Glycosides of Benzyl and Salicyl Alcohols from Alangium chinense

Atsuko Iтон,^{*a*} Takao Tanahashi,^{*,*a*} Naotaka Nagakura,^{*a*} Kenichiro Inoue,^{*b*} Hiroshi Kuwaлмa,^{*c*} and Hua-Xin Wu^{*d*}

Kobe Pharmaceutical University,^a Higashinada-ku, Kobe 658–8558, Japan, Gifu Pharmaceutical University,^b Mitahorahigashi, Gifu 502–8585, Japan, Faculty of Pharmaceutical Sciences, Kinki University,^c Kowakae, Higashiosaka 577–8502, Japan, and Yunnan Pharmaceutical Group Corporation,^d 547 Beijing Road, Kunming, Yunnan, People's Republic of China. Received March 28, 2001; accepted June 16, 2001

From the water-soluble fraction of the dried leaves of *Alangium chinense*, three new glycosides, benzyl alcohol β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-xylopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside, 2'-O- β -D-glucopyranosylsalicin, and 2'-O- β -D-glucopyranosyl-6'-O- β -D-xylopyranosylsalicin were isolated along with seven known glycosides. The structures of the new compounds were determined by spectroscopic and chemical means.

Key words Alangium chinense; Alangiaceae; leaf; salicyl glycoside; benzyl glycoside

In the course of our phytochemical studies on *Alangium* plants, we earlier reported new phenolic glycosides from *n*-BuOH soluble fraction of the leaves of *Alangium chinense* (LOUR.) HARMS.¹⁾ We have further investigated the water soluble fraction of this plant material and isolated three new glycosides **1**—3 together with salicin (**4**), 6'-O- β -D-xylopyranosylsalicin (**5**), 4',6'-O-(S)-hexahydroxydiphenoylsalicin, henryoside, 6'-O- β -glucopyranosylhenryoside,²⁾ benzyl alcohol β -D-xylopyranosyl(1 \rightarrow 6)- β -D-glucopyranoside (**6**) and Z-hex-3-en-1-ol β -D-xylopyranosyl(1 \rightarrow 6)- β -D-glucopyranoside. The known compounds have already been isolated from the *n*-BuOH fraction of *A. chinense*.¹⁾ This paper deals with the isolation and structural elucidation of the three new compounds.

Compound 1, $C_{24}H_{36}O_{15}$, was obtained as an amorphous powder. It showed UV maxima at 216, 258 and 264 nm and IR bands at 3384, 1637 and 1456 cm⁻¹. Its ¹H-NMR spectrum exhibited signals for monosubstituted benzene ring at δ 7.26 (1H, tt, J=7.0, 1.5 Hz), 7.33 (2H, brt, J=7.0 Hz), 7.45 (2H, br d, J=7.0 Hz), benzylic methylene proton signals at δ 4.71 (1H, d, J=12.0 Hz) and 4.94 (1H, d, J=12.0 Hz) and three anomeric proton signals at δ 4.34 (1H, d, J=7.5 Hz), 4.54 (1H, d, J=7.5 Hz), 4.62 (1H, d, J=8.0 Hz). These spectral data suggested that 1 consisted of benzyl alcohol and three sugar units. Acid hydrolysis of 1 afforded D-glucose and D-xylose which were identified by GLC analysis of the thiazolidine derivatives.³⁾ The ¹³C-NMR spectrum of **1** demonstrated the presence of two β -glucose units and a β xylose moiety besides a benzyl alcohol moiety. The glycosidic linkages were confirmed by the cross-peaks between H₂-7 and C-1', between H-1' and C-7, between H-2' and C- $1^{"}$, between H-1" and C-2', between H₂-6' and C-1", and between H-1^{""} and C-6['] in the ¹H-detected heteronuclear multiple-bond connectivity (HMBC), and by the cross-peaks between H₂-7 and H-1', between H-2' and H-1", and between H-6' and H-1"" in the nuclear Overhauser enhancement and exchange spectroscopy (NOESY) correlations. This was also supported by comparison of its ¹³C-NMR spectrum with that of benzyl alcohol xylopyranosyl $(1 \rightarrow 6)$ -glucopyranoside (6)⁴⁾ Accordingly, compound 1 was deduced to be benzyl alcohol β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-xylopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside.

Compound 2, $C_{19}H_{28}O_{12}$, was also obtained as an amorphous powder. It showed UV maxima at 213, 269 and 274

nm and IR absorption at 3373, 1605, 1593 and 1493 cm⁻¹. Acid hydrolysis of **2** furnished D-glucose.³⁾ The ¹H-NMR data of **2** showed signals for four aromatic protons at δ 7.00 (td, J=7.5, 1.0 Hz), 7.19 (dd, J=8.0, 1.0 Hz), 7.25 (ddd, J=8.0, 7.5, 1.5 Hz) and 7.30 (dd, J=7.5, 1.5 Hz), benzylic methylene proton signals at δ 4.63 (d, J=13.0 Hz) and 4.78 (d, J=13.0 Hz) together with the signals arising from a β -glucosyl unit. These spectral feature demonstrated its close similarlity to salicin (**4**) which is the main component of this plant material, but with one more β -glucosyl unit. The attachment of the second glucosyl unit to C-2 of the first glucosyl unit was confirmed by the two-dimensional NMR experiments and the comparison of ¹³C-NMR data of **2** with those of salicin (**4**).¹⁾ Thus, compound **2** was characterized as 2'-O- β -D-glucopyranosylsalicin.

The molecular formula of compound **3**, $C_{24}H_{36}O_{16}$, obtained from its high resolution secondary ion mass spectrum (HR-SI-MS) was $C_5H_8O_4$ more than that of **2**. Compound **3** liberated D-glucose and D-xylose on acid hydrolysis.³⁾ Its spectral features were quite similar to those of **2** except for the signals due to an additional β -xylopyranosyl unit in its NMR spectra (Table 1). The linkage of β -xylopyranose to C-6 of the inner glucosyl unit of **2** was determined by HMBC and NOESY correlations and comparison of its ¹³C-NMR spectrum with those of **2** and 6'-*O*- β -D-xylopyranosylsalicin (**5**).^{1a)} Therefore, **3** was assigned to 2'-*O*- β -D-glucopyranosyl-6'-*O*- β -D-xylopyranosylsalicin.

Position	1		2		3	
1 OSITION	С	Н	С	Н	С	Н
1	139.1	_	156.9	_	156.9	_
2	128.9	7.45 br d (7.0)	131.5	_	131.5	
3	129.3	7.33 brt (7.0)	129.8	7.30 dd (7.5, 1.5)	129.9	7.24—7.31 m
4	128.7	7.26 tt (7.0, 1.5)	123.4	7.00 td (7.5, 1.0)	123.5	7.01 td (7.0, 1.5)
5	129.3	7.33 brt (7.0)	130.0	7.25 ddd (8.0, 7.5, 1.5)	130.3	7.24—7.31 m
6	128.9	7.45 br d (7.0)	116.0	7.19 dd (8.0, 1.0)	116.4	7.24—7.31 m
7	72.2	4.71 d (12.0)	61.4	4.63 d (13.0)	61.5	4.63 d (13.0)
		4.94 d (12.0)		4.78 d (13.0)		4.78 d (13.0)
Glc 1'	102.3	4.54 d (7.5)	100.7	5.02 d (8.0)	100.7	5.01 d (8.0)
2'	83.0	3.53 dd (9.0, 7.5)	82.1	3.82 dd (9.0, 8.0)	82.0	3.83 dd (9.0, 8.0)
3'	$77.9^{a)}$	3.57 t (9.0)	78.4	3.70 t (9.0)	78.3^{d}	3.69 t (9.0)
4′	71.4	3.39 dd (10.0, 9.0)	71.0^{b}	3.44 dd (10.0, 9.0)	71.2	3.43 br t (9.5)
5'	77.0	3.47 ddd (10.0, 5.5, 2.0)	78.1	3.46 ddd (10.0, 5.0, 2.0)	77.3 ^d)	3.69 ddd (9.5, 6.0, 2.0)
6'	69.9	3.75 dd (11.5, 5.5)	62.5	3.71 ^{c)} dd (12.0, 5.0)	69.9	3.77 dd (11.5, 6.0)
		4.12 dd (11.5, 2.0)		3.90 dd (12.0, 2.0)		4.12 dd (11.5, 2.0)
Glc 1"	105.2	4.62 d (8.0)	105.0	4.80 d (8.0)	105.0	4.80 d (8.0)
2″	76.1	3.24 dd (9.0, 8.0)	75.9	3.22 dd (9.0, 8.0)	75.9	3.22 dd (9.0, 8.0)
3″	$77.8^{a)}$	3.33—3.36 m	77.9	3.39 t (9.0)	78.0^{d}	3.39 t (9.0)
4″	71.4	3.33—3.36 m	71.1^{b}	3.35 t (9.0)	71.2	3.35 t (9.0)
5″	78.2	3.19 ddd (9.0, 5.0, 2.0)	78.4	3.29 ddd (9.0, 5.0, 2.0)	78.4^{d}	3.29 m
6"	62.6	3.64 dd (12.0, 5.0)	62.3	3.72^{c} dd (12.0, 5.0)	62.3	3.72 dd (12.0, 5.0)
		3.75 dd (12.0, 2.0)		3.81 dd (12.0, 2.0)		3.81 dd (12.0, 2.0)
Xyl 1‴	105.7	4.34 d (7.5)			105.5	4.32 d (7.5)
2‴	75.0	3.22 dd (9.0, 7.5)			75.0	3.20 dd (9.0, 7.5)
3‴	77.8 ^{a)}	3.30 t (9.0)			77.7 ^d)	3.28 t (9.0)
4‴	71.2	3.49 ddd (10.0, 9.0, 5.5)			71.2	3.47 ddd (10.5, 9.0, 5.5)
5‴	67.0	3.18 dd (11.5, 10.0)			66.9	3.13 dd (11.5, 10.5)
		3.86 dd (11.5, 5.5)				3.83 dd (11.5, 5.5)

a—*d*) Values with the same superscript are interchangeable. Coupling constants (*J* in Hz) are given in parenthesis.

Experimental

UV spectra were recorded on a Shimadzu UV-240 spectrophotometer and IR spectra on a Shimadzu FTIR-8200 spectrophotometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter. ¹H- (500 MHz) and ¹³C- (125 MHz) NMR spectra were recorded on a Varian VXR-500 spectrometer with tetramethylsilane as an internal standard. SI-MS and HR-SI-MS were obtained with a Hitachi M-4100 mass spectrometer. Glycerol or 3-nitrobenzyl alcohol was used as the matrix. Medium pressure liquid chromatography (MPLC) was carried out with Wakogel FC-40C18. HPLC was performed using a Waters system (600E System Controller, 486 Tunable Absorbance Detector). GLC was carried out on a Shimadzu GC-18A equipped with FID.

Isolation of Glycosides Leaves of Alangium chinense were collected in August 1994 in Xishuangbanna, Yunnan, People's Republic of China. A voucher specimen (KPFY-941) is deposited in the laboratory of Kobe Pharmaceutical University. Dried leaves (177.6 g) of A. chinense were extracted with hot MeOH and the extracts were fractionated as described previously.^{1b} The residue (24.1 g) from H₂O layers was fractionated on reversed-phase MPLC. Elution with H₂O-MeOH mixtures of the indicated MeOH content gave six fractions, 1 (0%, 15.28 g), 2 (0%, 212.7 mg), 3 (5%, 1.06 g), 4 (10%, 389.2 mg), 5 (20%, 34.4 mg), and 6 (20%, 296.5 mg). Fraction 1 was purified by preparative HPLC (µBondasphere 5µ C18-100 Å, MeOH-H₂O, 1:3, 1:4) to afford 2 (7.5 mg), 4 (98.6 mg), 5 (41.3 mg) and 6'-O- β -glucopyranosylhenryoside (507 mg). Fractions 2-6 were submitted to preparative HPLC (μ Bondasphere 5 μ C18-100Å, MeOH–H₂O, 2:3, 7:13, 3:7, 1:3, 1:4), respectively. Fraction 2 yielded 4 (5.5 mg), 5 (9.9 mg) and 6'-O- β -glucopyranosylhenryoside (58.5 mg); fr. 3: 3 (2.7 mg) and 6'-O- β -glucopyranosylhenryoside (573 mg); fr. 4: 1 (9.1 mg), 4 (11.6 mg), 4',6'-O-(S)hexahydroxydiphenoylsalicin (24.8 mg), henryoside (8.0 mg) and 6'-O- β glucopyranosylhenryoside (27.1 mg); fr. 5: 1 (2.5 mg), 4',6'-O-(S)-hexahydroxydiphenoylsalicin (3.3 mg) and henryoside (1.1 mg); fr. 6: 4',6'-O-(S)hexahydroxydiphenoylsalicin (15.3 mg), henryoside (5.2 mg), 6'-O- β -glucopyranosylhenryoside (9.6 mg), 6 (12.3 mg) and Z-hex-3-en-1-ol β -D-xylopyranosyl($1 \rightarrow 6$)- β -D-glucopyranoside (1.1 mg).

Benzyl Alcohol β -D-Glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1 \rightarrow 6)]$ - β -D-glucopyranoside (1): $[\alpha]_{D}^{22} - 41^{\circ}$ (c=0.6, MeOH). UV λ_{max}^{MeOH} nm

(log ε): 216 sh (3.72), 258 (3.87), 264 sh (2.85). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3384, 1637, 1456. ¹H-NMR: Table 1. ¹³C-NMR: Table 1. Negative ion SI-MS *m/z*: 563 (M–H)⁻, 431, 401. Negative ion HR-SI-MS *m/z*: 563.1993 (Calcd for C₂₄H₃₅O₁₅: 563.1977). NOESY: H-2'/H-1", H-6'/H-1"', H₂-7/H-1', H-1"/H-5", H-1"/H-5"', H-1"/H-3"', H-1'/H-3", H-1'/H-5', H-2, 6/H₂-7. HMBC: H-1" \rightarrow C-6', H-1' \rightarrow C-7, H-2' \rightarrow C-1", H₂-6' \rightarrow C-1"', H-1" \rightarrow C-2', H₂-7 \rightarrow C-1'.

2'-*O*-β-D-Glucopyranosylsalicin (**2**): $[\alpha]_{D}^{22} - 33^{\circ}$ (*c*=0.35, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 213 sh (3.87), 269 (3.08), 274 (3.06). IR $\nu_{\text{Max}}^{\text{MBr}}$ cm⁻¹: 3373, 1605, 1593, 1493. ¹H-NMR: Table 1. ¹³C-NMR: Table 1. Negative ion SI-MS *m*/*z*: 447 (M-H)⁻, 123. Negative ion HR-SI-MS *m*/*z*: 447.1498 (Calcd for C₁₉H₂₇O₁₂: 447.1503). NOESY: H-3/H₂-7, H-6/H-1', H-1'/ H-3', H-1'/H-5', H-2'/H-4', H-2'/H-1'', H-1''/ H-5''. HMBC: H-1' \rightarrow C-1, H-2' \rightarrow C-1'', H-1'' \rightarrow C-2'.

2'-*O*-β-D-Glucopyranosyl-6'-*O*-β-D-xylopyranosylsalicin (**3**): $[\alpha]_{D}^{19} - 31^{\circ}$ (*c*=0.27, MeOH). UV λ_{max}^{MeOH} nm (log ε): 213 sh (3.92), 270 sh (3.35), 275 (3.37). IR ν_{max}^{KBr} cm⁻¹: 3368, 1606, 1493. ¹H-NMR: Table 1. ¹³C-NMR: Table 1. Negative ion SI-MS *m/z*: 579 (M-H)⁻, 447, 417, 123. Negative ion HR-SI-MS *m/z*: 579.1942 (Calcd for C₂₄H₃₅O₁₆: 579.1926). NOESY: H-3/H₂-7, H-6/H-1', H-1'/H-3', H-1'/H-5', H-1''/H-2', H₂-6'/H-1''', H-1''' H-5'''. HMBC: H-1' \rightarrow C-1, H-2' \rightarrow C-1'', H-1'' \rightarrow C-2', H₂-6' \rightarrow C-1''', H-1''' \rightarrow C-6'.

Acid Hydrolysis of Glycosides 1—3 Each glycoside (1 mg) was heated at 95 °C with dioxane (0.5 ml) and 5% H₂SO₄ (0.5 ml) for 1 h. After neutralization with Amberlite IRA-400 (OH⁻ form), the reaction mixture was concentrated and the residue was passed through a Sep-Pak C₁₈ cartridge with H₂O. The eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (1 mg) in pyridine (0.125 ml) at 60 °C for 1 h. The solution was then treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.05 ml) at 60 °C for 1 h. The supernatant was applied to GLC; GLC conditions: column, Supelco SPBTM-1, 30 m×0.25 mm; column temperature, 230 °C; N₂ flow rate, 0.8 ml/min; t_R of derivatives, p-glucose 13.0 min, L-glucose 13.6 min, p-xylose 7.5 min, L-xylose 8.0 min. p-Glucose was detected from 1—3 and p-xylose was detected from 1 and 3.

Acknowledgements Our thanks go to Dr. M. Sugiura (Kobe Pharmaceutical University) for NMR spectra and to Dr. K. Saiki (Kobe Pharmaceu-

References

- a) Itoh A., Tanahashi T., Nagakura N., *Natural Medicines*, **51**, 173– 175 (1997); b) Itoh A., Tanahashi T., Ikejima (née Sato), S., Inoue M., Nagakura N., Inoue K., Kuwajima H., Wu H.-X., *J. Nat. Prod.*, **63**, 95–98 (2000).
- Kijima H., Ide T., Otsuka H., Ogimi C., Hirata E., Takushi A., Takeda Y., *Phytochemistry*, 44, 1551–1557 (1997).
- 3) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **34**, 1843—1845 (1986).
- Otsuka H., Takeda Y., Yamasaki K., *Phytochemistry*, 29, 3681–3683 (1990).