Quinone-type Podocarpanes from the Bark of *Taiwania cryptomerioides*

Yueh-Hsiung Kuo* and Shih-Chang CHIEN

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China. Received February 23, 2001; accepted May 8, 2001

Three quinone-type podocarpanes, 3β -hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione (1), 18-hydroxy-13-methoxy-8,12-podocarpadiene-2,11,14-trione (3) were isolated from the bark of *Taiwania cryptomerioides*. Their structures were elucidated using spectral methods.

Key words Taiwania cryptomerioides; Taxodiaceae; trinorditerpene; podocarpane

In a previous investigation, we analyzed various sesquiterpenes, lignans, and abietane-type diterpenes from the heartwood¹⁻³⁾ and bark^{4,5)} of Taiwania cryptomerioides. Because it is a decay-resistant tree, the antifungus characteristics were also investigated. α -Cardinol has the best activity against Coriolus versicolor (white-rot fungi) and Laetiporus sulphurens (brown-rot fungi) with 100% antifungal indices at 100 ppm.⁶⁾ Podocarpane-type diterpenes do not occur extensively in nature. They are presented in the genus of Azadirachta,⁷⁻¹¹⁾ Humirianther,¹²⁾ Micrandropsis,¹³⁾ and *Podocarpus.*¹⁴⁾ The podocarpane derivative 1β , 13, 14-trihydroxy-8,11,13-podocarpatrien-7-one was first discovered from leaves of T. cryptomerioides in 1998.15) Because many interesting novel skeletal components have been isolated from its leaves, 15-18) we were encouraged to study the chemical constituents of its bark again. Recently, we have reported 11 new podocarpane derivatives from the bark of this plant^{19,20)} from which only one quinone-type podocarpane derivative, 13-methoxy-8,12-podocarpadiene-11,14-dione,²⁰⁾ has been isolated and elucidated. Now we continue to investigate the more polar fraction of same extract and have isolated three new quinone-type podocarpane derivatives. In this paper we deal with the structure elucidation of 3β -hydroxy-13methoxy-8,12-podocarpadiene-11,14-dione (1), 18-hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione (2), and 13methoxy-8,12-podocarpadiene-2,11,14-trione (3).

Compound 1 is a yellow powder with the molecular formula C₁₈H₂₄O₄ based on high-resolution mass spectroscopy (HR-EI-MS). Analysis of its IR spectrum suggested that 1 contains a quinone group (1671, 1642, 1596 cm^{-1}). The UV spectrum (λ_{max} 273.5 nm) and ¹³C-NMR (Table 1) data were also consistent with a quinone moiety. In addition to one methoxyl signal ($\delta_{\rm C}$ 56.0), **1** has seventeen ¹³C-NMR signals including three CH₃ signals at $\delta_{\rm C}$ 15.7, 20.3, and 28.3. This evidence suggests that 1 is a podocarpane derivative. Three singlet methyl groups (Table 1; δ 0.85, 1.03, and 1.27) and a methoxyl signal (δ 3.74) were observed, with the latter placed in the quinone moiety. A typical H_{β}-1 signal at δ 2.80 (dt, J=13.5, 3.5 Hz) was similar to that observed in royleanone²¹) and compound 4,²⁰ and the latter was also isolated from the same source. Comparison of the ¹H- and ¹³C-NMR (Table 1) data of 1 with that of compound 4^{20} suggests that 1 has the same skeletal structure. In proton-detected heteronuclear multiple-bond correlation (HMBC) experiments, H-7 and H-20 signals confirmed the C-8 ($\delta_{\rm C}$ 140.6), C-9 ($\delta_{\rm C}$ 151.1), and C-14 ($\delta_{\rm C}$ 183.1). The olefinic proton had nuclear

Overhauser enhancement and exchange spectroscopy (NOESY) correlation to the methoxyl group (δ 3.74) and HMBC correlation with C-9, not with C-8. This evidencce identified the olefinic proton at C-12. A carbinyl proton at δ 3.24 (dd, J=8.2, 7.9 Hz) was assigned to be the C-3 α -axial based on its coupling pattern, NOESY correlation to H-5 (δ 1.04, d, J=13.0 Hz), and HMBC correlation to C-1, C-4, C-18, and C-19. Therefore compound **1** is 3 β -hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione.

Compound 2 has the same molecular formula as 1, C₁₈H₂₄O₄, as established by HR-EI-MS. It is a yellow amorphous solid containing a quinone group, and its functionality was determined from UV absorption at λ_{max} 274.0 nm and IR absorption bands at 1670, 1646, and 1596 cm⁻¹. Eighteen ¹³C-NMR signals contained four olefinic carbons ($\delta_{\rm C}$ 140.5, 151.8, 108.8, and 157.2), two quinone carbonyl carbons (δ_{C} 187.4 and 183.2), and a methoxyl carbon ($\delta_{\rm C}$ 55.9). This evidence suggests that 2 is a podocarpane derivative. However, two singlet methyl groups ($\delta_{\rm H}$ 0.82 [$\delta_{\rm C}$ 17.7] and 1.31 [$\delta_{\rm C}$ 20.8]) and one hydroxymethyl group ($\delta_{
m H}$ 3.14 and 3.45 [1H each, J=10.8 Hz; $\delta_{\rm C}$ 71.8]) were also observed. The chemical shift of the methyl group at δ 1.31 similar to the corresponding proton in 1 and 4 led us to assume that it was H-20. The results of NOE correlation between δ 0.82 and 1.31 led to the conclusion that the carbinyl proton is H-18, which has NOESY correlation to H-5 (δ 1.44). H-5 exhibited no NOE correlation with H-20 and H-19, indicating that the ring is trans-fused. Comparison of ¹H- and ¹³C-NMR data of 1, 2, and 4 as well as HMBC and NOESY methods confirmed the structure of 2 to be 18-hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione.

Compound **3**, a yellow amorphous solid has 18 ¹³C-NMR signals and the molecular formula $C_{18}H_{22}O_4$ based on its exact mass spectrum. A *p*-benzoquinone moiety attached to a methoxyl group (v_{max} 1675, 1644, 1601 cm⁻¹; δ_H 5.76 [1H, s], 3.75 [3H, s]; δ_C 140.7, 148.8, 186.7, 108.8, 157.4, 182.8, 56.1) and a cyclohexanone (v_{max} 1707 cm⁻¹; δ_C 210.9) moiety were revealed from its spectrum. Comparison of ¹H- and ¹³C-NMR data of **3** and **4** suggested that compound **3** has an additional ketone that **4** does not. The chemical shift of H-18 and H-19 at δ 1.07 and 0.99, respectively, excluded the oxo function at C-3. The typical H_β-1 signal in quinone-type podocarpane derivatives is near δ 2.8 (δ 2.80 in **1**, 2.74 in **2**, 2.74 in **4**²⁰). However, the H_β-1 signal of **3** at low-field δ 3.48 (d, J=14.8 Hz) indicated that the oxo function is situated at C-2. AB system signals displayed at δ 2.27 and 2.39

Table 1. ¹H- and ¹³C-NMR Spectral Data of Compounds 1—3 (400 MHz and 100 MHz in CDCl₃)

No	1		2		3	
	$\delta_{ m C}$	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	34.6	1.24 m 2.80 dt (13.5, 3.5)	36.1	1.10 td (13.1, 3.6) 2.74 br d (13.1)	52.1	2.17 d (14.8) 3.48 d (14.8)
2	27.8	1.72 m	18.3	1.59 m 1.75 m	210.9	-
3	78.3	3.24 dd (8.2, 7.9)	34.7	1.28 m 1.44 m	54.9	2.27 d (13.9) 2.39 d (13.9)
4	39.1		37.8	_	36.6	
5	51.2	1.04 d (13.0)	45.0	1.44*	50.6	1.54*
6	17.1	1.44 tdd	17.0	1.43 m	17.9	1.55*
		(13.0, 12.3, 5.7) 1.86 dd (13.0, 7.4)		1.77 m		1.95 dd (10.6, 6.7)
7	25.8	2.30 ddd (20.2, 12.3, 7.4) 2.70 dd (20.2, 5.7)	25.2	2.32 ddd (19.9, 11.3, 7.5) 2.64 dd (19.9, 5.0)	25.2	2.35 m 2.78 dd (19.4, 4.1)
8	140.6		140.5	_	140.7	
9	151.1		151.8	_	148.8	
10	38.6		38.8	_	41.7	
11	187.3	_	187.4	_	186.7	
12	108.9	5.72 s	108.8	5.71 s	108.8	5.67 s
13	157.2		157.2	_	157.4	
14	183.1	_	183.2	_	182.8	_
18	28.3	1.03 s	71.8	3.14 d (10.8) 3.45 d (10.8)	33.2	1.07 s
19	15.7	0.85 s	17.7	0.82 s	23.9	0.99 s
20	20.3	1.27 s	20.8	1.31 s	21.9	1.36 s
$-OCH_3$	56.0	3.74 s	55.9	3.73 s	56.1	3.75 s

* Overlapped with other signals.

(1H each, d, J=13.9 Hz, H-3) was assigned as vicinal to the carbonyl group. H₂-1 (δ 2.17 and 3.48) and H₂-3 (δ 2.27 and 2.39) with HMBC correlation to the carbonyl group ($\delta_{\rm C}$ 210.9) as well as H₂-3 with NOESY correlation with H-18 and H-19 are further evidence for the C-2 oxo-function. Based on the above reasons, it was concluded that the structure of **3** is 13-methoxy-8,12-podocarpadiene-2,11,14-trione. The oxidation at C-2 among podocarpane derivatives is unique.

Experimental

General Experimental Procedures Melting points were determined with a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H- and ¹³C-NMR spectra were determined using a Bruker DMX-400 at 400 and 100 MHz in CDCl₃ solution with tetramethylsilane (TMS) as an internal standard. EI-MS, FAB-MS, UV, and specific rotations were determined using a JEOL JMS-HX 300, JOEL JMS-HX 110, Hitachi S-3200 spectrometer, and JASCO DIP-180 digital polarimeter, respectively. Extracts were chromatographed on silica gel (Merck 70–230 mesh, 230–400 mesh, ASTM).

Plant Material The bark of T. cryptomerioides was collected in Tai-

Chun, Taiwan, in 1996. The plant material was identified by Mr. Muh-Tsuen Gun, formerly a technician of the Department of Botany, National Taiwan University. A voucher specimen has been deposited at the Herbarium of the Department of Botany, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation Air-dried pieces of *T. cryptomerioides* bark (12 kg) were extracted three times with acetone (60 l) at room temperature (7 d each time). The acetone extract was evaporated *in vacuo* to leave a black residue, which was suspended in H₂O (8 l), and then partitioned (3×) with 11 of ethyl acetate. The EtOAc fraction (360 g) was chromatographed on Si gel using *n*-hexane and EtOAc of increasing polarity as eluent and further purified by high-performance liquid chromatography eluting with *n*-hexane : EtOAc (25 : 75). Three components, 3*β*-hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione (1) (4.9 mg), 18-hydroxy-13-methoxy-8,12-podocarpadiene-2,11,14-trione (3) (4.1 mg), were obtained in pure form.

3β-Hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione (1): Yellow powder; mp 184—186 °C; $[\alpha]_D^{24}$ +11.1° (*c*=0.45, CHCl₃); UV λ_{max} nm (log ε): 273.5 (4.01); IR (film) v_{max} 3436, 1671, 1642, 1596, 1221, 1029 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) *m/z* (rel. int. %) 304 (M⁺, 1), 271 (8), 243 (27), 174 (47), 161 (49), 160 (100), 148 (33); HR-EI-MS *m/z* 304.1678 (M⁺ Calcd for C₁₈H₂₄O₄, 304.1668).

18-Hydroxy-13-methoxy-8,12-podocarpadiene-11,14-dione (2): Yellow amorphous solid; $[\alpha]_D^{24}$ +11.5° (c=0.40, CHCl₃); UV λ_{max} nm (log ε): 274.0 (3.95); IR (film) v_{max} 3443, 1670, 1646, 1596, 1220, 1054, 984, 857 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) m/z (rel. int. %) 304 (M⁺, 16), 273 (100), 205 (14), 179 (34); HR-EI-MS m/z 304.1681 (M⁺ Calcd for C₁₈H₂₄O₄, 304.1668).

13-Methoxy-8,12-podocarpadiene-2,11,14-trione (**3**): Yellow amorphous solid; $[\alpha]_D^{24}$ +104.0° (c=0.37, CHCl₃); UV λ_{max} nm (log ε): 272.0 (3.96); IR (film) v_{max} 1707, 1675, 1644, 1601, 1218, 1076, 987, 864 cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; EI-MS (70 eV) m/z (rel. int. %) 302 (M⁺, 11), 289 (100), 287 (76), 205 (52), 149 (25); HR-EI-MS m/z 302.1522 (M⁺ Calcd for C₁₈H₂₂O₄, 302.1512).

Acknowledgments This research was supported by the National Science Council of the Republic of China.

References

1) Cheng Y. S., Kuo Y. H., Lin Y. T., J. Chem. Soc. Chem. Commun.,

August 2001

1967, 565-566.

- Lin Y. T., Cheng Y. S., Kuo Y. H., *Tetrahedron Lett.*, 1968, 3881– 3882.
- 3) Kuo Y. H., Cheng Y. S., Lin Y. T., *Tetrahedron Lett.*, **1969**, 2375–2377.
- Kuo Y. H., Shih J. S., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., 26, 71-73 (1979).
- 5) Kuo Y. H., Lin Y. T., Lin Y. T., J. Chin. Chem. Soc., **32**, 381–383 (1985).
- Chang S. T., Wang S. Y., Wu C. L., Chen P. F., Kuo Y. H., *Holz-forschung*, 54, 241–245 (2000).
- Majumder P. L., Maiti D. C., Kraus W., Bokel M., *Phytochemistry*, 26, 3021–3023 (1987).
- Ara I., Siddiqui B. S., Faigi S., Siddiqui S., *Phytochemistry*, 27, 1801—1804 (1988).
- Siddiqui S., Ara I., Faigi S., Mahmood T., Siddiqui B. S., *Phytochemistry*, 27, 3903–3907 (1988).
- Ara I., Siddiqui B. S., Faigi S., Siddiqui S., J. Nat. Prod., 51, 1054– 1061 (1988).
- 11) Ara I., Siddiqui B. S., Faigi S., Siddiqui S., J. Nat. Prod., 53, 816-

820 (1990).

- Zoghbl M. D. G. B., Roque N. F., Gottlieb H. E., *Phytochemistry*, 20, 1669–1673 (1981).
- Alvarenga M. A. D., Silva J. D., Gottlieb H. E., Gottlieb O. R., *Phytochemistry*, 20, 1159–1163 (1981).
- 14) Cambie R. C., Mander L. M., Tetrahedron, 18, 465-475 (1962).
- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 48, 1391–1397 (1998).
- 16) Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 40, 871—873 (1995).
- Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 42, 1657–1663 (1996).
- 18) Lin W. H., Fang J. M., Cheng Y. S., *Phytochemistry*, 46, 169–173 (1997).
- Kuo Y. H., Chang C. I., Lee C. K., Chem. Pharm. Bull., 48, 597–599 (2000).
- 20) Kuo Y. H., Chang C. I., J. Nat. Prod., 63, 650-652 (2000).
- Cossy J., Ranaivosata J. L., Bellosta V., Ancerewicz J., Ferritto R., Vogel P., J. Org. Chem., 60, 8351–8359 (1995).