# A New Secoiridoid Glucoside, Amaronitidin, from the Peruvian Folk Medicine "Hercampuri" (*Gentianella nitida*)

Nobuo Kawahara,\*<sup>,a</sup> Kazuo Masuda,<sup>b</sup> Setsuko Sekita,<sup>a</sup> and Motoyoshi Satake<sup>a</sup>

National Institute of Health Sciences (NIHS),<sup>a</sup> 1–18–1 Kamiyoga, Setagaya-ku, Tokyo 158–8501, Japan and Showa Pharmaceutical University,<sup>b</sup> 3–3165 Higashi-Tamagawagakuen, Machida, Tokyo 194–8543, Japan. Received January 18, 2001; accepted February 28, 2001

# A new secoiridoid glucoside designated amaronitidin (1) was isolated from the Peruvian folk medicine "Hercampuri" (*Gentianella nitida*) along with three known secoiridoid glucosides. Their structures were determined by extensive spectroscopic investigation.

Key words amaronitidin; Gentianella nitida; Hercampuri; Gentianaceae; secoiridoid glucoside

In previous papers,<sup>1,2)</sup> we reported the isolation of two novel sesterterpenoids with a new skeleton designated as nitidasin and nitiol from the dichloromethane extract of the whole plant of *Gentianella* (*G.*) *nitida* (Gentianaceae), a biennial medicinal plant growing in the Andes region and used in traditional Peruvian folk medicine. Commonly known as "Hercampuri" or "Hircampure", it is used as a remedy for hepatitis, as a cholagogue, and in treatment of obesity.<sup>3)</sup> Further investigation of the EtOAc extract of the above medicinal plant led us to isolate a new secoiridoid glycoside designated amaronitidin (1), along with three known secoiridoid glucosides, amarogentin (2), amaroswerin (3) and decentapicrin A (4). The structural elucidation of the above compound 1 is reported in this paper.

The methanolic extract (518 g) of the whole plant (1.35 kg) was partitioned between EtOAc and  $H_2O$ . The EtOAc extract (18.8 g) was fractionated by silica gel column chromatography using a CHCl<sub>3</sub>–MeOH gradient. The CHCl<sub>3</sub>–MeOH (5:1) elute was subjected to a Sephadex LH-20 with a CHCl<sub>3</sub>–MeOH (3:1) solvent system followed by HPLC with a CHCl<sub>3</sub>–MeOH (10:1) solvent system to afford compounds 1—4. Compounds 2, 3 and 4 were identified as amarogentin, amaroswerin and decentapicrin A, respectively, on the basis of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra and finally comparison with the literature data.<sup>4,5)</sup>

Compound 1, in the form of colorless amorphous,  $[\alpha]_{D}$  $-76.1^{\circ}$  (c 1.40, MeOH), gave a quasi-molecular ion at m/z585  $(M+H)^+$  in positive ion FAB mass spectrometry, and high-resolution FAB-MS determined the molecular formula  $C_{20}H_{20}O_{13}$  ([M+H]<sup>+</sup>; *m*/*z* 585.1625). The IR and UV spectra suggested the presence of carbonyl groups conjugated with double bonds and hydroxyl groups. The <sup>13</sup>C-NMR spectrum of 1 (Table 1) displayed twenty  $sp^2$  carbons, including two carbonyl carbons ( $\delta$  165.7, 171.0), and a sugar moiety ( $\delta$ 62.5, 71.7, 74.4, 75.0, 78.4, 96.8). The <sup>1</sup>H-NMR spectrum of 1 (Table 1) exhibited twenty-two nonexchangeable protons, including five olefinic proton signals at  $\delta$  7.30 (brs), 5.55 (br dd, J=1.8, 3.7 Hz), 5.66 (ddd, J=6.7, 10.4, 17.1 Hz), 5.12 (ddd, J=1.2, 1.5, 10.4 Hz) and 5.15 (ddd, J=1.2, 1.5, 17.1 Hz), which were assignable to H-3, H-6, H-8 and  $H_2$ -10 of the secoiridoid skeleton, respectively. Furthermore, the appearance of two *meta*-coupled aromatic proton signals at  $\delta$ 6.16 and 6.30 (each 1H, d, J=2.4 Hz) and disubstituted aromatic proton signals at  $\delta$  6.69 (dd, J=1.5, 2.4 Hz), 6.72 (ddd, J=0.9, 1.5, 7.9 Hz), 6.77 (ddd, J=0.9, 2.4, 7.9 Hz) and 7.16

\* To whom correspondence should be addressed. e-mail: kawahara@nihs.go.jp

(t, J=7.9 Hz) indicated the presence of a 3,3',5-trihydroxy-2biphenylcarboxyl group related to **2** and **3**. The other <sup>1</sup>H-NMR spectral data were quite similar to those of gentiopicroside (**5**)<sup>6</sup> except for the signal of H-2'. A downfield shift (1.53 ppm) of the signal due to H-2' suggested that a 3,3',5trihydroxy-2-biphenyl-carboxyl group was attached to C-2' of **5**. The 3,3',5-trihydroxy-2-biphenylcarboxyl group was determined to be attached at the C-2' position of the  $\beta$ -glucopyranosyl moiety due to the correlation between the H-2' ( $\delta$  4.67) and carbonyl signal at  $\delta$  171.0 ppm observed in the heteronuclear multiple-bond correlation (HMBC) spectrum.

To confirm the structure of **1** as 3,3',5-trihydroxy-2biphenylcarboxylate, **1** was deacylated with methanolic 25% ammonia. TLC and HPLC identified the products as gentiopicroside and 3,3',5-trihydroxy-2-biphenylcarboxylic acid methyl ester. Therefore, the structure of amaronitidin was de-



© 2001 Pharmaceutical Society of Japan

Table 1. <sup>1</sup>H- and <sup>13</sup>C-NMR Chemical Shifts of 1 in CD<sub>3</sub>OD

| Position | <sup>1</sup> H <sup><i>a</i></sup> ) | <sup>13</sup> C <sup>b)</sup> |
|----------|--------------------------------------|-------------------------------|
| 1        | 5.57 (d, 1.8)                        | 97.1 d                        |
| 3        | 7.30 (br s)                          | 149.7 d                       |
| 4        |                                      | 106.0 s                       |
| 5        |                                      | 126.6 s                       |
| 6        | 5.55 (br dd, 1.8, 3.7)               | 117.7 d                       |
| 7        | 4.83 (br dd, 3.7, 18.0)              | 70.5 t                        |
|          | 4.91 (br dd, 1.8, 18.0)              |                               |
| 8        | 5.66 (ddd, 6.7, 10.4 17.1)           | 134.7 d                       |
| 9        | 3.20 (ddt, 1.5, 1.8, 6.7)            | 46.2 d                        |
| 10       | 5.12 (ddd, 1.2, 1.5, 10.4)           | 118.2 t                       |
|          | 5.15 (ddd, 1.2, 1.5, 17.1)           |                               |
| 11       |                                      | 165.7 s                       |
| 1'       | 4.17 (d, 7.9)                        | 96.8 d                        |
| 2'       | 4.67 (dd, 7.9, 9.5)                  | 74.4 d                        |
| 3'       | 2.84 (t, 9.5)                        | 75.0 d                        |
| 4′       | 3.21 (t, 9.5)                        | 71.7 d                        |
| 5'       | 3.06 (ddd, 2.1, 6.4, 9.5)            | 78.4 d                        |
| 6'       | 3.59 (dd, 6.4, 11.9)                 | 62.5 t                        |
|          | 3.83 (dd, 2.1, 11.9)                 |                               |
| 1″       |                                      | 148.6 s                       |
| 2″       |                                      | 104.0 s                       |
| 3″       |                                      | 166.0 s                       |
| 4″       | 6.30 (d, 2.4)                        | 103.0 d                       |
| 5″       |                                      | 163.7 s                       |
| 6″       | 6.16 (d, 2.4)                        | 112.8 d                       |
| 7″       |                                      | 171.0 s                       |
| 1‴       |                                      | 146.5 s                       |
| 2‴       | 6.69 (dd, 1.5, 2.4)                  | 116.6 d                       |
| 3‴       |                                      | 157.4 s                       |
| 4‴       | 6.77 (ddd, 0.9, 2.4, 7.9)            | 114.5 d                       |
| 5‴       | 7.16 (t, 7.9)                        | 129.3 d                       |
| 6‴       | 6.72 (ddd, 0.9, 1.5, 7.9)            | 121.2 d                       |

a) J values (in Hz) in parentheses. b) Multiplicities and assignments made by the HMBC and DEPT techniques.

### termined as shown in Chart 1.

A large number of acylated secoiridoid glucosides, including 2 and 3, have been isolated from the Gentianaceae family, while 1 is the first example of a 3,3',5-trihydroxy-2biphenylcarboxylate of 5.

# Experimental

**General Procedures** Optical rotations were measured with a JASCO DIP-370 spectrometer. FAB-MS and HR-FAB-MS were obtained on a JEOL JMS-SX102 spectrometer. Ultraviolet (UV) and IR spectra were recorded on a Hitachi U-2000 spectrophotometer and a JASCO IR-5300 spectrophotometer, respectively. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were recorded on a JEOL  $\alpha$ -500 spectrometer at 500 MHz and at 125 MHz, respectively, using tetramethylsilane as an internal standard. Column chromatography was performed using Kieselgel 60 (Art. 7734; Merck) and Sephadex LH-20 (Pharmacia). HPLC was performed on a column of LiChrospher Si 60 (250×10 mm i.d.,

Merck). Thin layer chromatography (TLC) was conducted on pre-coated Kieselgel 60  $F_{254}$  plates (Art. 5715; Merck). Spots on TLC were detected under UV light.

**Plant Material** The whole plants of *Gentianella nitida* were collected in 1996 in Houaroz, Peru. A voucher specimen has been deposited at the National Institute of Health Sciences, Japan.

**Extraction and Isolation** The whole plant of *G. nitida* (1.35 kg) was crushed and extracted with MeOH ( $31\times5$ ) to give an extract (518 g), which was partitioned between CH<sub>2</sub>Cl<sub>2</sub> and H<sub>2</sub>O, and then EtOAc and H<sub>2</sub>O to give CH<sub>2</sub>Cl<sub>2</sub> extract (50.3 g) and EtOAc extract (23.2 g). Eighteen and eight-tenth grams of EtOAc extract was fractionated by silica gel column chromatography using a CHCl<sub>3</sub>–MeOH gradient. The CHCl<sub>3</sub>–MeOH (5:1) elute was subjected to a Sephadex LH-20 with a CHCl<sub>3</sub>–MeOH (3:1) solvent system followed by HPLC with a CHCl<sub>3</sub>–MeOH (10:1) solvent system to afford amaronitidin (1, 25 mg), amarogentin (2, 250 mg), amaroswerin (3, 18 mg) and decentapicrin A (4, 47 mg).

Compound 1: Colorless amorphous powder.  $[\alpha]_{D}^{23} - 76.1^{\circ}$  (*c* 1.40, MeOH). IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3360 (OH), 1701 (CO), 1657 (CO). UV  $\lambda$  (log  $\varepsilon$ ): 224 sh (4.66), 266 (4.28), 296 sh (3.90). Positive FAB-MS *m/z*: 585 (M+H)<sup>+</sup>, HR-FAB-MS *m/z*: Calcd for C<sub>29</sub>H<sub>29</sub>O<sub>13</sub>: 585.1608. Found: 585.1625. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table 1.

Alkaline Hydrolysis of 1 Compound 1 (2 mg) was dissolved in MeOH (0.5 ml) containing 25% ammonia (0.5 ml) and the solution was kept at room temperature for 12 h. The reaction mixture was poured into ice water, neutralized with 10%  $H_2SO_4$  and extracted with CHCl<sub>3</sub> and EtOAc. The CHCl<sub>3</sub> layer was subjected to TLC (CHCl<sub>3</sub>–MeOH, 10:1) and HPLC ( $t_{\rm R}$ , 4.0 min) analysis to identify the 3,3',5-trihydroxy-2-biphenylcarboxylic acid methyl ester. The EtOAc layer was also subjected to TLC (CHCl<sub>3</sub>–MeOH, 3:1) and HPLC ( $t_{\rm R}$ , 4.5 min) analysis to identify gentiopicroside. HPLC conditions: column, TSK-GEL ODS-80TS (TOSOH Co. Ltd.), 150×4.6 mm (i.d.); solvent, CH<sub>3</sub>CN–H<sub>2</sub>O (9:91, V/V); flow rate, 0.5 ml/min.

**3,3',5-Trihydroxy-2-biphenylcarboxylic** Acid Methyl Ester Compound **2** (6 mg) was dissolved in MeOH (0.5 ml) containing 1 N KOH (0.5 ml) and the solution was kept at room temperature for 1 h. The reaction mixture was poured into ice water, neutralized with 10%  $H_2SO_4$  and extracted with CHCl<sub>3</sub>. The CHCl<sub>3</sub> extract was evaporated and the residue was purified by HPLC with CHCl<sub>3</sub>–MeOH (30:1) to give 3,3',5-trihydroxy-2-biphenylcarboxylic acid methyl ester (1.5 mg) as an amorphous powder. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  3.49 (3H, s, OMe), 6.27 (1H, d, *J*=2.7 Hz, H-6), 6.43 (1H, d, *J*=2.7 Hz, H-4), 6.70 (1H, br dd, *J*=2.1, 7.9 Hz, H-2'), 6.77 (1H, br d, *J*=7.9 Hz, H-4'), 6.99 (1H, br dd, *J*=2.1, 7.9 Hz, H-6'), 7.20 (1H, t, *J*=7.9 Hz, H-5'), 11.17 (1H, s, OH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  51.6 (CO<u>OMe</u>), 102.5 (C-4), 105.3 (C-2), 111.1 (C-6), 113.8 (C-4'), 114.9 (C-2'), 120.7 (C-6'), 128.7 (C-5'), 144.2 (C-1'), 146.7 (C-1), 154.9 (C-3'), 159.8 (C-5), 164.1 (C-3), 171.1 (<u>CO</u>OMe).

#### **References and Notes**

- Kawahara N., Nozawa M., Flores D., Bonilla P., Sekita S., Satake M., *Chem. Pharm. Bull.*, **45**, 1717–1719 (1997).
- Kawahara N., Nozawa M., Kurata A., Hakamatsuka T., Sekita S., Satake M., Chem. Pharm. Bull., 47, 1344—1345 (1999).
- Senatore F., Feo V. D., Zhou Z. L., Ann. Chim. (Rome), 81, 269–274 (1991).
- 4) Ikeshiro Y., Tomita Y., Planta Medica, 51, 390-393 (1985).
- 5) Van der Sluis W. G., Labadie R. P., *Planta Medica*, **41**, 150–160 (1981).
- 6) The reference standard was purchased from Toray Techno Co., Ltd.