Synthesis and Structure–Activity Relationships in a Series of Ethenesulfonamide Derivatives, a Novel Class of Endothelin Receptor Antagonists

Hironori Harada,* Jun-ichi Kazamı, Susumu Watanuki, Ryuji Tsuzuki,¹⁾ Katsumi Sudoh, Akira Fujimori, Tatsuhiro Tokunaga, Akihiro Tanaka,²⁾ Shin-ichi Tsukamoto, and Isao Yanagisawa

Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305–8585, Japan. Received August 1, 2001; accepted September 21, 2001

In the previous paper, we described a series of the 2-arylethenesulfonamide derivatives, a novel class of ET_{Δ} **selective endothelin (ET) receptor antagonists, including the compounds 1a, b. Compound 1a showed excellent oral antagonistic activities and pharmacokinetic profiles, and the monopotassium salt of 1 (YM-598 monopotassium) is in clinical trials. In this paper, we wish to report the investigation of the further details of structure–activity relationships (SARs) of the 2-phenylethenesulfonamide region in 1a. It was found that methyl substitutions at the 2-, 4- and 6-positions of the phenyl group in 1a led to the discovery of the** ET_A/ET_B **mixed antagonist (6s)** with an IC₅₀ of 2.2 nm for the ET_A receptor. We also found that introduction of an ethyl group to the 1-position of the ethenyl group in 1a gave the ET_A selective antagonist (6u) with an oral endothelin antagonistic activity in **rats.**

Key words endothelin antagonist; endothelin-A/endothelin-B mixed antagonist; ethenesulfonamide; endothelin-A selective antagonist

Endothelin (ET), isolated from the conditioned medium of cultured porcine vascular endothelial cells in 1988, is a highly potent vasoconstrictive 21-amino acid peptide.³⁾ There are three isoforms (ET-1, ET-2, ET-3). ET-1 is the predominant component of the three ET-isopeptides and is derived from precursor big $ET-1$.⁴⁾ ET-1 has been believed to be implicated in the pathogenesis of various diseases, largely because of its ability to constrict vascular and nonvascular smooth muscle. 5

Two subtypes of receptors for ETs, termed the ET_A receptor and ET_B receptor, have been cloned and stably expressed in mammals. ET_A receptor appears to exhibit affinity for ET-1 and ET-2 over ET-3, whereas the ET_B receptor has nearly equipotent affinity for these three ETs.⁶⁾

A number of ET_A -selective and ET_A/ET_B mixed antagonists have been reported for a decade, $\frac{7}{1}$ and some of these ET antagonists are currently in clinical trials.

In the previous paper, 8 ⁾ we described a series of the 2arylethenesulfonamide derivatives, a novel class of ET_A- selective ET receptor antagonists, including the compounds (**1a, b**) (Fig. 1). Among these, the potassium salt of **1a** (YM598 monopotassium) is in clinical trials. Compound **1a** showed an IC_{50} value of 3.1 nm for the ET_A receptor and 1200 nm for the ET_B receptor $(ET_B/ET_A \text{ ratio}=390)$. In the *in vivo* study, it showed a potent oral inhibitory activity of pressor response to big ET-1-treated rats and excellent pharmacokinetic profiles in rats and dogs. In this paper, we wish to report the investigation of the further details of the structure– activity relationships (SARs) of the 2-phenylethenesulfonamide region in **1a**.

In the previous study, $8b$) replacement of the phenyl group of the 2-phenylethenesulfonmamide moiety in compound **1a** with another aryl or heteroaryl groups was explored. This exercise revealed that these modifications were well tolerated in the ET_A binding affinity and remarkably led to various ET_B/ET_A ratios in the 50—820 range. Intrigued by these observations, we became interested in the effect of the further modification of the phenyl group in the phenylethenesulfonamide moiety of $1a$ on both ET_A and ET_B binding affinities and the ET_A/ET_B ratio. We also investigated modification of the ethenyl group in the phenylethenesulfonamide moiety.

Chemistry

Charts 1 and 2 show the syntheses of alkenesulfonamide derivatives.

The starting compound (**3**) was prepared according to the method reported by Burri and his coworkers*.* 9) Nucleophilic substitution of the pyrimidine derivative **3** with (*E*)-alkenesulfonamide (**4**) resulted in the chloropyrimidine (**5a**—**j**, **m x**). The chloropyrimidine **5** was treated with sodium methoxide in *N*,*N*-dimethylformamide (DMF) or methanol to give the methoxy analogues $(6a, c-\mathbf{j}, m-\mathbf{x})$. Compound 3 was also treated with the methyl ester (**4k**) to give a mixture of the benzoic acid analogue (**5l**) and the methyl ester (**5k**). This mixture was treated with concentrated sulfuric acid in methanol to give **5k** as a sole product. Treatment of **5k** with sodium methoxide in methanol gave the benzoic acid analogue (**6l**). Under these reaction conditions, *in situ* hydrolysis of the esters was observed. Esterification of **6l** gave the methyl ester **6k**. The chloropyrimidine **5b** was treated with sodium and ethyleneglycol to afford the hydroxyethoxy derivative **6b**. The (E) form of all screened compounds **6** was

 $1a: R = MeO$

YM598 monopotassium :potassium salt of 1a

1b: R = HOCH2CH2O

$$
Fig.~1
$$

∗ To whom correspondence should be addressed. e-mail: haradah@yamanouchi.co.jp © 2001 Pharmaceutical Society of Japan

Ar = aryl, DMF = N,N-dimethylformamide

confirmed by the coupling constant between the vinyl pro t ons ($J > 14$ Hz) in the ¹H-NMR spectrum except for 6t—**x**.

In Chart 2, an outline of the synthesis of the key intermediates **4** is given.

A palladium-catalyzed Heck reaction between ethenesulfonamide (**7**) and arylbromide afforded the (*E*)-2-phenylethenesulfonamide derivatives (**4c**, **d**,**f**—**i**, **m**—**s**) (method A).¹⁰⁾ Under the same condition, methyl 4-bromobenzoate was reacted with **7** to afford the benzoic acid analogue (**4l**). Esterification of **4l** gave the methyl ester **4k**. (method B)

Other (*E*)-2-arylethenesulfonamide derivatives (**4a**, **b**, **e**,**j**, **t**—**x**) have been synthesized *via* the route shown in method C.11) The styrene derivatives (**8**) were treated with sulfuryl chloride and followed by the treatment with aqueous ammonia to give the ethenesulfonamide derivatives **4a**, **b**, **e**,**j**. The (*E*)-form of the disubstituted (*E*)-2-phenylethenesulfonamide derivatives **4a**—**k**, **m**—**s** was confirmed by the coupling constant between the vinyl protons $(J>14 \text{ Hz})$ in the ¹H-NMR spectrum. The trisubstituted (E) -2-phenylethenesulfonamide derivatives (**4t**—**x**) were also synthesized according to the same procedure. The (*E*)-form of these derivatives was confirmed by the NMR spectra (Fig. 2). A nuclear Overhauser effect (NOE) between the allyl proton and aromatic protons was observed, but an NOE between the allyl proton and vinyl proton was not observed. The structure of **4x** was confirmed by using a heteronuclear multiple-bond correlation spectrum (HMBC), a heteronuclear multiple quantum coherence spectrum (HMQC) and an NOE study. The chemical shifts (ppm) in the 1 H- and 13 C-NMR spectra of **4x** are shown in Fig. 2.

Results and Discussion

Compounds have been evaluated *in vitro* for their affinity toward cloned human ET_A and ET_B receptors expressed in COS-1 cells employing receptor-binding assays. Some compounds were further examined *in vivo* for their ability after oral or intravenous administration to inhibit an increase in mean arterial blood pressure (MABP) due to the administration of exogenous big ET-1 to pithed or conscious rats.

The SARs of our novel series of ET receptor antagonists

(Bu = fert-Butyl, TFA = trifluoroacetic acid,

Chart 2

Fig. 2. Confirmation of the Structure of **4t**—**x**

The arrow shows that the NOE between the two protons was observed. The values in the structure 4x show the chemical shifts (ppm) in ¹H-NMR spectrum and the values in parentheses show the chemical shifts (ppm) in 13C-NMR spectrum.

are summarized in Tables 1—4.

Mono-substitution at the 2—4 position of the phenyl ring was investigated (Table 1). Introduction of a methyl group into the phenyl ring of the 2-phenylethenesulfonamide moiety (**6a**—**c**) retained the same order of the affinity for the ET_A receptor compared with **1a** and **b**. On the other hand, the 2-methyl derivative **6a** and the 4-methyl derivative **6c** resulted in an increase in the ET_B binding affinity over the compound **1a** by 4-fold and 6-fold respectively. For the chlorine substitution, the 2- and 4-positions (**6d**, **f**) also showed Table 1. ET_A and ET_B Receptor Binding Affinities for Ethenesulfonamide Derivatives

a) Experiments were performed twice except **1a** for ET_A and ET_B , **6w** for ET_A . *b*) Cloned human receptor binding. *c*) Expressed as $ET_B IC_{50}/ET_A IC_{50}$. *d*) The biological data of compound was previously reported (see ref. 8). *e*) Potassium salt.

Table 2. ET_A and ET_B Receptor Binding Affinities for Ethenesulfonamide Derivatives

a—*d*) See footnotes in Table 1.

an increase in the ET_B binding affinity by 4-fold.

Realizing the effectiveness of 4-substitution in increasing the ET_B binding affinity, we then synthesized and evaluated a series of compounds with another substitutions at the 4 position. The ethyl, *tert*-butyl, methoxy, trifluoromethyl and methoxycarbonyl derivatives (**6g**—**k**) were more potent in ET_B binding affinity than **1a** by 2- to 4-fold. On the other hand, the ET_A binding affinities of these 4-substituted analogues (**6f**—**k**) were less potent than that of **1a** by 4- to 40 fold. These results suggested that substituents at the 4-position larger than a methyl group were not well tolerated in the ET_A binding affinity, probably due to the steric factors. The

Table 3. ET_A and ET_B Receptor Binding Affinities for Ethenesulfonamide **Derivatives**

$$
\begin{array}{c}\n & \text{one} \\
 & \text{one} \\
 \text{N} \\
 \text{N} \\
 \text{N} \\
 \text{N} \\
 \text{N} \\
 \text{O}:\text{S-R} \\
 \text{N} \\
 \text{O} \\
 \text{N} \\
 \text{N} \\
$$

a—*e*) See footnotes in Table 1.

Table 4. ET_A and ET_B Receptor Binding Affinities for Ethenesulfonamide Derivatives

a—*d*) See footnotes in Table 1.

acid derivative 6l was much less potent in both ET_A and ET_B binding affinity than **1a**, indicating that acidic groups may not be tolerated at this position.

Because 2-methyl derivative $6a$ showed a potent ET_A binding affinity and an increased ET_B binding affinity, we decided to investigate additional methyl substitutions to 2-methyl derivative **6a** (Table 2). Methyl substitution at the 3- and 5-positions ($6m$, $\bf{0}$) had no effect on the ET_B binding affinity, while an additional methyl substitution at the 4- and 6-positions $(6n, p)$ increased the ET_B binding affinity compared to **6a** by 3- and 4-fold, respectively. The 2,4- and 2,6-dimethyl derivatives 6n and 6p retained reasonable ET_A binding affinity. The ET_A selectivity of **6p** was 8.5 and lower than that of **1a** by 49-fold. Replacement of the methyl groups in **6p** with ethyl groups (**6q**) or chlorine atoms (**6r**) led to a slight decrease in the ET_B binding affinity. The ET_A binding affinities of **6q** and **6r** were lower than that of **6a** by about 14-fold and 2-fold, respectively. Introduction of the third methyl group at

Fig. 3. The NMR Studies of **4s** and **4x**

the 4-position of **6p** afforded the trimethyl derivative **6s** and resulted in an increase in both ET_A and ET_B binding affinity by *ca.* 4-fold and 2-fold, respectively. Compound **6s** had a potent ET_A binding affinity and a low ET_A selectivity, with an IC₅₀ value of 2.2 nm for the ET_A receptor and an ET_B/ET_A ratio of 14. It was found that 2,4,6-trimethyl substitution of **1a** increased the ET_B binding affinity by 40-fold.

We were then curious to explore the introduction of alkyl groups into the ethenyl moiety in the 2-phenylethenesulfonamide (Table 3).

Methyl substitution at the 1-position of the ethenyl moiety (6t) increased the both ET_A and ET_B binding affinity compared to **1a** by about 2-fold and 4-fold, respectively. Replacement of the methyl group in **6t** with the ethyl group (**6u**) led to *ca.* a 2-fold decrease in both ET_A and ET_B binding affinities. The 1-propyl derivative (**6v**) was significantly less active than **1a** in both ET_A and ET_B binding affinities. The 2-methyl derivative (**6w**) was found to be almost equally potent to **1a** in the ET_B binding affinity but was about 4-fold less potent than 1 in the ET_A binding affinity.

Compounds in Table 4 exemplify combination of the groups from two sites of the 2-phenylethenesulfonamide moiety.

Introduction of a methyl group at the 1-position of the ethenesulfonamide in the trimethyl derivative **6s** gave the compound $6x$ with *ca.* a 3-fold decrease in the ET_A binding affinity and a 4-fold decrease in the ET_B binding affinity. We assumed that these decreases might be due to the changes in the conformation in the 2-phenylethenesulfonamide region in **6s** and **6x**.

In order to investigate the differences in the stable conformation of the 2-phenylethenesulfonamide region between **6s** and **6x**, molecular mechanics studies and NMR studies were performed using **4s** and **4x** as simple models (Fig. 3). A conformational analysis using a systematic search in which the torsion angle of the C1–C2–C3–C4 bond was rotated in 1° increments revealed that the torsion angles (C1–C2–C3–C4) of the most energetically favored conformations of **4s** and **4x** were 59° and 90°, respectively (Windows CAChe version 4.4 MM2, Fujitsu Limited). In the NMR studies, the coupling constants $({}^{3}J_{\text{CH}})$ between H2 and C4 obtained by long-range selective proton decoupling (LSPD) experiments were 4.2 Hz for **4s** and \leq 2.1 Hz for **4x**. The value of the coupling constant \leq 2.1 Hz indicated that the torsion angle (H2–C2–

Fig. 4. Effect of oral Administration of **6s** (10 mg/kg), **6t** (3 mg/kg) and **6u** (0.3 mg/kg) on Pressor Response to Big ET-1 in Conscious Normotensive Rats

Change in MABP (%): increase in MABP in conscious rats elicited by intravenous administration of big ET-1 (0.5 nmol/kg).

Table 5. Comparison of the Effects of Oral Administration of the 2- Phenylethenesulfonamide Derivatives on Pressor Response to Big ET-1 in Pithed Rats

Compound	ID_{50} (mg/kg) ^{<i>a</i>)}
	p.o.
6t 6u 1a	6.6(3.4—16.1) $1.7(1.1-3.0)$ 1.1 $(0.70-2.4)^{b}$

a) ID₅₀ value was defined as the dose of test compounds which caused a 50% inhibition of the pressor response to big ET-1 in DBP. $n=3-8$, ID₅₀ values are expressed as the mean with 95% confidence limits. *b*) The biological data of compound was previously reported (see ref. 8).

C3–C4) in **4x** was about 90°, and the value 4.2 Hz indicated that the torsion angle in **4s** was smaller than 90° .¹²⁾ These two studies suggested that the stable conformation of the 2 phenylethenesulfonamide region in **6s** and **6x** might be different in each compound.

We have discovered the ET_A/ET_B mixed antagonist 6s and the ET_A selective antagonists 6t and 6u through the SAR study around the 2-phenylethenesulfonamide region in **1a**. These compounds were further evaluated in the *in vivo* studies (Fig. 4, Table 5).

The trimethyl derivative **6s**, the 1-methyl derivative **6t** and the 1-ethyl derivative **6u** were tested for their antihypertensive activity in conscious rats after oral administration (Fig. 4). Though 6s showed potent binding affinity for the ET_A receptor, it showed poor oral antagonistic activity. Compound **6s** also showed weak antagonistic activity after intravenous administration at 10 mg/kg, and the maximum inhibition of the pressor effect of big ET-1 was $45\pm7.6\%$. Additional ET_B antagonism might weaken the inhibitory activity against the pressor effect of big $ET-1$,¹³⁾ but the reason for the poor *in vivo* potency of **6s** was not clear.

On the other hand, **6t** and **6u** showed potent activities (Fig. 4). Maximum inhibition of the pressor effect of big ET-1 after oral administration was 77% for **6t** (3 mg/kg) and 52% for **6u** (0.3 mg/kg).

Compounds **6t** and **6u** also inhibited the increase in MABP due to the administration of exogenous big ET-1 to anesthetized pithed rats after oral administration (Table 5). In this study, the ID_{50} value was defined as the dose of test com-

RSO_{NH}

a) The (*E*) form of all compounds was confirmed by the coupling constant between vinyl protons $(J>14 \text{ Hz})$ in the ¹H-NMR spectrum. *b*) 90 MHz for **4e**, **g**, **k**. *c*) CDCl₃ for **4j**, **k**. *d*) EI-MS for **4a**, **b**,**j**.

pounds which caused a 50% inhibition of the pressor response to big ET-1 in diastolic blood pressure (DBP) (details are described in the Experimental section). Compounds **6t** and **6u** showed excellent inhibitory activities after oral administration with ID_{50} values of 6.6 and 1.7 mg/kg, respectively. The oral activity of compound **6u** was almost the same potent as that of $1a$, calculated from these ID_{50} values.

Conclusions

Investigation of the further details of SARs of the ethenesulfonamide derivative **1a** led to the discovery of compounds with various ET_A selectivities. Introduction of methyl groups to the phenyl group in the 2-phenylethensulfonamide moiety in **1a** increased the affinity for the ET_B receptor and led to the discovery of ET_A/ET_B mixed ET antagonists, the trimethylphenyl derivative **6s** (YM-95562). Unfortunately, **6s** lacked potent *in vivo* activity. However, it could be used as a valuable tool for *in vitro* study. We also found that the introduction of the ethyl group at the 1-position of the ethenyl group in the 2-phenylethensulfonamide moiety afforded **6u** (YM-91746) and retained both ET_A binding affinity and ET_A selectivity. Compound **6u** had a potent oral activity in the inhibition of the pressor response caused by a big ET-1 infusion in both pithed and conscious rats.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus without correction. ¹H-NMR spectra were recorded on a JNM-LA400, LA500, and A500 spectrometers using tetramethylsilane as an internal standard. MS spectra were determined with an Hitachi M-80 or JEOL JMS-DX300 spectrometer. High resolution (HR)-MS spectra were recorded using a JEOL JMS-700T mass spectrometer. Elemental analysis data were within \pm 0.4% of the calculated values. All organic extracts were dried over anhydrous MgSO4. Chromatographic purification was performed on Merck KGaA Silica gel 60 (0.040—0.063 mm).

The ethenesulfonamide derivatives (**4a**—**x**) were prepared according to the procedures described in method A—C. The physical data and the synthetic methods for **4a**—**x** are shown in Tables 6 and 7.

Method A. (*E***)-2-(4-Ethylphenyl)ethenesulfonamide (4g)** To a solution of triphenylphosphine (86 mg, 0.328 mmol) in DMF (10 ml) was added palladium acetate $(Pd(OAc)_2, 35 mg, 0.154 mmol)$ at room temperature under an argon atmosphere. After stirring for 5 min, to the mixture was added a solution of 1-bromo-4-ethylbenzene (1.48 g, 8.00 mmol), ethenesulfonamide (1.00 g, 9.35 mmol) and triethylamine (3.0 ml, 21.6 mmol) in DMF (5 ml). The mixture was stirred at $130\,^{\circ}\text{C}$ for 12 h and poured into 1 M aqueous HCl. The mixture was extracted with EtOAc, and the organic layer was

Table 7. Physical Data for Compounds **4**

a) The (E) form of all compounds was confirmed by the coupling constant between vinyl protons $(J>14 \text{ Hz})$ in the 1 H-NMR spectrum except for 4**t**—**x**. *b*) 90 MHz for 4**s**. *c*) CDCl3 for **4s**. *d*) EI-MS for **4o**, **p**, **u**.

washed with brine and concentrated *in vacuo.* The residue was chromatographed over silica gel using $40:1$ CHCl₃–MeOH to give a solid. The solid was washed with $Et₂O$ to give $4g(1.24g, 73%)$ as a yellow solid.

Method B. Methyl (*E***)-4-(2-Sulfamoylethenyl)benzoate (4k)** To a solution of triphenylphosphine (100 mg, 0.381 mmol) in DMF (10 ml) was added palladium acetate $(Pd(OAc)_2, 41$ mg, 0.183 mmol) at room temperature under an argon atmosphere. After stirring for 5 min, to the mixture was added a solution of methyl 4-bromobenzoate (2.00 g, 9.30 mmol), ethenesulfonamide (1.10 g, 10.3 mmol) and triethylamine (3.5 ml, 21.6 mmol) in DMF (5 ml). The mixture was stirred at 140 °C for 23 h and concentrated *in vacuo.* To the residue was added water and the mixture was acidified with 1 M aqueous HCl. It was extracted with EtOAc. The organic layer was washed with brine and concentrated *in vacuo* to give 4-(2-sulfamoylethenyl)benzoic acid (**4l**). The solution of **4l** and concentrated sulfuric acid (0.1 ml, 1.88 mmol) in MeOH (30 ml) was stirred at 70 °C for 3 d. The mixture was concentrated *in vacuo.* To the residue was added water and the mixture was extracted with EtOAc. The organic layer was washed with brine and concentrated *in vacuo.* The residue was chromatographed over silica gel using hexane (Hex)– EtOAc $(1:1)$ to give a solid. It was recrystallized from Hex–EtOAc to give **4k** (0.65 g, 29% in 2 steps) as colorless crystals.

Method C. (*E***)-2-(2-Methylphenyl)ethenesulfonamide (4a)** To 6 ml (77.5 mmol) of DMF was added dropwise sulfurylchloride (5.3 ml, 66.1 mmol) at 0° C. To the solution was added (2-methylphenyl)ethene (5 ml, 38.8 mmol) at room temperature and the mixture was stirred at 80 °C for 30 min . The mixture was poured into ice and extracted with CHCl₃, and the organic layer was washed with brine and concentrated *in vacuo* to give 2-(2 methylphenyl)ethenesulfonyl chloride as a yellow oil (6.17 g). To an icecooled solution of 2-(2-methylphenyl)ethenesulfonyl chloride (6.17 g) in tetrahydrofuran (THF) (25 ml) was added 29% aqueous ammonium hydroxide (7.6 ml), and the mixture was stirred at room temperature at 12 h. The mixture was acidified with 0.5 ^M aqueous HCl and extracted with EtOAc.

The organic layer was washed with brine and concentrated *in vacuo* to give a solid. It was recrystallized from toluene to give **4a** (1.80 g, 24%) as colorless crystals.

(*E***)-***N***-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2-methylphenyl)ethenesulfonamide (5a)** To an ice-cooled solution of (*E*)-2-(2-methylphenyl)ethenesulfonamide (**4a**) (571 mg, 2.90 mmol) in DMF (6 ml) was added 60% sodium hydride in mineral oil (281 mg, 7.03 mmol) and the mixture was stirred for 10 min at room temperature. To the mixture 4,6-dichloro-5-(2-methoxyphenoxy)pyrimidine (**3**) (1.01 g, 2.89 mmol) was added, and the mixture was stirred for 2 h at room temperature. It was poured into ice-water and acidified with 1 M aqueous HCl. The mixture was extracted with EtOAc, and the organic layer was washed with brine and concentrated *in vacuo* to give a brown residue. It was crystallized from EtOH to give 5a (1.16 g, 78%), mp 192—193 °C, 400 MHz ¹H-NMR $(DMSO-d₆)$ δ : 2.36 (3H, s), 3.81 (3H, s), 6.83 (1H, dd, *J*=1.6, 8.1 Hz), 6.85—6.90 (1H, m), 7.06 —7.12 (1H, m), 7.14 (1H, dd, $J=1.1$, 8.1 Hz), 7.25—7.30 (2H, m), 7.32—7.37 (1H, m), 7.70 (1H, t, J=3.9 Hz), 7.75 (1H, d, $J=7.0$ Hz), 7.83 — 7.87 (1H, m), 7.92 (1H, d, $J=16.1$ Hz), 9.04 (2H, d, $J=3.9$ Hz). FAB-MS m/z : 510 (M⁺+1).

The chloropyrimidine derivatives (**5b**—**j**, **m**—**x**) were prepared according to the same procedure as **5a** using the corresponding ethenesulfonamide derivatives (**4b**—**j**, **m**—**x**).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(3-methylphenyl)ethenesulfonamide (**5b**): 780 mg (53%), mp 190— 191 °C (EtOH), 500 MHz ¹H-NMR (DMSO- d_6) δ: 2.32 (3H, s), 3.80 (3H, s), 6.82 (1H, d, J=8.0 Hz), 6.85–6.89 (1H, m), 7.07–7.10 (1H, m), 7.13 (1H, d, *J*58.0 Hz), 7.26 (1H, d, *J*58.0 Hz), 7.31—7.35 (1H, m), 7.51—7.54 (2H, m), 7.60 (1H, t, J=5.0 Hz), 7.80—7.90 (2H, m), 9.10 (2H, d, J=4.0 Hz). FAB-MS m/z : 510 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-methylphenyl)ethenesulfonamide (**5c**): 830 mg (64%), mp 257—

258 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.33 (3H, s), 3.80 (3H, s), 6.82 (1H, d, J=6.8 Hz), 6.85—6.89 (1H, m), 7.06—7.16 (2H, m), 7.26 (2H, d, *J*57.2 Hz), 7.63 (2H, d, *J*57.2 Hz), 7.72 (1H, t, *J*54.8 Hz), 7.76—7.90 $(2H, m)$, 9.10 $(2H, d, J=4.8 \text{ Hz})$. FAB-MS m/z : 510 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2-chlorophenyl)ethenesulfonamide (**5d**): 2.98 g (74%), mp 196— 197 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 3.81 (3H, s), 6.81—6.90 (2H, m), 7.06—7.11 (1H, m), 7.12—7.16 (1H, m), 7.42—7.50 (2H, m), 7.56—7.59 (1H, m), 7.69 (1H, t, J=4.8 Hz), 7.94 (1H, dd, J=1.0, 7.5 Hz), 7.97—8.03 (2H, m), 9.02 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 528 (M⁺-1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(3-chlorophenyl)ethenesulfonamide (**5e**): 1.27 g (84%), mp 208— 210 °C (EtOH), 400 MHz ¹H-NMR (DMSO- d_6) δ: 3.81 (3H, s), 6.82 (1H, dd, *J*51.6, 8.0 Hz), 6.84—6.89 (1H, m), 7.06—7.11 (1H, m), 7.13 (1H, dd, *J*51.6, 8.0 Hz), 7.46—7.52 (2H, m), 7.69—7.75 (2H, m), 7.85—7.89 (2H, m), 7.98 (1H, d, $J=15.6$ Hz), 9.09 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 530 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-chlorophenyl)ethenesulfonamide (**5f**): 1.11 g (73%), mp 244— 245 °C (EtOH), 400 MHz ¹H-NMR (DMSO- d_6) δ : 3.80 (3H, s), 6.81—6.83 (1H, m), 6.84–6.89 (1H, m), 7.06–7.15 (2H, m), 7.53 (2H, d, J=8.4 Hz), 7.71 (1H, t, J=4.8 Hz), 7.79 (2H, d, J=8.4 Hz), 7.85—7.95 (2H, m), 9.09 $(2H, d, J=4.8 \text{ Hz})$. FAB-MS m/z : 530 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-ethylphenyl)ethenesulfonamide (**5g**): 1.11 g (62%), mp 258— 259 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 1.17 (3H, t, *J*=7.7 Hz), 2.62 (2H, q, J=7.7 Hz), 3.80 (3H, s), 6.79—6.91 (2H, m), 7.05—7.16 (2H, m), 7.29 (2H, d, *J*=8.1 Hz), 7.65 (2H, d, *J*=8.1 Hz), 7.72 (1H, t, *J*=4.5 Hz), 7.79—7.91 (2H, m), 9.11 (2H, d, $J=4.5$ Hz). FAB-MS m/z : 524 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-*tert*-butylphenyl)ethenesulfonamide (**5h**): 1.05 g (67%), mp 259— 260 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 1.27 (9H, s), 3.80 (3H, s), 6.82 (1H, d, J=7.6 Hz), 6.85–6.91 (1H, m), 7.06–7.16 (2H, m), 7.47 (2H, d, $J=8.8$ Hz), 7.68 (2H, d, $J=8.8$ Hz), 7.74 (1H, t, $J=4.8$ Hz), 7.83 (1H, d, *J*=14.4 Hz), 7.91 (1H, d, *J*=14.4 Hz), 9.13 (2H, d, *J*=4.8 Hz). FAB-MS m/z : 552 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-methoxyphenyl)ethenesulfonamide (**5i**): 1.02 g (68%), mp 227— 230 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d₆)* δ: 3.80 (6H, s), 6.81 (1H, d, *J*=8.0 Hz), 6.84—6.89 (1H, m), 7.01 (2H, d, *J*=8.8 Hz), 7.06—7.11 (1H, m), 7.12—7.16 (1H, m), 7.68—7.75 (4H, m), 7.81—7.88 (1H, m), 9.11 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 526 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(4-trifluoromethylphenyl)ethenesulfonamide (**5j**): 2.18 g (70%), mp 212—213 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d₆)* δ: 3.81 (3H, s), 6.83 (1H, dd, J=1.6, 8.0 Hz), 6.84–6.90 (1H, m), 7.03–7.12 (1H, m), 7.13– 7.16 (1H, m), 7.72 (1H, t, *J*=4.8 Hz), 7.83 (2H, d, *J*=8.0 Hz), 7.92-8.01 (3H, m), 8.05 (1H, d, $J=15.6$ Hz), 9.11 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 564 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,3-dimethylphenyl)ethenesulfonamide (**5m**): 954 mg (64%), mp 211—212 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.22 (3H, s), 2.26 $(3H, s)$, 3.80 $(3H, s)$, 6.82 $(1H, dd, J=1.4, 8.4 Hz)$, 6.84 - 6.90 $(1H, m)$, 7.06—7.18 (3H, m), 7.24 (1H, d, J=7.4 Hz), 7.55 (1H, d, J=7.4 Hz), 7.69 (1H, t, *J*=4.4 Hz), 7.76 (1H, d, *J*=15.1 Hz), 8.01 (1H, d, *J*=15.1 Hz), 9.02 $(2H, d, J=4.4 Hz)$. FAB-MS m/z : 524 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,4-dimethylphenyl)ethenesulfonamide (**5n**): 985 mg (66%), mp 222—223 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.28 (3H, s), 2.32 $(3H, s)$, 3.80 $(3H, s)$, 6.83 $(1H, dd, J=1.6, 8.0 Hz)$, 6.88 $(1H, dt, J=1.6,$ 8.0 Hz), 7.06—7.16 (4H, m), 7.65 (1H, d, J=8.0 Hz), 7.71 (1H, t, *J*54.8 Hz), 7.80—7.90 (2H, m), 9.04 (2H, d, *J*54.8 Hz). FAB-MS *m*/*z*: 524 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,5-dimethylphenyl)ethenesulfonamide (**5o**): 930 mg (62%), mp 144—145 °C (EtOH), 400 MHz ¹H-NMR (DMSO-d₆) δ: 2.26 (3H, s), 2.30 $(3H, s)$, 3.80 $(3H, s)$, 6.81–6.89 $(2H, m)$, 7.06–7.11 $(1H, m)$, 7.12–7.17 (1H, m), 7.55 (1H, s), 7.71 (1H, t, *J*55.2 Hz), 7.81—7.90 (2H, m), 9.04 (2H, d, $J=5.2$ Hz). FAB-MS m/z : 524 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,6-dimethylphenyl)ethenesulfonamide (**5p**): 1.02 g (68%), mp 214— 215 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.26 (6H, s), 3.80 (3H, s), 6.80—6.84 (1H, m), 6.86—6.91 (1H, m), 7.06—7.19 (5H, m), 7.54 (1H, d, *J*=16.0 Hz), 7.64 (1H, t, *J*=4.8 Hz), 7.87 (1H, d, *J*=16.0 Hz), 8.95 (2H, d,

 $J=4.8$ Hz). FAB-MS m/z : 524 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,6-diethylphenyl)ethenesulfonamide (**5q**): 560 mg (35%), mp 181— 182 °C (EtOH), 400 MHz¹H-NMR (DMSO- d_6) δ: 0.98 (6H, t, *J*=7.6 Hz), 2.53 (4H, q, J=7.6 Hz), 3.81 (3H, s), 6.85 – 6.90 (1H, m), 6.77 (1H, d, *J*=7.6 Hz), 7.23 (1H, t, *J*=7.6 Hz), 7.36 (1H, d, *J*=15.6 Hz), 7.63 (1H, t, *J*=4.8 Hz), 7.95 (1H, d, *J*=15.6 Hz), 8.94 (2H, d, *J*=4.8 Hz). FAB-MS m/z : 552 (M^+ +1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,6-dichlorophenyl)ethenesulfonamide (**5r**): 369 (76%), mp 197— 199 °C (EtOH), 400 MHz ¹H-NMR (DMSO- d_6) δ: 3.81 (3H, s), 6.79 (1H, dd, $J=1.6$, 8.0 Hz), 6.84—6.89 (1H, m), 7.06—7.11 (1H, m), 7.13 (1H, dd, *J*=1.8, 8.0 Hz), 7.39—7.44 (1H, m), 7.55 (1H, d, *J*=8.0 Hz), 7.63 (1H, t, *J*=4.8 Hz), 7.87 (1H, d, *J*=15.2 Hz), 7.94 (1H, d, *J*=15.2 Hz), 8.93 (2H, d, *J*=4.8 Hz). FAB-MS m/z : 564 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-(2,4,6-trimethylphenyl)ethenesulfonamide (**5s**): 1.23 g (80%), mp 212—214 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.23 (3H, s), 2.25 (6H, s), 3.80 (3H, s), 6.80—6.83 (1H, m), 6.85—6.90 (1H, m), 6.92 (2H, s), 7.07—7.12 (1H, m), 7.13—7.16 (1H, m), 7.54 (1H, d, J=16.0 Hz), 7.65 (1H, t, *J*=4.8 Hz), 7.84 (1H, d, *J*=16.0 Hz), 8.97 (2H, d, *J*=4.8 Hz). FAB- $MS m/z$: 538 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-1-methyl-2-phenylethenesulfonamide (**5t**): 1.05 g (81%), mp 203— 204 °C (EtOH), 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.20 (3H, s), 3.81 (3H, s), 6.82 (1H, d, J=7.6 Hz), 6.85–6.91 (1H, m), 7.08 (1H, d, J=8.0 Hz), 7.10– 7.16 (1H, m), 7.36—7.47 (6H, m), 7.65 (1H, s), 7.97 (1H, br s), 8.91—9.00 (2H, m). FAB-MS m/z : 510 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-1-ethyl-2-phenylethenesulfonamide (**5u**): 886 mg (59%), mp 194— 195 °C (EtOH), 400 MHz ¹H-NMR (DMSO- d_6) δ : 1.12-1.22 (3H, m), 2.60—2.74 (2H, m), 3.81 (3H, s), 6.79 (1H, d, J=7.2 Hz), 6.88 (1H, t, *J*57.6 Hz), 7.09 (1H, t, *J*57.6 Hz), 7.14 (1H, d, *J*57.6 Hz), 7.36—7.46 (5H, m), 7.65 (1H, s), 7.90—8.10 (1H, m), 8.91—9.02 (2H, m), 11.99 (1H, br s). FAB-MS m/z : 524 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-phenyl-1-propylethenesulfonamide (**5v**): 1.11 g (72%), mp 156— 157 °C (EtOH), 400 MHz¹H-NMR (DMSO- d_6) δ: 0.85 (3H, t, *J*=7.6 Hz), 1.55—1.63 (2H, m), 2.54—2.66 (2H, m), 3.81 (3H, s), 6.78 (1H, d, *J*57.6 Hz), 6.87 (1H, t, *J*57.6 Hz), 7.07—7.11 (1H, m), 7.14 (1H, d, *J*58.0 Hz), 7.38—7.43 (5H, m), 7.65 (1H, s), 8.02 (1H, br s), 8.89—9.01 (2H, m). FAB-MS m/z : 538 (M⁺+1).

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-2-methyl-2-phenylethenesulfonamide $(5w)$: 915 mg (71%), mp > 300 °C (EtOH), 400 MHz¹H-NMR (DMSO-d₆) δ: 2.48 (3H, s), 3.80 (3H, s), 6.81—6.90 (3H, m), 7.05—7.15 (2H, m), 7.20—7.35 (1H, m), 7.40—7.45 (2H, m), 7.61-7.68 (3H, m), 9.08 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 510 $(M^+ + 1)$.

(*E*)-*N*-[6-Chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4 yl]-1-methyl-2-(2,4,6-trimethylphenyl)ethenesulfonamide (**5x**): 1.35 g (86%), mp 204—205 °C (EtOH), 400 MHz ¹H-NMR (DMSO- d_6) δ: 1.84 (6H, s), 2.19 (3H, s), 2.35 (3H, s), 3.80 (3H, s), 6.80—6.92 (4H, m), 7.05—7.17 (2H, m), 7.62 (1H, s), 7.71—7.81 (1H, m), 8.86—9.02 (2H, m). FAB-MS m/z : 552 (M⁺+1).

Methyl (*E***)-4-(2-{***N***-[6-Chloro-5-(2-methoxyphenoxy)-2-(2-pyrimidinyl)pyrimidin-4-yl]sulfamoyl}ethenyl)benzoate (5k)** To an ice-cooled solution of methyl (*E*)-4-(2-sulfamoylethenyl)benzoate (**4k**) (650 mg, 2.69 mmol) in DMF (10 ml) was added 60% sodium hydride in mineral oil (220 mg, 5.50 mmol), and the mixture was stirred for 10 min at room temperature. To the mixture 4,6-dichloro-5-(2-methoxyphenoxy)pyrimidine (**3**) (900 mg, 2.58 mmol) was added, and the mixture was stirred for 15 h at room temperature. To the mixture was added 60% sodium hydride in mineral oil (60 mg, 1.50 mmol), and the mixture was stirred at room temperature for 4 h. It was poured into ice-water and acidified with 1 μ aqueous HCl. The resulting precipitate was collected by filtration to give a mixture of **5k** and (*E*)-4-(2-{*N*-[6-chloro-5-(2-methoxyphenoxy)-2-(2-pyrimidinyl)-4-pyrimidinyl]sulfamoyl}ethenyl)benzoic acid (**5l**). All of the obtained mixture (**5k**, **l**) and concentrated sulfuric acid (0.2 ml, 3.76 mmol) in MeOH (30 ml) were heated under reflux for 24 h. It was then concentrated *in vacuo* and water was added to the residue. The resulting precipitate was collected by filtration. It was recrystallized from MeOH to give **5k** (925 mg, 65%), mp 135—138 °C, 400 MHz ¹H-NMR (DMSO-d₆) δ: 3.81 (3H, s), 3.87 (3H, s), 6.82 (1H, dd, $J=1.6$, 8.0 Hz), 6.86 (1H, dt, $J=1.6$, 8.0 Hz), 7.06—7.11 (1H, m), 7.13 (1H, dd, J=1.2, 8.0 Hz), 7.72 (1H, t, J=5.2 Hz), 7.88–7.92 (2H, m), 7.91 (1H, d, *J*=8.0 Hz), 7.98—8.05 (3H, m), 9.10 (2H, d, *J*=5.2 Hz). FAB-MS m/z : 552 (M⁺-1).

The ethenesulfonamide derivatives (**6a**—**j**, **6m**—**x**) were prepared according to the procedures described in methods D—G using the corresponding chloropyrimidine derivatives (**5a**—**j**, **5m**—**x**).

Method D. (*E***)-***N***-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2 yl)pyrimidin-4-yl]-2-(2-methylphenyl)ethenesulfonamide (6a)** Sodium (230 mg, 10.0 mmol) was added to methanol (10 ml), and the mixture was stirred at room temperature until all sodium was dissolved. (*E*)-*N*-[6-chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2 methylphenyl)ethenesulfonamide (**5a**) (514 mg, 1.01 mmol) was added to the solution and stirred at room temperature for 2 h. It was poured into icewater and acidified with 1 M aqueous HCl. The mixture was extracted with EtOAc, and the organic layer was washed with brine and concentrated *in vacuo*. The residue was recrystallized from EtOAc-Et₂O-Hex to give 6a (243 mg. 48%) as colorless crystals: mp 232—233 °C. 400 MHz ¹H-NMR (DMSO-*d*6) d: 2.27 (3H, s), 3.81 (3H, s), 3.84 (3H, s), 6.41 (1H, d, *J*=7.5 Hz), 6.73 (1H, t, *J*=7.5 Hz), 6.88 (1H, t, *J*=7.5 Hz), 7.02 (1H, d, *J*57.5 Hz), 7.17—7.27 (3H, m), 7.31 (1H, d, *J*515.5 Hz), 7.59—7.72 (2H, m), 7.95—8.15 (1H, m), 9.00 (2H, d, J=4.3 Hz). FAB-MS m/z : 506 (M^{+} +1). HR-MS Calcd for C₂₅H₂₄N₅O₅S *m/z* 506.1498 (M^{+} +1), Found 506.1478.

Method E. (*E***)-***N***-[6-(2-Hydroxyethoxy)-5-(2-methoxyphenoxy)-2- (pyrimidin-2-yl)pyrimidin-4-yl]-2-(3-methylphenyl)ethenesulfonamide (6b)** Sodium (315 mg, 13.7 mmol) was added to ethyleneglycol (7.7 ml, 137 mmol), and the mixture was stirred at 60 °C until all sodium was dissolved. (*E*)-*N*-[6-chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(3-methylphenyl)ethenesulfonamide (**5b**) (700 mg, 1.37 mmol) was added to the solution and stirred at 80 °C for 2.5 h. It was poured into ice-water and 1 ^M HCl, and the resulting precipitate was collected by filtration. The solid was chromatographed over silica gel using 20:1 $CHCl₃$ -MeOH to give an oil. It was crystallized from $Et₂O$ to give 6b (533 mg, 73%): mp 167—169 °C. 500 MHz ¹H-NMR (DMSO-d₆) δ: 2.33 (3H, s), 3.20—3.60 (2H, m), 3.83 (3H, s), 4.30—4.45 (2H, m), 4.69 (1H, br s), 6.70 - 6.83 (2H, m), 7.04 - 7.11 (2H, m), 7.26 (1H, d, J = 7.5 Hz), 7.32—7.34 (1H, m), 7.50—7.60 (2H, m), 7.57 (1H, d, J=15.5 Hz), 7.96 (1H, d, $J=15.5$ Hz), 9.08 (2H, d, $J=4.0$ Hz), 11.34 (1H, s). FAB-MS m/z : 536 (M⁺+1). *Anal.* Calcd for C₂₆H₂₅N₅O₆S: C, 58.31; H, 4.70; N, 13.08; S, 5.99. Found: C, 58.33; H, 4.59; N, 13.08; S, 6.09.

Method F. (*E***)-***N***-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(4-methylphenyl)ethenesulfonamide (6c)** To the solution of *N*-[6-chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(4-methylphenyl)ethenesulfonamide (**5c**) (450 mg, 0.882 mmol) in DMF (5 ml) was added sodium methoxide (477 mg, 8.82 mmol), and the mixture was stirred at room temperature for 12 h. It was poured into icewater and acidified with 1 M HCl. The resulting precipitate was collected by filtration. It was chromatographed over silica gel using CHCl₃-MeOH (40 : 1) to give a solid. It was recrystallized from EtOH to give **6c** (335 mg, 75%): mp 165—166 °C. 400 MHz ¹H-NMR (DMSO-d₆) δ: 2.33 (3H, s), 3.83 (3H, s), 3.89 (3H, s), 6.66 (1H, d, *J*=8.0 Hz), 6.78—6.86 (1H, m), 7.03 (1H, t, *J*=8.0 Hz), 7.09 (1H, d, *J*=8.0 Hz), 7.27 (2H, d, *J*=7.8 Hz), 7.62 (2H, d, *J*57.8 Hz), 7.69 (1H, 7, *J*54.0 Hz), 7.73 (1H, d, *J*515.2 Hz), 7.91 (1H, d, *J*=15.2 Hz), 9.09 (2H, d, *J*=4.0 Hz). FAB-MS *m*/*z*: 506 (M⁺+1). *Anal.* Calcd for $C_{25}H_{23}N_5O_5S$: C, 59.40; H, 4.59; N, 13.85; S, 6.34. Found: C, 59.25; H, 4.46; N, 13.89; S, 6.44.

Method G. Potassium (*E***)-***N***-[6-Methoxy-5-(2-methoxyphenoxy)-2- (pyrimidin-2-yl)pyrimidin-4-yl]-1-ethyl-2-phenylethenesulfonamidate (6u)** To the solution of *N*-[6-chloro-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-1-ethyl-2-phenylethenesulfonamide (**5u**) (480 mg, 0.916 mmol) in DMF (5 ml) was added sodium methoxide (495 mg, 9.16 mmol), and the mixture was stirred at room temperature for 5 h. It was poured into ice-water and acidified with 1 M HCl. The resulting precipitate was collected by filtration. It was chromatographed over silica gel using CHCl₃–MeOH (40:1) to give (E) -*N*-[6-methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-1-ethyl-2-phenylethenesulfonamide as a yellow amorphous solid (375 mg, 79%). To a solution of potassium hydroxide (0.1 M, 7.22 ml, 0.722mmol) was added (*E*)-*N*-[6-methoxy-5-(2 methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-1-ethyl-2 phenylethenesulfonamide (375 mg). The mixture was stirred at room temperature for 30 min and concentrated *in vacuo.* The residue was crystallized from Et₂O to give 6u (321 mg, 60%) as yellow crystals. mp $146-150$ °C (Et₂O). 400 Hz¹H-NMR (DMSO-*d*₆) δ: 1.00 (3H, t, *J*=7.2 Hz), 2.39 (2H, q, *J*=7.2 Hz), 3.78 (3H, s), 3.83 (3H, s), 6.41 (1H, d, *J*=8.0 Hz), 6.70–6.75 (1H, m), 6.85–6.90 (1H, m), 7.00 (1H, d, J=7.2 Hz), 7.15–7.20 (2H, m), $7.22 - 7.28$ (1H, m), $7.29 - 7.36$ (3H, m), 7.54 (1H, t, $J=4.8$ Hz), 8.88 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 596 (M⁺+K). *Anal.* Calcd for $C_{26}H_{24}N_5O_5SK \cdot 1.0H_2O$: C, 54.25; H, 4.55; N, 12.17; S, 5.57. Found: C, 54.41; H, 4.44; N, 12.15; S, 5.52.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2-chlorophenyl)ethenesulfonamide (**6d**) (Method D): 370 mg (74%): mp 97—98 °C (EtOAc–Et₂O–Hex). 400 MHz ¹H-NMR (DMSO- d_6) δ : 3.83 (3H, s), 3.91 (3H, s), 6.68 (1H, d, *J*=8.4 Hz), 6.77—6.86 (1H, m), 7.03 (1H, t, *J*=7.6 Hz), 7.09 (1H, d, *J*=7.6 Hz), 7.42—7.51 (2H, m), 7.54— 7.60 (1H, m), 7.62—7.69 (1H, m), 7.89—7.99 (2H, m), 8.14 (1H, d, *J*=14.0 Hz), 8.97—9.07 (2H, m), 11.63 (1H, s). FAB-MS m/z : 526 (M⁺+1). HR-MS Calcd for $C_{24}H_{21}CIN_5O_5S$ m/z 526.0952 (M⁺+1), Found 526.0953.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(3-chlorophenyl)ethenesulfonamide (**6e**) (Method D): 267 mg (90%): mp 95—100 °C (EtOAc–Hex). 400 MHz ¹H-NMR (DMSO-d₆) δ: 3.83 (3H, s), 3.90 (3H, s), 6.67 (1H, d, *J*57.2 Hz), 6.73—6.86 (1H, m), 7.03 (1H, t, J=7.6 Hz), 7.09 (1H, d, J=8.0 Hz), 7.46—7.54 (2H, m), 7.67—7.91 (4H, m), 8.11 (1H, d, J=15.6 Hz), 9.08 (2H, d, J=3.2 Hz), 11.59 (1H, s). FAB-MS m/z : 526 (M⁺+1). FAB-MS m/z : (M⁺+1). *Anal*. Calcd for $C_{24}H_{20}CIN_{5}O_{5}S$: C, 54.81; H, 3.83; N, 13.32; S, 6.40; Cl, 6.74. Found: C, 54.57; H, 3.69; N, 13.21; S, 6.08; Cl, 6.79.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(4-chlorophenyl)ethenesulfonamide (**6f**) (Method F): 413 mg (83%): mp 63—64 °C (Et₂O). 400 MHz ¹H-NMR (DMSO-*d₆)* δ: 3.83 (3H, s), 3.89 $(3H, s)$, 6.67 (1H, d, $J=7.6$ Hz), 6.80—6.84 (1H, m), 7.03 (1H, t, $J=8.0$ Hz), 7.09 (1H, d, J=8.0 Hz), 7.54 (2H, d, J=8.0 Hz), 7.63—7.72 (1H, m), 7.74– 7.85 (3H, m), 8.02 (1H, d, $J=15.6$ Hz), 9.09 (2H, d, $J=4.0$ Hz), 11.52 (1H, br s). FAB-MS m/z : 526 (M⁺+1). *Anal*. Calcd for C₂₄H₂₀N₅O₅SCl · 0.40H₂O: C, 53.70; H, 4.37; N, 13.59; S, 5.56; Cl, 6.14. Found: C, 53.85; H, 4.32; N, 13.43; S, 5.47; Cl, 6.32.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(4-ethylphenyl)ethenesulfonamide (**6g**) (Method F): 203 mg (45%): mp 104—107 °C (MeOH–EtOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 1.18 (3H, t, *J*=7.6 Hz), 2.63 (2H, q, *J*=7.6 Hz), 3.83 (3H, s), 3.89 (3H, s), 6.66 (1H, d, *J*57.6 Hz), 6.78—6.86 (1H, m), 7.03 (1H, t, *J*57.6 Hz), 7.09 (1H, d, *J*58.4 Hz), 7.30 (2H, d, *J*58.0 Hz), 7.62—7.72 (3H, m), 7.77 (1H, d, *J*=15.6 Hz), 7.93 (1H, d, *J*=15.6 Hz), 9.09 (2H, d, *J*=4.8 Hz), 11.44 (1H, br s). FAB-MS m/z : 520 (M⁺+1). *Anal*. Calcd for C₂₆H₂₅N₅O₅S · 0.50H₂O: C, 59.08; H, 4.96; N, 13.25; S, 6.07. Found: C, 59.38; H, 4.72; N, 13.53; S, 6.16.

Potassium (*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]-2-(4-*tert*-butylphenyl)ethenesulfonamidate (**6h**) (Method G): 318 mg (60%): mp 155—156 °C (Et₂O). 400 MHz ¹H-NMR (DMSO- d_6) δ : 1.28 (9H, s), 3.80 (3H, s), 3.84 (3H, s), 6.37—6.41 (1H, m), 6.70—6.76 (1H, m), 6.84–6.90 (1H, m), 6.98–7.03 (1H, m), 7.09 (1H, d, J=15.6 Hz), 7.41 (2H, d, *J*=8.0 Hz), 7.50 (2H, d, *J*=8.0 Hz), 7.63 (1H, t, *J*=4.8 Hz), 8.13 (1H, d, $J=15.6$ Hz), 9.05 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 624 (M⁺+K). Anal. Calcd for C₂₈H₂₈N₅O₅SK · 2.0H₂O: C, 54.09; H, 5.19; N, 11.26; S, 5.16. Found: C, 54.17; H, 5.02; N, 11.46; S, 5.02.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(4-methoxyphenyl)ethenesulfonamide (**6i**) (Method D): 248 mg (100%): mp 117—123 °C (EtOAc–Hex). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 3.80 (3H, s), 3.83 (3H, s), 3.89 (3H, s), 6.66 (1H, d, *J*=8.0 Hz), 6.78–6.85 (1H, m), 6.99-7.06 (3H, m), 7.09 (1H, d, J=8.2 Hz), 7.64-7.72 (3H, m), 7.76 (1H, d, $J=15.6$ Hz), 7.82 (1H, d, $J=15.6$ Hz), 9.09 (2H, d, $J=4.8$ Hz), 11.36 (1H, s). FAB-MS m/z : 520 (M⁺-1). HR-MS Calcd for C₂₅H₂₄N₅O₆S m/z 522.1447 (M⁺+1), Found 522.1467.

Potassium (*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2 yl)pyrimidin-4-yl]-2-(4-trifluoromethylphenyl)ethenesulfonamidate (**6j**) (Method G): 270 mg (85%): mp 180—185 °C (Et₂O–Hex). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 3.80 (3H, s), 3.85 (3H, s), 6.39 (1H, d, *J*=8.0 Hz), 6.71—6.77 (1H, m), 6.85—6.91 (1H, m), 7.01 (1H, d, *J*57.6 Hz), 7.19 (1H, d, $J=16.4$ Hz), 7.62 (1H, t, $J=4.8$ Hz), 7.78 (2H, d, $J=8.0$ Hz), 7.82-7.87 $(2H, d, J=8.0 \text{ Hz})$, 8.42 (1H, d, $J=16.4 \text{ Hz}$), 9.06 (2H, d, $J=4.8 \text{ Hz}$). FAB-MS *m*/*z*: 636 (M⁺ + K). *Anal*. Calcd for C₂₅H₁₉F₃N₅O₅SK · 1.0H₂O: C, 48.78; H, 3.44; N, 11.38; S, 5.21; F, 9.26. Found: C, 48.95; H, 3.32; N, 11.47; S, 5.21; F, 9.45.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,3-dimethylphenyl)ethenesulfonamide (**6m**) (Method F): 230 mg (58%): mp 96—99 °C (MeOH). 400 MHz ¹H-NMR (DMSO- d_6) δ : 2.21 (3H, s), 2.27 (3H, s), 3.83 (3H, s), 3.90 (3H, s), 6.67 (1H, d, J=7.4 Hz), 6.83 (1H, t, *J*57.4 Hz), 7.03 (1H, t, *J*57.7 Hz), 7.10 (1H, d, *J*57.7 Hz), 7.12—7.20 (1H, m), 7.24 (1H, d, *J*=7.3 Hz), 7.54 (1H, d, *J*=7.3 Hz), 7.62—7.70 (1H, m), 7.86 (1H, d, J=20.0 Hz), 7.94 (1H, d, J=20.0 Hz), 9.02 (2H, d,

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,4-dimethylphenyl)ethenesulfonamide (**6n**) (Method F): 210 mg (53%): mp 165—166 °C (MeOH–EtOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.27 (3H, s), 2.30 (3H, s), 3.83 (3H, s), 3.90 (3H, s), 6.67 (1H, d, *J*=7.7 Hz), 6.76—6.88 (1H, m), 6.98—7.16 (4H, m), 7.60—7.72 (2H, m), 7.78 (1H, d, *J*=15.3 Hz), 7.92 (1H, d, *J*=15.3 Hz), 9.03 (2H, d, *J*=4.4 Hz), 11.40 (1H, br s). FAB-MS m/z : 520 (M⁺+1). *Anal*. Calcd for C₂₆H₂₅N₅O₅S: C, 60.10; H, 4.85; N, 13.48; S, 6.17 Found: C, 59.92; H, 4.90; N, 13.62; S, 6.15.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,5-dimethylphenyl)ethenesulfonamide (**6o**) (Method F): 435 mg (84%): mp 93—95 °C (MeOH–EtOH). 400 MHz ¹H-NMR (DMSO-d₆) δ: 2.27 (3H, s), 2.92 (3H, s), 3.83 (3H, s), 3.90 (3H, s), 6.67 (1H, d, J=8.4 Hz), 6.82 (1H, t, *J*=7.6 Hz), 7.00—7.06 (1H, m), 7.09 (1H, d, *J*=8.4 Hz), 7.13– 7.18 (2H, m), 7.54 (1H, s), 7.69 (1H, t, $J=4.0$ Hz), 7.79 (1H, d, $J=15.6$ Hz), 7.97 (1H, d, J=15.6 Hz), 9.03 (2H, d, J=4.0 Hz), 11.47 (1H, s). FAB-MS *m*/*z*: 520 (M⁺ +1). *Anal*. Calcd for C₂₆H₂₅N₅O₅S · 0.5H₂O: C, 59.08; H, 4.96; N, 13.25; S, 6.07. Found: C, 58.80; H, 5.07; N, 13.00; S, 5.94.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,6-dimethylphenyl)ethenesulfonamide (**6p**) (Method F): 265 mg (51%): mp 91—92 °C (MeOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.27 (6H, s), 3.82 (3H, s), 3.91 (3H, s), 6.66 (1H, d, $J=8.0$ Hz), 6.79–6.87 (1H, m), 7.01—7.06 (1H, m), 7.07—7.12 (3H, m), 7.14—7.19 (1H, m), 7.56—7.65 $(2H, m)$, 7.81 (1H, d, $J=16.0$ Hz), 8.93 (2H, d, $J=4.4$ Hz), 11.46 (1H, s,). FAB-MS m/z : 520 (M⁺+1). *Anal*. Calcd for $C_{26}H_{25}N_{5}O_{5}S \cdot 0.60H_{2}O$: C, 58.88; H, 4.98; N, 13.20; S, 6.05. Found: C, 58.59; H, 4.81; N, 13.07; S, 5.85.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,6-diethylphenyl)ethenesulfonamide (**6q**) (Method F): 265 mg (51%): mp 142—143 °C (MeOH–EtOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 0.98 (6H, d, J=7.6 Hz), 2.54 (4H, q, J=7.6 Hz), 3.83 (3H, s), 3.91 (3H, s), 6.62 (1H, d, *J*57.2 Hz), 6.80—6.85 (1H, m), 7.00—7.14 (4H, m), 7.23 (1H, t, *J*=7.6 Hz), 7.42 (1H, d, *J*=16.0 Hz), 7.56—7.63 (1H, m), 7.90 (1H, d, *J*516.0 Hz), 8.91 (2H, d, *J*53.6 Hz), 11.60 (1H, br s). FAB-MS *m*/*z*: 548 $(M^+ + 1)$. *Anal.* Calcd for $C_{28}H_{29}N_5O_5S \cdot 0.50H_2O$: C, 60.42; H, 5.43; N, 12.58; S, 5.76. Found: C, 60.57; H, 5.46; N, 12.74; S, 5.88.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,6-dichlorophenyl)ethenesulfonamide (**6r**) (Method D): 220 mg (89%): mp 114—115 °C (EtOH). 400 MHz ¹H-NMR (DMSO- d_6) δ: 3.82 (3H, s), 3.91 (3H, s), 6.65 (1H, d, *J*=7.6 Hz), 6.82 (1H, t, *J*=7.6 Hz), 7.03 $(1H, t, J=7.6 \text{ Hz})$, 7.09 (1H, d, $J=7.6 \text{ Hz}$), 7.40—7.45 (1H, m), 7.56 (2H, d, *J*=8.0 Hz), 7.59—7.65 (1H, m), 7.87 (1H, d, *J*=15.2 Hz), 8.07 (1H, d, *J*515.2 Hz), 8.90—8.97 (2H, m), 11.69 (1H, br s). FAB-MS *m*/*z*: 560 (M^+ +1). *Anal.* Calcd for C₂₄H₁₉Cl₂N₅O₅S·1.0H₂O: C, 49.84; H, 3.66; N, 12.11; S, 5.54; Cl, 12.26. Found: C, 49.62; H, 3.63; N, 12.10; S, 5.55; Cl, 12.41.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-(2,4,6-trimethylphenyl)ethenesulfonamide (**6s**) (Method D): 291 mg (84%): mp. 167—168 °C (EtOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.23 $(3H, s)$, 2.50 (6H, s), 3.82 (3H, s), 3.90 (3H, s), 6.65 (1H, d, $J=8.0$ Hz), 6.80—6.85 (1H, m), 6.92 (2H, s), 7.01—7.05 (1H, m), 7.09 (1H, d, *J*=8.0 Hz), 7.57—7.65 (2H, m), 7.77 (1H, d, *J*=16.0 Hz), 8.95 (2H, d, *J*=4.8 Hz), 11.44 (1H, s). FAB-MS m/z : 534 (M⁺+1). *Anal*. Calcd for $C_{27}H_{27}N_5O_5S \cdot 0.25H_2O$: C, 60.27; H, 5.15; N, 13.01; S, 5.96. Found: C, 60.16; H, 5.01; N, 12.93; S, 5.87.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-1-methyl-2-phenylethenesulfonamide (**6t**) (Method F): 340 mg (67%): mp 148—149 °C (Et₂O–EtOH). 400 MHz ¹H-NMR (DMSO- d_6) δ : 2.22 (3H, s), 3.83 (3H, s), 3.87 (3H, s), 6.65 (1H, d, *J*57.2 Hz), 6.81—6.86 (1H, m), 7.04 (1H, t, *J*=7.6 Hz), 7.09 (1H, d, *J*=8.0 Hz), 7.34—7.43 (5H, m), 7.61 (1H, t, J=4.0 Hz), 7.87 (1H, s), 8.91 (2H, d, J=4.0 Hz), 11.29 (1H, s). FAB-MS m/z : 506 (M⁺+1). *Anal*. Calcd for C₂₅H₂₃N₅O₅S: C, 59.40; H, 4.59; N, 13.85; S, 6.34. Found: C, 59.30; H, 4.56; N, 13.75; S, 6.29.

Potassium (*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2 yl)pyrimidin-4-yl]-2-phenyl-1-propylethenesulfonamidate (**6v**) (Method G): 325 mg (68%): mp 93—96 °C (Et₂O). 400 MHz ¹H-NMR (DMSO- d_6) δ : 0.70 (3H, t, J=7.2 Hz), 1.41-1.51 (2H, m), 2.31-2.37 (2H, m), 3.77 (3H, s), 3.84 (3H, s), 6.39 (1H, dd, J=1.8, 8.4 Hz), 6.69—6.75 (1H, m), 6.84— 6.90 (1H, m), 6.98—7.02 (1H, m), 7.13—7.18 (2H, m), 7.21—7.26 (1H, m), 7.29—7.35 (2H, m), 7.37 (1H, s), 7.53 (1H, t, J=4.8 Hz), 8.66 (2H, d, *J*=4.8 Hz). FAB-MS *m*/*z*: 610 (M⁺+K). HR-MS Calcd for $C_{27}H_{27}N_5O_5SK$ m/z 572.1370 (M⁺+1), Found 572.1355.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-2-methyl-2-phenylethenesulfonamide (**6w**) (Method F): 33 mg (3.0%): mp >300 °C (Et₂O). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 2.23 (3H, d, *J*= 0.8 Hz), 3.79 (3H, s), 3.85 (3H, s), 6.39 (1H, dd, $J=1.6$, 8.0 Hz), 6.70–6.75 (1H, m), 6.85–6.90 (1H, m), 7.01 (1H, dd, $J=1.6$, 8.0 Hz), 7.18 (1H, d, $J=$ 0.8 Hz), 7.26—7.34 (3H, m), 7.52—7.56 (2H, m), 7.61 (1H, t, J=4.8 Hz), 8.98 (2H, d, $J=4.8$ Hz). FAB-MS m/z : 506 (M⁺+1). HR-MS Calcd for $C_{25}H_{24}N_5O_5S$ *m/z* 506.1498 (M⁺+1), Found 506.1484.

(*E*)-*N*-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]-1-methyl-2-(2,4,6-trimethylphenyl)ethenesulfonamide (**6x**) (Method F): 169 mg (43%): mp 190—192 °C (MeOH–EtOH). 400 MHz ¹H-NMR (DMSO-*d*6) d: 1.77 (3H, s), 1.83 (6H, s), 2.19 (3H, s), 3.83 (3H, s), 4.03 (3H, s), 6.65 (1H, d, *J*=7.6 Hz), 6.78—6.88 (3H, m), 7.05 (1H, t, *J*=7.6 Hz), 7.11 (1H, d, *J*=7.6 Hz), 7.56 (1H, t, *J*=4.8 Hz), 7.71 (1H, s), 8.88 (2H, d, *J*=4.8 Hz), 11.28 (1H, s). FAB-MS *m*/*z*: 546 (M⁺-1). *Anal.* Calcd for $C_{29}H_{29}N_5O_5S$: C, 61.41; H, 5.34; N, 12.79; S, 5.86. Found: C, 61.27; H, 5.32; N, 12.93; S, 5.86.

(*E***)-4-(2-{***N***-[6-Methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]sulfamoyl}ethenyl)benzoic Acid (6l)** Sodium (170 mg, 7.39 mmol) was added to methanol (10 ml) and stirred at room temperature until all sodium was dissolved. Methyl (*E*)-4-(2-{*N*-[6-chloro-5-(2-methoxyphenoxy)-2-(2-pyrimidinyl)-4-pyrimidinyl]sulfamoyl}ethenyl)benzoate (**5k**) (410 mg, 0.740 mmol) was added to the solution, and the mixture was stirred at 50 °C for 4 h. The mixture was concentrated *in vacuo.* 1 M aqueous HCl was added to the residue, and the resulting precipitate was collected by filtration. The solid was washed with EtOH to give **6l** (350 mg 88%) as a yellow solid: mp >250 °C (EtOH). 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 3.83 (3H, s), 3.90 (3H, s), 6.67 (1H, d, $J=8.4$ Hz), 6.82 (1H, t, $J=7.2$ Hz), 7.03 $(1H, t, J=7.6 \text{ Hz})$, 7.09 (1H, d, $J=7.6 \text{ Hz}$), 7.65—7.74 (1H, m), 7.82—7.92 $(3H, m)$, 8.00 (2H, d, $J=8.0$ Hz), 8.11 (1H, d, $J=15.6$ Hz), 9.10 (2H, d, *J*=4.4 Hz), 11.59 (1H, s), 13.15 (1H, s). FAB-MS m/z : 536 (M⁺+1). *Anal*. Calcd for $C_{25}H_{21}N_5O_7S$: C, 56.07; H, 3.95; N, 13.08; S, 5.99. Found: C, 55.83; H, 3.80; N, 13.18; S, 6.01.

Methyl (*E***)-4-(2-{***N***-[6-methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]sulfamoyl}ethenyl)benzoate (6k)** To the solution of **6l** (150 mg, 0.280 mmol) in MeOH (10 ml) was added concentrated sulfuric acid (0.1 ml, 1.88 mmol) and the solution was heated under reflux for 18 h. The mixture was concentrated *in vacuo*, and water was added to the residue. It was extracted with CHCl₃. The organic layer was washed with brine and concentrated *in vacuo.* The residual solid was recrystallized from EtOAc to give 6k (102 mg, 66%) as colorless crystals: mp $178-179$ °C. 400 MHz ¹H-NMR (DMSO-*d*₆) δ: 3.83 (3H, s), 3.87 (3H, s), 3.89 (3H, s), 6.67 (1H, d, *J*=7.6 Hz), 6.75—6.85 (1H, m), 6.96—7.06 (1H, m), 7.09 (1H, d, *J*= 7.6 Hz), 7.66—7.74 (1H, m), 7.80—7.95 (3H, m), 8.03 (2H, d, J=7.6 Hz), 8.13 (1H, d, J=15.2 Hz), 9.09 (2H, d, J=4.8 Hz), 11.60 (1H, s, Hz). FAB-MS *m*/*z*: 550 (M⁺+1). *Anal.* Calcd for C₂₆H₂₃N₅O₇S: C, 56.82; H, 4.22; N, 12.74; S, 5.83. Found: C, 56.51; H, 4.21; N, 12.56; S, 5.71.

Binding Assay For competition studies, \int_{0}^{125} I]ET-1 (200 pm) was added to each membrane preparation, which was incubated with various concentrations of compounds in $250 \mu l$ of assay buffer containing 50 mm Tris–HCl, pH 7.4, 10 mm MgCl₂ and 0.01% Bovine Serum Albumin (BSA). Binding reactions were initiated by the addition of the membrane preparations. After the incubation period (180 min, room temperature), the reaction was terminated by the addition of 3 ml of ice-cold Tris buffer (50 mm Tris–HCl, pH 7.4, 10 mm MgCl₂ and 0.01% BSA) followed by rapid filtration through Whatman GF/C filters. The filters were rinsed twice and the radioactivity retained on the filters was counted using a gamma counter at 60% efficiency. Each assay was performed in duplicate and nonspecific binding was assessed in the presence of 100 nm unlabeled ET-1. The IC_{50} values were calculated with a non-linear regression analysis.

Functional Assay *in Vivo* **(Inhibition of Pressor Response to Big ET-1): Conscious Normotensive Rats** Male Wistar rats were anesthetized with sodium pentobarbital (60 mg/kg i.p.). The right common carotid artery and the left jugular vein were cannulated with a polyethylene tube for determination of blood pressure and heart rate, and for i.v. administration of big ET-1 (0.5 nmol/kg). The animals were allowed to recover for 2 to 3 d after the operation, during which time they were housed in individual cages with free access to rat chow and water. After an appropriate equilibration period, bolus i.v. doses of big ET-1 were administered to determine control responses and patency of catheters. Each rat was treated with a single *p.o.* dose of antagonist or vehicle (0.5% methyl cellulose) and any changes in blood pressure were noted. The percentage of the pressor responses to big ET-1 challenges during the subsequent 6.5 h and at 24 h were used as a measure of big ET-1 inhibition.

Functional Assay *in Vivo* **(Inhibition of Pressor Response to Big ET-1): Pithed Rats** *In vivo* antagonistic activity in pithed rats was evaluated according to the method of Clozel *et al.* described previously.^{7*g*)} Briefly, male Wistar rats were pithed under sodium pentobarbital anesthesia and artificially ventilated with room air. The right common carotid artery and the left femoral vein were cannulated for blood pressure measurements and i.v. injection of drugs, respectively. After stabilization of blood pressure, various doses of (1 ml/kg) test compounds or vehicle (distilled water) were injected. Five minutes later, the first dose of big ET-1 was injected intravenously. In another series of experiments, the oral activities of test compounds were assessed. Varying doses of (5 ml/kg) test compounds or vehicle (0.5% methyl cellulose) were administered by gastric gavage with a cannula. About 20 min later, the rats were anesthetized with sodium pentobarbital, and 30 min later, pithed and ventilated. After stabilization of blood pressure, the first dose of big ET-1 was injected intravenously. In this study, the DR_2 value was defined as the dose of test compounds which was required to produce a 2-fold rightward shift of the dose–response curves of big ET-1 in DBP.

Acknowledgments We are grateful to Dr. Toshio Okazaki and Dr. Shuichi Sakamoto for their advice. We thank Mr. Masanao Sanagi and Miss Akiko Koakutsu for the pharmacological study. We also thank members of the Division of Analytical Research for performing instrumental analyses.

References and Notes

- 1) Present address: *Bulk Manufacturing & Technology Division, Yamanouchi Pharmaceutical Co.,Ltd., 160–2 Matsukubo, Akahama, Takahagi, Ibaraki 318—0001, Japan.*
- 2) Present address: *Corporate Planning Department, Yamanouchi Pharmaceutical Co., Nihonbashi Honcho, Chuo-ku, Tokyo 103—0023, Japan.*
- 3) Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Goto K., Masaki T., *Nature* (London), **332**, 411—415 (1988).
- 4) Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T., *Proc. Natl. Acad. Sci. U.S.A*., **86**, 2863—2867 (1989).
- 5) *a*) Rubanyi G. M., Polokoff M. A., *Pharmacol. Rev*., **46**, 325—415 (1994); *b*) Warner T., *Cardiovasc. Drug Rev*., **12**, 105—122 (1994); *c*) Benigni A., Remuzzi G., *Lancet*, **353**, 133—138 (1999).
- 6) *a*) Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S., *Nature* (London), **348**, 730—732 (1990); *b*) Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T., *ibid*., **348**, 732—735 (1990).
- 7) *a*) Stein P. D., Floyd D. M., Bisaha S., Dickey J., Girotra R. N.,

Gougoutas J. Z., Kozlowski M., Lee V. G., Liu E. C.-K., Malley M. F., McMullen D., Mitchell C., Moreland S., Murugesan N., Serafino R., Webb M. L., Zhang R., Hunt J. T., *J. Med. Chem*., **38**, 1344—1354 (1995); *b*) Doherty A. M., Patt W. C., Edmunds J. J., Berryman K. A., Reisdorph B. S., Plummer M. S., Shahripour A., Lee C., Cheng X.-M., Walker D. M., Haleen S. J., Keiser J. A., Welch K. M., Hallak H., Taylor D. G., Reynolds E. E., *ibid*., **38**, 1259—1263 (1995); *c*) Roux S., Breu V., Giller T., Neidhart W., Ramuz H., Coassolo P., Clozel J. P., Clozel M., *J. Pharmacol. Exp. Ther*., **283**, 1110—1118 (1997); *d*) Wu C., Chan M. F., Stavros F., Raju B., Okun I., Mong S., Keller K. M., Brock T., Kogan T. P., Dixon R. A. F., *J. Med. Chem*., **40**, 1690—1697 (1997); *e*) Winn M., von Geldern T. W., Opgenorth T. J., Jae H.-S., Tasker A. S., Boyd S. A., Kester J. A., Mantei R. A., Bal R., Sorensen B. K., Wu-Wong J. R., Chiou W. J., Dixon D. B., Novosad E. I., Hernandes L., Marsh K. C., *ibid*., **39**, 1039—1048 (1996); *f*) Riechers H., Albrecht H.-P., Amberg W., Baumann E., Bernard H., Bohm H.-J., Klinge D., Kling A., Muller S., Raschak M., Unger L., Walker N., Wernet W., *ibid*., **39**, 2123—2128 (1996); *g*) Clozel M., Breu V., Gray G. A., Kalina B., Loffler B. M., Burri K., Cassal J. M., Hirth G., Muuler M., Neidhart W., Ramuz H., *J. Pharmacol. Exp. Ther*., **270**, 228—235 (1994); *h*) Elliott J. D., Lago M. A., Cousins R. D., Gao A., Leber J. D., Erhard K. F., Nambi P., Elshourbagy N. A., Kumar C., Lee J. A., Bean J. W., DeBrosse C. W., Eggleston D. S., Brooks D. P., Fueurstein G., Ruffolo R. R., Weinstock J., Gleason J. G., Peishoff C. E., Ohlstein E. H., *J. Med. Chem*., **37**, 1553—1557 (1994).

- 8) *a*) Harada H., Kazami J., Watanuki S., Tsuzuki R., Sudoh K., Fujimori A., Tsukamoto S., Tanaka., Yanagisawa I., *Chem. Pharm. Bull*., **49**, 606—612 (2001); *b*) Harada H., Kazami J., Watanuki S., Tsuzuki R., Sudoh K., Fujimori A., Sanagi M., Orita M., Shimaya J., Nakahara H., Tsukamoto S., Tanaka., Yanagisawa I., *Bioorg. & Med. Chem*., **9**, 2955—2968 (2001).
- 9) Neidhart W., Breu V., Bur D., Burri K., Clozel M., Hirth G., Müller M., Wessel H. P., Ramuz H., *Chimia*, **20**, 519—524 (1996).
- 10) Hirooka S., Tanbo Y., Takemura K., Makahashi H., Matsuoka T., Kuroda S., *Bull. Chem. Soc. Jpn*., **64**, 1431—1433 (1991).
- 11) Culbertson B. M., Dietz S., *J. Chem. Soc. (C)*, **1968**, 992—993.
- 12) Wasylishen R., Schafer T., *Can. J. Chem*., **50**, 2710—2712 (1072); *Idem*, *ibid*., **51**, 961—973 (1973).
- 13) Matsuura T., Yukimura T., Kim S., Miura K., Iwao H., *Jpn. J. Pharmacol*., **71**, 213—222 (1996).
- 14) Hasegawa K., Hirooka S., Kawahara H., Tanaka A., Nomura M., Hori Y., *Bull. Chem. Soc. Jpn*., **50**, 2346—2350 (1977).