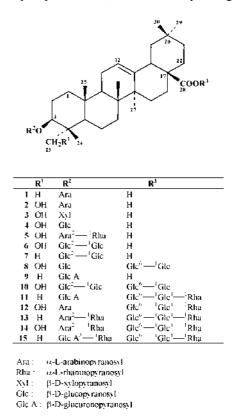


Fig. 1. List of Triterpenoid Glycosides Isolated from the Berries of *Hedera colchica*

Table 1. ¹³C-NMR Data for Sugar Moieties of Saponins 1, 3, 8, 9, 11 and 15 (CD₃OD)

1		3		8		9		11		15	
Sugar on C-3 ^{<i>a</i>})											
ara 1	107.08	xyl 1	106.30	glc 1	105.72	glc A1	106.97	glc A1	106.96	glc A1	106.8
2	72.84	2	75.55	2	75.62	2	76.52	2	76.55	2	75.3
3	74.34	3	78.14	3	78.33	3	77.70	3	77.72	3	83.5
4	69.46	4	71.26	4	71.53	4	73.22	4	73.26	4	71.8
5	66.29	5	66.84	5	77.72	5	75.32	5	75.32	5	76.7
				6	62.72	6	172.91	6	175.97	6	176.0
										rham 1	102.7
										2	72.2
										3	72.3
										4	74.0
										5	69.9
										6	17.8
Sugar on	C-28 ^a)										
U				glc 1	95.75			glc 1	95.77	glc 1	95.3
				2	73.83			2	73.86	2	73.8
				3	79.79			3	79.59	3	79.5
				4	70.94			4	70.99	4	70.9
				5	78.16^{b}			5	78.06	5	78.0
				6	69.49			6	69.42	6	69.4
				glc 1	104.63			glc 1	104.28	glc 1	104.2
				2	75.12			2	75.32	2	75.3
				3	$77.99^{b)}$			3	76.84	3	76.8
				4	71.53			4	78.21	4	78.1
				5	77.81			5	76.74	5	76.7
				6	62.72			6	61.88	6	61.8
								rham 1	102.96	rham 1	102.9
								2	72.24	2	72.2
								3	72.44	3	72.4
								4	73.78	4	73.7
								5	70.67	5	70.6
								6	17.85	6	17.8

a) ara= α -L-arabinopyranosyl; xyl= β -D-xylopyranosyl; glc= β -D-glucopyranosyl; glc A= β -D-glucuronopyranosyl; rham= α -L-rhamnopyranosyl. b) Assignments may be reversed.

onated between 172 and 176 ppm depending on the pH of the saponin solutions. It can be concluded that **15** was 3-*O*-[- α -L-rhamnopyranosyl-(1 \rightarrow 3)- β -D-glucuronopyranosyl]-28-*O*-[- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl]-oleanolate.

Experimental

FAB-MS were obtained from a Nermag R-10-10H mass spectrometer in the negative ion mode. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AMX-400 spectrometer and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as the internal standard. Melting points were determined on an Electrothermal IA 9300 apparatus. Optical rotations $[\alpha]_D^{25}$ were measured on a Perkin-Elmer model 341 Orot polarimeter. TLC analyses of saponins and sugars were performed on precoated silica gel plates (Kiesegel 60F254, Merck) using the following solvent systems: CHCl₃-MeOH-H₂O (26:14:3) [system 1]; *n*-BuOH-HOAc-H₂O (4:1: 5) [system 2]; CHCl₃-MeOH (20:1) [system 3]; CH₂Cl₂-MeOH-H₂O (50:25:5) [system 4]. Spots were detected by spraying the plates with phosphoric acid naphthoresorcinol for sugars and H₂SO₄ for saponines and genins followed by heating at 110 °C.

Extraction and Separation Plant material was collected in the Bagdathi region of Georgia (January 1996) and dried in the shade. A voucher specimen is kept in the Department of Pharmacobotanic, Institute of Pharmacochemistry, Tbilisi, Georgia (berries No. 80197). Crushed berries (720 g) were extracted with MeOH–H₂O (80:20). After concentration, the aqueous layer was treated with CHCl₃, then with BuOH to obtain a crude extract of saponins. The BuOH extract (146 g) was subjected to colum chromatography (CC) on silica gel (0.04–0.063 mm, Merck) eluting with CHCl₃– MeOH–H₂O (26:14:3) to afford 3 fractions. Fraction 1 subjected to repeated CC, eluting with CHCl₃–MeOH (from 9:1 to 4:1) yielded 1 (11 mg), 2 (80 mg), 3 (51 mg), 4 (600 mg), 5 (1.0 g) and a mixture of 6 and 7 with other unidentified minor compounds. Saponins 6 and 7 were purified by LPC on RP18 (15—25 μ m, Merck), eluting with 80% MeOH to give 6 (45 mg) and 7 (1.0 g). Fraction 2 submitted to silica gel CC afforded saponin 14 (600 mg) and a mixture which treated by repeated CC on polyamide (SC6 0.07, Macherey-Najel) eluting with a gradient of MeOH in H₂O (from 10 to 65%) yielded 8 (75 mg), 9 (22 mg), 10 (57 mg), 12 (300 mg) and 13 (110 mg). Fraction 3 was chromatographied on a silica gel column eluting with CHCl₃–MeOH–H₂O (55:40:10), then subjected to repeated purification on a polyamide column (MeOH from 30 to 50%) to give 11 (35 mg) and colchiside B (15) (100 mg).

Acid Hydrolysis of 3 and 15 The saponin (3 mg) was heated with aqueous 10% HCl (3 ml) in a sealed tube at 100 °C for 4 h. The sapogenin was extracted with Et_2O ; then the aqueous layer was neutralized with N,Ndioctylmethylamine (10% in CHCl₃) and dried. The sapogenin and sugars were identified by TLC analysis with authentic samples in systems 3 and 4, respectively.

Alkaline Hydrolysis of 3 and 15 The saponin (5 mg) in 5% aqueous KOH (5 ml) was heated at 100 °C in a sealed tube for 90 min. After neutralization with 10% HCl (pH=5) the prosapogenin was extracted with BuOH. TLC analysis was performed using systems 1 and 2.

Colchiside A (3): White powder; Rf=0.87 (in system 1). $[\alpha]_D^{25}$ =+12.6° (MeOH). Neg. FAB-MS (m/z): 603 $[M-H]^-$ (Calcd for $C_{35}H_{56}O_8$). ¹³C-NMR data for aglycone part (CD₃OD): 39.52 (C-1), 26.31 (C-2), 83.45 (C-3), 43.90 (C-4), 49.03 (C-5), 18.95 (C-6), 33.80 (C-7), 40.60 (C-8), 48.24 (C-9), 37.73 (C-10), 24.15 (C-11), 123.70 (C-12), 145.28 (C-13), 43.00 (C-14), 28.85 (C-15), 24.67 (C-16), 47.70 (C-17), 42.80 (C-18), 47.35 (C-19), 31.60 (C-20), 34.98 (C-21), 33.50 (C-22), 65.02 (C-23), 13.51 (C-24), 16.49 (C-25), 17.87 (C-26), 26.57 (C-27), 182.15 (C-28), 33.63 (C-29), 24.07 (C-30). For sugars see Table 1.

Colchiside B (15): White powder; Rf=0.12 (in system 1); mp 180 °C; $[\alpha]_D^{25}$ =+15° (MeOH). Neg. FAB-MS (m/z): 1247 [M-H]⁻ (Calcd for C₆₀H₉₆O₂₇). 1101 [(M-H)-146]⁻; 777 [(M-H)-146-2×162]⁻; ¹³C-NMR data for aglycone part (CD₃OD): 39.8 (C-1), 26.9 (C-2), 91.2 (C-3), 40.73 (C-4), 57.02 (C-5), 17.9 (C-6), 33.28 (C-7), 40.19 (C-8), 48.81 (C-9), 37.92 (C-10), 24.59 (C-11), 123.85 (C-12), 144.85 (C-13), 42.94 (C-14), 28.95 (C-15), 24.04 (C-16), 48.07 (C-17), 42.55 (C-18), 47.25 (C-19), 31.57 (C-20), 34.91 (C-21), 33.95 (C-22), 28.54 (C-23), 17.05 (C-24), 16.13 (C-25), 17.87 (C-26), 26.34 (C-27), 178.10 (C-28), 33.52 (C-29), 24.15 (C-30). For sugars see Table 1.

Acknowledgements This work was supported by the INTAS program (project No. 97-0491). We wish to thank Mr Gilbert BOUDON for his technical assistance.

References

- 1) Sakartvelos Flora, Metsniereba, Tbilisi, 1984, IX, 124.
- Rastitelnie, Resursi SSSR, Nauka, Leningrad Fam. Rutaceae-Elaegnaceae, 1988, 4, 62.
- a) Dekanosidze G. E., Pkheidze R. A., Gorovits T., Kemertelidze E. P., *Khim. Prir. Soedi.*, 4, 484–485 (1970); b) Dekanosidze G. E., Djikia O. D., Vulgalter M. M., Kemertelidze E. P., *ibid.*, 6, 747–749 (1990).
- Mshvildadze V. D., Dekanosidze G. E., Kemertelidze E. P., Shashkof A. S., *Bioorganischeskaia Chimia*, 62, 1001–1007 (1993).
- 5) Wang H. B., Mayer R., Ruecker G., Phytochemistry, 33, 1469 (1993).

- 6) Jiang Q. P., Xiao Z. Y., West China J. Pharm Sci., 5, 133 (1990).
- 7) Hostettmann K., Helv. Chim. Acta, 63, 606-609 (1980).
- Kizu H., Kitayama S., Nakatani F., Tomimori T., Namba T., Chem. Pharm. Bull., 33, 3324—3329 (1985).
- 9) Haar V. D., Ber. Deutsch. Chem., 54, 3142-3149 (1921).
- Loloïko A. A., Grishkovets V. I., Shashkov A. S., Chirva V. I., *Khim. Prir. Soedi.*, 5, 721–726 (1988).
- Grishkovets V. I., Loloiko A. A., Shashkov A. S., Chirva V. I., *Khim. Prir. Soedi.*, 6, 779–783 (1984).
- 12) Tschesche R., Schmidt W., Wulff Gr., Zhur. Naturforsch., 20, 708–709 (1965).
- Elias R., Diaz-Lanza A. M., Vidal-Ollivier E., Balansard G., Faure R., Babadjamian A., J. Nat. Prod., 54, 98–103 (1991).
- Crespin F., Ollivier E., Lavaud C., Babadjamian Faure R., Debrauwer L., Balansard G., *Phytochemistry*, 33, 657–661 (1993).
- Breitmaier E., Voelter W., "¹³C-NMR Spectroscopy," 1978 Edition, Verlag, New York.
- Agrawal P. K., "Carbon-13-NMR of Flavonoids in studies in Organic Chemistry, 39," 1989 Edition, Elsevier, New York.