Medicinal Foodstuffs. XXIII.1) Structures of New Oleanane-Type Triterpene Oligoglycosides, Basellasaponins A, B, C, and D, from the Fresh Aerial Parts of *Basella rubra* **L.**

Toshiyuki MURAKAMI, Kazuhiro HIRANO, and Masayuki YOSHIKAWA*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received January 22, 2001; accepted February 22, 2001

> **Basellasaponins A, B, C, and D, oleanane-type triterpene oligoglycosides having the dioxolane-type substituent, were isolated from the fresh aerial parts of** *Basella rubra* **L. together with betavulgaroside I, spinacoside C, and momordins IIb and IIc. The chemical structures of basellasaponins A, B, C, and D were determined from chemical and physicochemical evidence.**

Key words basellasaponin; *Basella rubra*; medicinal foodstuff; spinacoside C; dioxolane-type substituent; Basellaceae

The Basellaceae plant, *Basella* (*B.*) *rubra* L. (Indian spinach, Japanese name "Tsurumurasaki") is extensively cultivated as an ornamental and the aerial parts such as the leaves, stems, and young shoot with buds are consumed as a vegetable and health food. In Chinese traditional medicine, the leaves or the aerial parts of *B. rubra* (Chinese name "

") have been used for the treatment of constipation and also as a diuretic, a toxicide, and an anti-inflammatory. As chemical constituents of this plants, betacyanins, carotenoids, and organic acids have been isolated from *B. rubra.*2)

During the course of our studies on bioactive saponin constituents in medicinal foodstuffs, $1,3$ we have characterized betavulgarosides with a novel dioxolane-type or acetal-type substituent. Both of these substituents were presumed to be biosynthesized through an oxidative degradation process of terminal monosaccharide moiety in saponin, from the roots and leaves of *Beta vulgaris* L. (sugar beet), and we have reported their hypoglycemic activity.⁴⁾ As a continuing study, we have isolated new saponins named basellasaponins A (**1**), B (**2**), C (**3**), and D (**4**), having a dioxolane-type substituent, along with betavulgaroside I (5) ,⁴⁾ spinacoside C (6) ,⁵⁾ momordins IIb $(7)^{6}$ and IIc $(8)^{6}$ from the aerial parts of *B*. *rubra*. In this paper, we present the isolation and structure elucidation of basellasaponins A (**1**), B (**2**), C (**3**), and D (**4**) from the aerial parts of *B. rubra*.

The methanolic extract from the fresh aerial parts of *B. rubra* cultivated in Kyoto Prefecture was subjected to Diaion HP-20 $(H_2O \rightarrow MeOH \rightarrow CHCl_3)$ and silica gel $(CHCl_3$ – MeOH–H₂O) column chromatography and finally HPLC [YMC-Pack ODS-A, CH₃CN–1% aqueous acetic acid $(AcOH)$, $CH₃CN-1%$ aqueous trifluoroacetic acid (TFA)] to give basellasaponins A (**1**, 0.0003%), B (**2**, 0.0002%), C (**3**, 0.0004%), and D (**4**, 0.0001%) together with betavulgaroside $I⁴$ (**5**, 0.0004%), spinacoside C⁵⁾ (**6**, 0.0007%), and momordins IIb^{6} (7, 0.0001%) and IIc^{6} (8, 0.0004%).

Basellasaponin A (**1**) was obtained as colorless fine crystals from aqueous methanol. The IR spectrum of **1** showed an absorption band at 1736 cm^{-1} ascribable to carboxyl function and strong absorption bands at 3403, 1076, and 1036 cm^{-1} , suggestive of an oligoglycosidic structure. In the negativeand positive-ion FAB-MS of **1**, quasimolecular ion peaks were observed at m/z 969 $(M-H)^{-}$ and m/z 993 $(M+$ Na ⁺, whose elemental composition was determined to be $C_{47}H_{70}O_{21}$ by high-resolution MS measurement. Fragment ion peaks were observed at m/z 809 (M-C₅H₅O₆)⁻ and m/z $807 \, (\text{M} - \text{C}_6\text{H}_{11}\text{O}_5)^{-1}$ in the negative-ion FAB-MS of 1. Acid

Chart 1

∗ To whom correspondence should be addressed. e-mail: shoyaku@mb.kyoto-phu.ac.jp © 2001 Pharmaceutical Society of Japan

hydrolysis of 1 with 5% aqueous sulfuric acid (H_2SO_4) –1,4dioxane (1 : 1, v/v) liberated hederagenin (9) , $4b$, $7)$ D-glucose, and D-glucuronic acid. These component monosaccharides were identified by GLC analysis of their trimethylsilyl thiazolidine derivatives.⁸⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of **1**, which were assigned by various NMR experiments, 9 showed the presence of a glucopyranosiduronic acid moiety having the dioxolane-type substituent composed of 3-oxopyruvic acid and glycolic acid δ 4.75 (s, 2'''-H₂), 5.17 (d, J=7.6 Hz, 1'-H), 5.91 (s, 3''-H)], together with a hederagenin moiety δ 4.22 (m, 3-H), 5.40, (dd-like, 12-H)] and a 28-*O*- β -D-glucopyranoside moiety [δ 6.27 (d, $J=7.6$ Hz, 1^{*m*}-H)]. The planar structure of the dioxolane part at the 3'- and 4'-positions of the 3-*O*-glucopyranosiduronic acid moiety in **1** was confirmed by the HMBC experiment. Namely, long-range correlations were observed between the following protons and carbons of 1: 1'-H and 3-C; 3'-H and 3"-C; 3"-H and 3'-, 2"'-C; 4'-H and 2"-C; 2"'-H₂ and $3''$ -, $1'''$ -C (Fig. 1). The carbon signals in the 13 C-NMR (Table 1) spectrum of **1** were very similar to those of betavulgaroside I (**5**), except for the signals due to the 23-position of the aglycone moiety in **1**. This evidence allowed us to pre-

HMBC- $I:CH₂OHCH₃$ $2:$ CHO $CH₃$ $3: COOH$ CH₃ $4:CH_3COOH$ Fig. 1

sume that the stereostructure of the dioxolane substituent in **1** was the same as **5**. Consequently, the structure of basellasaponin A (**1**) was determined as shown.

Basellasaponin B (**2**), also isolated as colorless fine crystals of mp 226—228 °C from aqueous methanol, liberated gypsogenin (10) ,¹⁰⁾ D-glucose, and D-glucuronic acid on acid hydrolysis with 5% aqueous $H_2SO_4-1,4$ -dioxane.⁸⁾ The molecular formula $C_{47}H_{68}O_{21}$ of 2 was clarified from quasimolecular ion peaks $[m/z\ 967\ (M-H)^{-}$ and $m/z\ 991\ (M+Na)^{+}$] and by high-resolution MS analysis observed in the negativeand positive-ion FAB-MS. Furthermore, fragment ion peaks were observed at m/z 807 $(M-C₅H₅O₆)$ ⁻ and m/z 805 $(M - C_6H_{11}O_5)^{-1}$ in the negative-ion FAB-MS of 2. The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra⁹⁾ of 2 showed the presence of a β -D-glucopyranosiduronic acid moiety having the dioxolane-type substituent δ 4.79 (s, 2^{*m*}-H₂), 4.88 (d, J=7.6 Hz, 1'-H), 5.96 (s, 3"-H)], a β -D-glucopyranosyl moiety $\lceil \delta 6.30 \left(J = 8.0 \text{ Hz}, 1'''' - \text{H} \right) \rceil$, and a gypsogenin moiety $\lceil \delta \, 3.18 \, (\text{dd-like}, 18-H), 4.10 \, (\text{m}, 3-H), 5.40 \, (\text{dd-like},$ 12-H)]. The glycosidic structure of **2** was characterized by the HMBC experiment, in which long-range correlations were observed between the following protons and carbons: $1'$ -H and 3-C; 3'-H and 3"-C; 3"-H and 3'-, 2"'-C; 4'-H and $2''$ -C; $2'''$ -H₂ and $3''$ -, $1'''$ -C; $1'''$ -H and 28-C. The carbon signals in the 13C-NMR data of **2** closely resembled those of **1** and **5**, except for the signals due to the 23-position of the aglycone moiety in **2**. On the basis of this evidence, the structure of basellasaponin B (**2**) was characterized as shown.

Basellasaponins C (**3**) and D (**4**) were obtained as colorless fine crystals of mp $230-232$ °C and mp $215-217$ °C from aqueous methanol, respectively. Saponins **3** and **4** were found to have the same molecular formula, $C_{47}H_{68}O_{22}$, which was determined from the quasimolecular ion peaks [*m*/*z* 983 $(M-H)^{-}$, m/z 1007 $(M+Na)^{+}$] in the negative- and positiveion FAB-MS and by high-resolution MS measurement. Acid

Table 1. 13C-NMR Data for Basellasaponins A (**1**), B (**2**), C (**3**), and D (**4**) and Betavulgaroside I (**5**)

	1 ^a	$2^{a)}$	3 ^a	4 ^b	5^{a}		1 ^a	$2^{a)}$	3 ^a	4 ^b	5^{a}
$C-1$	38.6	38.0	38.6	38.5	38.4	25	16.1	15.6	15.9	17.4	15.3
\overline{c}	25.9	25.1	26.1	26.5	26.4	26	17.6	17.4	17.3	17.4	17.3
3	82.4	82.6	85.8	89.3	89.2	27	26.1	26.1	26.1	26.1	26.0
4	43.4	55.4	53.2	39.5	39.3	28	176.4	176.4	176.4	176.2	176.3
5	47.6	47.6	52.1	55.6	55.5	29	33.1	33.1	33.1	180.8	33.0
6	18.2	20.4	21.2	18.5	18.3	30	23.7	23.6	23.6	19.9	23.5
7	32.9	32.5	32.8	33.0	33.0	$C-1'$	106.5	105.7	106.5	107.5	107.4
$\,$ 8 $\,$	40.0	40.2	40.2	39.9	39.7	2'	72.0	71.6	71.8	72.1	71.9
9	48.1	47.9	48.0	47.9	47.8	3'	72.6	72.5	72.3	72.6	72.4
10	36.9	36.0	36.6	36.9	36.7	4'	70.0	70.1	70.1	70.2	70.0
11	23.5	23.5	23.3	23.5	23.4	5^{\prime}	75.2	75.2	75.2	75.2	75.1
12	122.7	122.7	122.8	123.1	122.7	6'	171.6	171.9	171.9	171.9	171.4
13	144.1	144.2	144.1	143.6	144.0	$C-1''$	171.2	171.3	171.4	171.4	171.0
14	42.2	42.2	42.1	42.1	42.0	2 ⁿ	94.0	94.1	94.1	94.1	93.8
15	28.3	28.2	28.2	28.2	28.1	3''	98.2	98.1	97.9	98.1	97.9
16	23.9	23.6	23.6	46.9	23.6	$C-1$ "	172.3	172.5	172.4	172.4	172.2
17	47.0	47.0	46.9	40.8	46.8	2^m	65.1	65.0	64.7	65.0	64.7
18	41.8	41.7	41.7	40.8	41.6	$C-1$ ""	95.7	95.8	95.8	95.8	95.7
19	46.2	46.1	46.1	42.4	46.0	$2^{\prime\prime\prime\prime}$	74.1	74.1	74.1	74.2	74.0
20	30.8	30.8	30.8	29.1	30.6	$3^{\prime\prime\prime\prime}$	78.9	78.9	78.9	78.9	78.7
21	34.1	34.0	34.0	31.7	33.8	$4^{\prime\prime\prime\prime}$	71.3	71.1	71.1	71.1	70.9
22	32.6	32.4	32.5	28.1	32.4	$5^{\prime\prime\prime\prime}$	79.3	79.4	79.4	79.4	79.1
23	64.5	206.6	180.1	16.9	27.9	$6^{\prime\prime\prime\prime}$	62.4	62.2	62.2	62.3	62.0
24	13.5	10.3	12.6	15.5	16.7						

Pyridine-*d*5, *a*) 68 MHz, *b*) 125 MHz.

hydrolysis of 3 furnished gypsogenic acid (11) ,¹⁰⁾ D-glucose, and D-glucuronic acid, while serratagenic acid (12) ,¹¹⁾ D-glucose, and D-glucuronic acid were obtained by acid hydrolysis of 4.⁸⁾ The proton and carbon signals in the ¹H-NMR (pyri- $\dim \mathcal{A}_5$) and ¹³C-NMR (Table 1) spectra⁹ of **3** and **4** were superimposable on those of **5**, except for signals due to the 23 or 29-position of the aglycone moiety. The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra⁹⁾ of **3** and **4** showed the signals assignable to an aglycone moiety $[3: \delta 3.17$ (ddlike, 18-H), 4.62 (m, 3-H), 5.40, (dd-like, 12-H); 4: δ 3.26 (dd, J=4.0, 11.6 Hz, 3-H), 3.32 (dd-like, 18-H), 5.46, (ddlike, 12-H)] together with a $28-O-\beta$ -D-glucopyranosyl moiety $[3: \delta \ 6.31 \ (d, J=7.9 \ Hz, 1''''-H);$ **4**: $\delta \ 6.35 \ (J=8.0 \ Hz, 1''''-H)]$ and a 3 - O - β - D -glucopyranosiduronic acid moiety having the dioxolane-type substituent [3: δ 4.79 (s, 2^{*m*}-H₂), 5.19 (d, $J=7.6$ Hz, 1'-H), 5.97 (s, 3"-H); **4**: δ 4.81 (s, 2"'-H₂), 4.99 (d, $J=7.6$ Hz, 1'-H), 5.98 (s, 3"-H)]. In the HMBC experiments of **3** and **4**, long-range correlations were observed between the following protons and carbons: $1'$ -H and 3-C; $3'$ -H and $3''$ -C; $3''$ -H and $3'$ -, $2'''$ -C; $4'$ -H and $2''$ -C; $2'''$ -H₂ and $3''$ -, $1'''$ - C ; 1 $^{\prime\prime\prime}$ -H and 28-C. These findings led us to elucidate the structures of basellasaponins C (**3**) and D (**4**) as shown.

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5$ cm); UV spectra, Shimadzu UV-1200 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; CD spectra, J-720WI; ¹H-NMR spectra, JEOL EX-CALIBUR (270 MHz) and JNM-LA500 (500 MHz) spectrometers; 13C-NMR spectra, JEOL EX-CALIBUR (68 MHz) and JNM-LA500 (125 MHz) spectrometers with tetramethylsilane as an internal standard; MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer and JMS-GCMATE; HPLC, Shimadzu LC-10AS chromatograph.

The following experimental conditions were used for chromatography: normal-phase column chromatography; Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh), reversed-phase column chromatography; Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh): TLC, pre-coated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (normal-phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reversedphase); HPTLC, pre-coated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm) (reversed-phase). Detection was performed by spraying with 1% aqueous $Ce(SO₄)₂$ –10% aqueous H₂SO₄, followed by heating.

Isolation of Basellasaponins A (1), B (2), C (3), and D (4) and Known Saponins (5—8) from the Fresh Aerial Parts of *B. rubra* **L.** The fresh aerial parts (13.8 kg) of *B. rubra* L. was cut and extracted three times with MeOH under reflux. Evaporation of the solvent under reduced pressure provided the MeOH extract (247.2 g, 1.79%), and this extract (241.0 g) was subjected to Diaion HP-20 column chromatography [Nippon Rensou, Co., Ltd. (3.0 kg), H₂O→MeOH→CHCl₃] to give the H₂O-eluate (170.0 g, 1.23%), the MeOH-eluate (47.3 g, 0.34%), and the CHCl₃ eluate (21.5 g, 0.16%). Normal-phase silica gel column chromatography [BW-200 (Fuji Silysia, Ltd., 480 g), CHCl₃–MeOH–H₂O (7:3:0.5→6:4:1→5:5:1, v/v)] of the MeOH eluate (45.0 g) gave seven fractions [fr. 1 (5.4 g), fr. 2 (4.2 g), fr. 3 (7.8 g), fr. 4 (9.8 g), fr. 5 (2.4 g), fr. 6 (13.1 g), fr. 7 (3.8 g)]. Fraction 3 (526 mg) was purified by HPLC [YMC-Pack ODS-A $(250 \times 20 \text{ mm} \text{ i.d.},$ YMC Co., Ltd.), MeOH-1% aq. AcOH (40:60, v/v)] to give momordins IIb^{6} (7, 13 mg, 0.0001%) and IIc^{6} (8, 59 mg, 0.0004%). Fraction 5 (100 mg) was purified by repeated HPLC [CH₃CN–1% aq. TFA $(40:60, v/v)$] to give spinacoside C^{5}) (6 , 90 mg, 0.0007%). Fraction 6 (100 mg) was purified by HPLC [CH₃CN–1% aq. TFA (40:60, v/v)] to give betavulgaroside I^4) (5, 50 mg, 0.0004%). Fraction 7 (1.5 g) was purified by repeated HPLC [1) CH₃CN–1% aq. TFA (40:60, v/v); 2) CH₃CN–1% aq. TFA (20:80, v/v); 3) CH₃CN–1% aq. TFA (35:65, v/v)] to give basellasaponins A (1, 42 mg, 0.0003%), B (**2**, 22 mg, 0.0002%), C (**3**, 21 mg, 0.0002%), and D (**4**, 16 mg, 0.0001%). The known compounds (**5**—**8**) were identified by comparison of their physical date ($[\alpha]_D$, IR, ¹H-NMR, ¹³C-NMR) with reported values.⁴⁻⁶⁰

Basellasaponin A (1): Colorless fine crystals from MeOH–H₂O, mp 228—230 °C, $[\alpha]_D^{24} + 30.1^{\circ}$ (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{47}H_{70}O_{21}Na$ (M+Na)⁺: 993.4307. Found: 993.4343.

IR (KBr): 3403, 1736, 1076, 1036 cm⁻¹. ¹H-NMR (270 MHz, pyridine- d_5) δ : 0.88 (12H, s, 24, 25, 29, 30-H₃), 1.09, 1.22 (3H each, both s, 26, 27-H₃), 3.16 (1H, dd-like, 18-H), 3.65 (1H, d, J=11.2 Hz), 4.20 (1H, m) (23-H₂), 4.22 (1H, m, 3-H), 4.75 (2H, s, 2^m-H₂), 5.17 (1H, d, J=7.6 Hz, 1'-H), 5.40 (1H, dd-like, 12-H), 5.91 (1H, s, 3"-H), 6.27 (1H, d, $J=7.6$ Hz, $1''''$ -H). ¹³C-NMR (68 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: *m/z* 969 (M-H)⁻, 809 (M-C₅H₅O₆)⁻, 807 (M-C₆H₁₁O₅)⁻. Positive-ion FAB-MS: m/z 993 (M+Na)⁺.

Basellasaponin B (2): Colorless fine crystals from MeOH–H₂O, mp 226— 228 °C, $[\alpha]_D^{26}$ +57.4° (c =0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{47}H_{68}O_{21}Na$ $(M+Na)^{+}$: 991.4150. Found: 991.4125. IR (KBr): 3415, 1728, 1076, 1036 cm⁻¹. ¹H-NMR (270 MHz, pyridine-*d₅*) δ: 0.81, 0.89, 0.92, 1.04 (3H each, all s, 25, 30, 29, 26-H₃), 1.26 (6H, s, 24, 27- H_3), 3.18 (1H, dd-like, 18-H), 4.10 (1H, m, 3-H), 4.79 (2H, s, 2"-H₂), 4.88 (1H, d, J = 7.6 Hz, 1'-H), 5.40 (1H, dd-like, 12-H), 5.96 (1H, s, 3"-H), 6.30 (1H, J=8.0 Hz, 1^{nor}-H), 9.69 (1H, s, 23-H). ¹³C-NMR (68 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 967 (M-H)⁻, 807 $(M - C_5H_5O_6)^{-}$, 805 $(M - C_6H_{11}O_5)^{-}$. Positive-ion FAB-MS: m/z 991 $(M+Na)^+$.

Basellasaponin C (3): Colorless fine crystals from MeOH–H₂O, mp 230— 232 °C, $[\alpha]_D^{25}$ +42.1° (c =0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{47}H_{68}O_{22}Na$ $(M+Na)^{+}$: 1007.4100. Found: 1007.4132. IR (KBr): 3426, 1737, 1076, 1036 cm⁻¹. ¹H-NMR (270 MHz, pyridine- d_5) δ : 0.87 (6H, s, 25, 30-H₃), 0.89, 1.07, 1.23, 1.51 (3H each, all s, 29, 26, 27, 24-H₃), 3.17 (1H, dd-like, 18-H), 4.62 (1H, m, 3-H), 4.73 (2H, m, 2^m-H2), 4.79 (2H, s, 2'''-H₂), 5.19 (1H, d, J=7.6 Hz, 1'-H), 5.40 (1H, dd-like, 12-H), 5.97 (1H, s, 3"-H), 6.31 (1H, d, J=7.9 Hz, 1""-H). ¹³C-NMR (68 MHz, pyridine d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 983 (M-H)⁻, 821 $(M - C_6H_{11}O_5)^{-}$. Positive-ion FAB-MS: m/z 1007 $(M + Na)^{+}$.

Basellasaponin D (4): Colorless fine crystals from MeOH–H₂O, mp 215—217 °C, $[\alpha]_D^{27}$ +24.0° (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{47}H_{68}O_{22}Na (M+Na)^+$: 1007.4100. Found: 1007.4112. IR (KBr): 3426, 1732, 1076, 1036 cm⁻¹. ¹H-NMR (500 MHz, pyridine- d_5) d: 0.80, 0.93, 1.08, 1.24, 1.28, 1.45 (3H each, all s, 25, 24, 26, 23, 27, 30- H₃), 3.26 (1H, dd, J=4.0, 11.6 Hz, 3-H), 3.32 (1H, dd-like, 18-H), 4.81 (2H, s, 2"-H₂), 4.99 (1H, d, J=7.6 Hz, 1'-H), 5.46 (1H, dd-like, 12-H), 5.98 (1H, s, 3"-H), 6.35 (1H, $J=8.0$ Hz, 1""-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 983 (M-H)⁻. Positive-ion FAB-MS: m/z 1007 (M+Na)⁺.

Acid Hydrolysis of Basellasaponins (1—4) A solution of **1**—**4** (2 mg each) in 5% aq. H₂SO₄–1,4-dioxane (0.5 ml, 1 : 1, v/v) was heated under reflux for 1 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH^- form) and the residue was removed by filtration. After removal of the solvent from the filtrate *in vacuo*, the residue was transferred to a Sep-Pak C18 cartridge with H₂O and MeOH. The MeOH eluate from **1**—**4** was concentrated and the residue was purified by normal-phase silica gel column chromatography [1.0 g, CHCl₃–MeOH–H₂O (10:3:1, v/v) \rightarrow MeOH] to give sapogenols [hederagenin (**9**, 0.8 mg, 82% from **1**), gypsogenin (**10**, 0.6 mg, 62% from **2**), gypsogenic acid (**11**, 0.8 mg, 81% from **3**), and serratagenic acid (**12**, 0.8 mg, 81% from **4**)], which were identified by physical data comparison with reported values.^{4*b*,7,10,11}) The H_2O eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (4 mg) in pyridine (0.5 ml) at 60 °C for 1 h. After reaction, the solution was treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.2 ml) at 60° C for 1 h. The supernatant was then subjected to GLC analysis to identify the derivatives of D-glucuronic acid (i) and D-glucose (ii); GLC conditions: column: Supeluco STB^{TM} -1, 30 m×0.25 mm (i.d.) capillary column, column temperature: 230 °C, He flow rate: 15 ml/min, t_R : i: 24.4 min, ii: 24.2 min.

References and Notes

- 1) Part XXII: Murakami T., Kohno K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull*., **49**, 73—77 (2001).
- 2) *a*) Takami A., *Oita Daigaku Kyoikugakubu Kenkyo Kiyo, Shizenkagaku*, **3**, 53—62 (1969) [*Chem. Abstr*., **74**, 108135*q* (1971)]; *b*) Banerjee A. K., Jain M., Dubey V., *Fitoterapia*, **63**, 377 (1992) [*Chem. Abstr*., **118**, 109476*r* (1993)]; *c*) Glassgen W. E., Metzger J. W., Heuer S., Strack D., *Phytochemistry*, **33**, 1525—1527 (1993).
- 3) *a*) Matsuda H., Li Y., Yoshikawa M., Life Sci*.*, **66**, PL41—46 (2000); *b*) *Idem*, *ibid.*, **66**, 2233—2238 (2000); *c*) *Idem*, *ibid.*, **67**, 2921—2927 (2000); *d*) Li Y., Wen S., Yamahara J., Yoshikawa M., *Eur. J. Pharmacol.*, **387**, 339—344 (2000); *e*) Li Y., Matsuda H., Yamahara J., Yoshikawa M., *ibid.*, **392**, 71—77 (2000); *f*) Murakami T., Kishi A., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **48**, 994—1000

(2000); *g*) Murakami T., Kohno K., Kishi A., Matsuda H., Yoshikawa M., *ibid.*, **48**, 1673—1680 (2000); *h*) Murakami T., Nakamura J., Kageura T., Matsuda H., Yoshikawa M., *ibid.*, **48**, 1720—1725 (2000); *i*) Murakami T., Emoto A., Matsuda H., Yoshikawa M., *ibid.*, **49**, 54— 63 (2001).

- 4) *a*) Yoshikawa M., Murakami T., Kadoya M., Matsuda H., Yamahara J., Muraoka O., Murakami N., *Heterocycles*, **41**, 1621—1626 (1995); *b*) Yoshikawa M., Murakami T., Kadoya M., Matsuda H., Muraoka O., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, **44**, 1212—1217 (1996); *c*) Yoshikawa M., Murakami T., Inaduki M., Hirano K., Yamahara J., Matsuda H., *ibid.*, **45**, 561—563 (1997); *d*) Yoshikawa M., Murakami T., Kadoya M., Yamahara J., Matsuda H., *ibid.*, **46**, 1758— 1763 (1998); *e*) Murakami T., Matsuda H., Inadzuki M., Hirano K., Yoshikawa M., *ibid.*, **47**, 1717—1724 (1999).
- 5) Yoshikawa M., Murakami T., Hirano K, Matsuda H., Yamahara J., Ohtani K, Kasai R., Yamasaki K., *Heterocycles*, **49**, 93—96 (1998).
- 6) Iwamoto M., Okabe M., Yamauchi T., *Chem. Pharm. Bull.*, **33**, 1—7

(1985).

- 7) Yoshikawa M., Yoshizumi S., Ueno T., Matsuda H., Murakami T., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, **43**, 1878—1882 (1995).
- 8) *a*) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **34**, 1843— 1845 (1986); *b*) Zhang D., Miyase T., Kuroyanagi M., Umehara K., Ueno A., *ibid.*, **43**, 966—970 (1995).
- 9) The ¹ H- and 13C-NMR spectra of **1**, **2**, **3**, and **4** were assigned on the basis of homo- and hetero-correlation spectroscopy $(^1H-^1H, ^1H-^{13}C)$ COSY), homo- and heteronuclear Hartmann-Hahn spectroscopy $(^{1}H-^{1}H, ^{1}H-^{13}C$ HOHAHA) and heteronuclear multiple bond correlation (HMBC) experiments.
- 10) Frechet D., Christ B., Sorbier B. M., Fischer H., Vuilhorgne M., *Phytochemistry*, **30**, 927—931 (1991).
- 11) *a*) Rangaswami S., Sarangan S., *Tetrahedron*, **25**, 3701—3705 (1969); *b*) Kasai R., Oinaka T., Yang C R., Zhou J., Tanaka O., *Chem. Pharm. Bull.*, **35**, 1486—1490 (1987).