A Novel Quinoline Alkaloid Possessing a 7-Benzyl Group from the Centipede, *Scolopendra subspinipes*

Naoki Noda,^{*,*a*} Yuji Yashiki,^{*a*} Takafumi Nakatani,^{*a*} Kazumoto Miyahara,^{*a*} and Xiao-Ming Du^{*b*}

Faculty of Pharmaceutical Sciences, Setsunan University,^a 45–1, Nagaotoge-cho, Hirakata, Osaka 573–0101, Japan and Research & Development Division, Seiwa Pharmaceuticals Ltd.,^b 187–11, Usuba, Hanakawa, Kitaibaraki, Ibaraki Japan. Received March 19, 2001; accepted May 2, 2001

The novel quinoline alkaloid scolopendrine was isolated from the centipede, *Scolopendra subspinipes mutilans* L. KOCH. The structure was determined to be 2-hydroxy-7-[(4-hydroxy-3methoxyphenyl)methyl]-3-methoxy-8-quinolyl sulfate on the basis of high-resolution electron-spray ionization mass spectroscopy and two-dimensional NMR spectral data. Unlike quinoline alkaloids so far reported, scolopendrine is unique in having a 7-benzyl moiety in the quinoline ring.

Key words centipede; *Scolopendra subspinipes*; 7-benzyl quinoline al-kaloid; scolopendrine

The centipede, *Scolopendra subspinipes mutilans* L. KOCH,¹⁾ has been used in the traditional Chinese medicine Wu Gong prescribed for tetanus and childhood convulsions.²⁾ This drug has also been used for many other clinical purposes, such as the treatment of acute heart attack and as a toxicide, in Korea.³⁾ Concerning the constituents of this animal, only two compounds, 3,8-dihydroxyquinoline, called jineol,⁴⁾ and 8-hydroxy-1*H*-2-benzopyran-1-one,³⁾ have been recently isolated from the centipede by Korean researchers.

In our search for biologically active compounds from crude drugs, especially animal crude drugs originating from various species of invertebrates,⁵⁾ we investigated the constituents of this drug, and isolated a novel quinoline alkaloid with a benzyl group at the C-7 position, which is called scolopendrine.

The dried whole bodies (800 g) of centipedes (commercial crude drug) were extracted with MeOH, and the methanolic extract was shaken with $CHCl_3$ -MeOH-H₂O (1 : 1 : 1) to give an upper and a lower fraction. The upper fraction was subjected to a combination of Diaion HP-20, Sephadex LH-20, silica gel column chromatography and HPLC separation to give scolopendrine (1, 24.6 mg).⁶

The molecular formula of **1** was determined to be $C_{18}H_{16}NO_8S$ using high-resolution electron-spray ionization mass spectroscopy (HR-ESI-MS) and its ¹³C-NMR spectral data. The presence of one sulfate was substantiated by an IR absorption band at 1257 cm⁻¹ and negative FAB-MS ion peaks at m/z 406 [M(SO₃⁻)] and 326 [M–SO₃]⁻. The ¹H-NMR spectrum showed signals due to two methoxyl (δ 3.79, 3.90) and one benzylic methylene groups (δ 4.14) together with six aromatic proton signals. All the proton and carbon signals arising from **1** were assigned with the aid of ¹H–¹H and ¹H–¹³C chemical shift correlation spectroscopy (COSY) analyses. These assignments revealed that the two methoxyl and one sulfate groups were located at the C-2, C-3, C-7, C-8, C-3',

Fig. 1. HMBC Correlation of Scolopendrine (1)

Fig. 2. Scolopendrine (1): R=H 2: R=CH₃

or C-4' positions. In the ¹H-detected heteronuclear multiplebond connectivity (HMBC) spectrum, the methoxyl protons (δ 3.90) gave a long-range correlation with the C-3 carbon (δ 149.4) and the other (δ 3.79) showed a correlation with the C-3' carbon (δ 149.0). In addition, the methylene protons (δ 4.14) clearly showed long-range correlations with C-6, C-7, and C-8 as well as with C-1', C-2', and C-6' (Fig. 1). These findings demonstrated that the benzyl moiety was located at C-7, and therefore the positions of the remaining two hydroxyl and one sulfate groups were determined to be C-2, C-8, or C-4'.

Treatment of 1 with diazomethane gave $2^{.7}$ In the ¹H-NMR spectrum of 2, in addition to the signals ascribable to the 3- and 3'-methoxyl groups, two signals due to methoxyl groups appeared at δ 3.78 and 4.19. The locations of the latter two were revealed to be C-2 and C-4' by HMBC analysis. From the information described above, the position of the sulfate group was concluded to be C-8, and thus the structure of scolopendrine (1) was determined to be 2-hydroxy-7-[(4hydroxy-3-methoxyphenyl)methyl]-3-methoxy-8-quinolyl sulfate (Fig. 2).

With regard to C-substituted quinoline alkaloids, only 2-,⁸⁾ and 3-substituted⁹⁾ compounds have been reported. Scolopendrine (1) isolated in this study is the first example of a naturally occurring quinoline alkaloid with a 7-C substituted group. Since TLC examination of the upper fraction indicated the presence of several quinoline derivatives in addition to 1, the isolation of these compounds is in progress.

Acknowledgments We are indebted to Dr. Kenji Matsuura of JEOL HIGH TECH Co. Ltd. for measurement of the HR-ESI-MS. We thank Dr. Masatoshi Nishi of our university for measurement of the NMR spectra. This study was financially supported by a Grant-in-Aid for Scientific Research (No. 10672013) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- The commercial crude drug was purchased from Tochimoto Tenkaido (LOT No. 060499). A voucher specimen was deposited at the Faculty of Pharmaceutical Sciences, Setsunan University.
- Dictionary of Chinese Crude Drugs (Chiang Su New Medical College, Shanghai Scientific Technologic, ed.) 1997, pp. 2473—2475.
- Kim K., Kim H., Park K., Cho K., J. Korean Chem. Soc. 42, 236–239 (1998).
- Moon S-S., Cho N., Shin J., Seo Y., Lee C. O., Choi S. U., J. Nat. Prod., 59, 777–779 (1996).

- Scolopendrine (1): Yellow powder, mp 192—194 °C. IR (KBr) cm⁻¹: 1257, 1043, 698. Negative ion FAB-MS *m/z*: 406 [M(SO₃⁻)], 326 [M–SO₃]⁻. HR-ESI-MS *m/z*: 406.0592 (Calcd for C₁₈H₁₆NO₈S: 406.0596). ¹H-NMR (CD₃OD) δ: 3.79 (3H, s, 3'-OCH₃), 3.90 (3H, s, 3-OCH₃), 4.14 (2H, s, CH₂), 6.70* (*J*=8.1 Hz, 5'-H), 6.71* (*J*=1.2, 8.1 Hz, 6'-H), 6.91 (d, *J*=1.2 Hz, 2'-H), 6.96 (d, *J*=8.1 Hz, 6-H), 7.22 (s, 4-H), 7.31 (d, *J*=8.1 Hz, 5-H). ¹³C-NMR (CD₃OD) δ: 36.5 (CH₂), 56.4 (3-OCH₃), 56.6 (3'-OCH₃), 113.5 (4-C), 114.3 (2'-C), 116.0 (5'-C), 121.5 (4a-C), 122.9 (6'-C), 124.4 (5-C), 126.0 (6-C), 128.7 (8a-C), 133.5 (1'-C), 137.0 (7-C), 138.0 (8-C), 145.8 (4'-C), 149.0 (3'-C), 149.4 (3-C), 159.9 (2-C). Signals marked with asterisks appear as singlet-like signals of the AB type.
- 7) 2: White powder, mp 204–206 °C. Negative ion FAB-MS m/z: 434 [M(SO₃⁻)], 354 [M-SO₃]⁻. ¹H-NMR (CD₃OD) δ: 3.76 (3H, s, 3'-OCH₃), 3.78 (3H, s, 4'-OCH₃), 3.91 (3H, s, 3-OCH₃), 4.19 (3H, s, 2-

OCH₃), 4.31 (2H, s, CH₂), 6.84* (*J*=8.1 Hz, 5'-H), 6.85* (*J*=1.2, 8.1 Hz, 6'-H), 6.99 (d, *J*=1.2 Hz, 2'-H), 7.09 (d, *J*=8.1 Hz, 6-H), 7.38 (s, 4-H), 7.42 (d, *J*=8.1 Hz, 5-H). ¹³C-NMR (CD₃OD) δ : 36.3 (CH₂), 54.8 (2-OCH₃), 56.3 (3-OCH₃), 56.5 (3'-OCH₃), 56.7 (4'-OCH₃), 113.2 (5'-C), 114.0 (4-C), 114.7 (2'-C), 122.7 (6'-C), 124.2 (5-C), 127.6 (6-C), 127.7 (4a-C), 134.7 (7-C), 136.1 (1'-C), 136.7 (8a-C), 145.6 (3-C), 146.2 (8-C), 148.8 (4'-C), 150.5 (3'-C), 155.7 (2-C). Signals marked with asterisks appear as singlet-like signals of the AB type.

- Wood W. F., Fisher C. O., Graham G. A., J. Chem. Ecol., 19, 837 (1993).
- 9) a) Ma Z.-Z., Hano Y., Nomura T., Chen Y.-J., *Heterocycles*, 51, 1883—1889 (1999); b) Funayama S., Kageyama T., Murata K., Adachi M., Nozoe S., *Heterocycles*, 35, 607—610 (1993); c) Funayama S., Murata K., Nozoe S., *Chem. Pharm. Bull.*, 44, 1885—1889 (1996).