Water-Soluble Constituents of Caraway: Carvone Derivatives and Their Glucosides

Tetsuko Matsumura, Toru Ishikawa, and Junichi Kitajima*

Showa Pharmaceutical University, Higashi-Tamagawagakuen 3, Machida, Tokyo 194–8543, Japan. Received August 10, 2001; accepted October 11, 2001

Nine monoterpenoids related to carvone and seven glucosides were isolated from the water-soluble portion of the methanolic extract of the caraway (fruit of *Carum carvi* L.), and their structures were clarified by spectral investigation. Among them, eight monoterpenoids and six glucosides were new.

Key words caraway; Carum carvi fruit; carvone derivative; p-menthanediol; p-menthanetetrol; p-menthane glucoside

In a previous paper, we reported the isolation and characterization of 10 new *p*-menthanetriols, including eight stereoisomers of *p*-menthane-2,8,9-triol and five new glucosides from the methanolic extract of caraway (fruit of *Carum carvi* LINN., Umbelliferae), which has been used as a popular aromatic herb and medicine.^{1,2)} In continuation of our studies on the water-soluble constituents of spices, and to reveal the relationship between the essential oil and the water-soluble constituents,^{1,3)} we undertook the isolation and structure elucidation of monoterpenoids related to carvone, and their glucosides.

Commercial caraway was extracted with 70% methanol, and the methanolic extract was worked up as described in the previous paper.¹⁾ From the same aqueous portion, monoterpenoid diol (1), monoterpenoid enone-diols (2, 3), monoterpenoid tetrols (4 to 9), and monoterpenoid glucosides (10 to 16) were isolated by the combination of Sephadex LH-20, silica gel, Lobar RP-8 column chromatography, and HPLC. Among them, eight monoterpenoids (2 to 9) and six monoterpenoid glucosides (10 to 15) were new. All new glucosides described in this paper were β -D-glucopyranosides as shown by their ¹³C-NMR data (Table 1), and this was confirmed by hydrolysis to yield D-glucose, or by comparison of the $[\alpha]_D$ or $[M]_D$ values with those of their aglycones.⁴ Their molecular formulae were suggested from the accurate mass number of $[M+H]^+$ or $[M+Na]^+$ ion peaks in the high-resolution positive FAB-MS.

Diol 1 ($C_{10}H_{18}O_2$, an amorphous powder, $[\alpha]_D^{21} + 34^\circ$) and glucoside 16 ($C_{16}H_{28}O_7$, an amorphous powder, $[\alpha]_D^{25} - 50^\circ$) were identified as (1*S*,2*S*,4*R*)-*p*-menth-8-ene-1,2-diol⁵⁾ and (4*S*)-*p*-menth-1-ene-7,8-diol 8-*O*- β -D-glucopyranoside,⁶⁾ respectively.

Glucoside **10** ($C_{16}H_{28}O_7$, mp 154—156 °C, $[\alpha]_D^{25} + 13^\circ$) showed $[M+H]^+$ ion peak at m/z 333 and $[M-C_6H_{12}O_6+H]^+$ ion peak at m/z 153 in the positive FAB-MS. Glucoside **10** was hydrolyzed with hesperidinase and, from the hydrolyzed mixtures, **1** and D-glucose were obtained. Consequently, **10** was a monoglucoside of **1**. The position of the β -glucosyl unit of **10** was proved to be C-2 from the cross-peak between the glucosyl H-1/C-2 in the heteronuclear multiple bond connectivity (HMBC) spectrum and the observed nuclear Overhauser effect (NOE) interaction between the glucosyl H-1/H-2 in the NOE spectroscopy (NOESY) spectrum. Thus **10** was characterized as (1*S*,2*S*,4*R*)*p*-menth-8-ene-1,2-diol 2-*O*- β -D-glucopyranoside.

Enone-diol 2 ($C_{10}H_{16}O_3$, an amorphous powder, $[\alpha]_D^{25}$

 -6°) and 3 (C₁₀H₁₆O₃, an amorphous powder, $[\alpha]_{D}^{25}$ -7°) showed an $[M+H]^+$ ion peak at m/z 185 in the positive FAB-MS. They showed similar ¹H- and ¹³C-NMR spectra (Tables 2, 1), and have two tert-methyls, one hydroxymethyl, two methylenes, one methine, one oxygenated quaternary carbon, and one carbonyl group conjugated with a trisubstituted double bond. From analysis of the HMBC correlation data of 3 (H-6/C-4, C-5, C-7; H₂-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9), they were suggested to be 8,9-dihydroxy-8,9-dihydro derivatives of carvone. Therefore 2 and 3 were revealed to be stereoisomers of C-8. In a previous paper, we reported that comparison of C-3 and C-5¹³Cchemical shifts was useful to determine the C-8 configuration of 8-epimeric pairs of *p*-menthane-2,8,9-triol.¹⁾ In these pairs, C-3 signals in the $(4R^*, 8S^*)$ -forms were found significantly downfield from those in the $(4R^*, 8R^*)$ -forms; on the contrary, the C-5 signals in $(4R^*, 8S^*)$ -forms appeared significantly upfield from those in the $(4R^*, 8R^*)$ -forms. For 2 and 3, the ¹³C chemical shift at C-3 of 2 (δ 40.2) was downfield from that of 3 (δ 39.6), whereas the C-5 of 2 (δ 27.2) was upfield from that of 3 (δ 27.8). Therfore the stereochemical relationship between C-4 and C-8 was considered to be $4R^*$,8S* in 2 and $4R^*$,8R* in 3. Comparison of the ¹H-chemical shifts of the H₂-3 and H₂-5 signals of 2 and 3 was also useful to determine the relative configuration at C-8. As in the case of the 8-epimeric pairs of p-menthane-2,8,9-triol, the H₂-3 signals of 2 (H- 3_{ax} δ 2.58; H- 3_{eq} δ 2.98) were shifted upfield from those of **3** (H-3_{ax} δ 2.63; H-3_{eq} δ 3.12), and the H₂-5 signals of the (4 R^* ,8 S^*)-form (2; H-5_{ax} δ 2.50; H-5_{eq} δ 2.66) were shifted downfield from those of the $(4R^*, 8R^*)$ -form (3; H-5_{ax} δ 2.39; H-5_{eq} δ 2.47).¹⁾ The absolute configuration of C-4 was determined to be S by the results of circular dichroism (CD) spectra which showed a negative Cotton effect [250 nm for 2 ($\Delta \varepsilon - 0.48$) and 240 nm for 3 ($\Delta \varepsilon$ -0.39)], as observed for (+)-carvone [260 nm ($\Delta \varepsilon$ (-0.41)].⁷⁾ Furthermore, the NOE interactions observed in the one-dimensional (1D)-NOESY spectrum (2; between H- $3_{ax}/H-5_{ax}$, between $H_2-9/H-3_{eq}$, H-4, H-5_{eq}, and between $H_3-10/H-3_{ax}$, H-3_{eq}, H-4, **3**; between H-3_{ax}/H-5_{ax}, between H₂- $9/H-3_{ax}$, $H-3_{eq}$, and between $H_3-10/H-3_{ax}$, H-4, $H-5_{eq}$; Fig. 1) supported the stereochemical structures. Thus 2 and 3 were characterized as (4S,8R)-8,9-dihydroxy-8,9-dihydrocarvone and (4S,8S)-8,9-dihydroxy-8,9-dihydrocarvone, respectively.

Tetrol 4 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{21} + 4^\circ$) showed an $[M+H]^+$ ion peak at m/z 205 in the positive FAB-MS, and the ¹H- and ¹³C-NMR spectral data (Tables 2, 1) re-

Table 1. ¹³C-NMR Chemical Shifts of 1—15, 14a, and 15a (in Pyridine- d_5 , 125 MHz)

	1	2	3	4	5	6	7	8	9
C-1	70.70	134.87	134.96	42.90	70.88	70.87	70.89	70.91	73.56
C-2	74.03	199.88	200.23	71.49 ^{a)}	74.38	74.34	75.91	76.02	77.95
C-3	35.39	40.17	39.58	29.37	31.41	30.47	32.97	31.91	33.87
C-4	38.44	42.43	42.28	40.08	38.01	37.87	44.27	44.15	43.91
C-5	27.31	27.24	27.77	30.30	22.35	23.30	22.09	23.13	24.23
C-6	34.69	145.93	145.44	71.51 ^{a)}	34.92	34.88	38.63	38.64	39.74
C-7	28.64	15.88	15.86	5.96	28.89	28.86	28.16	28.12	19.75
C-8	151.30	73.09	73.13	74.01	74.38	74.44	74.12	74.05	73.84
C-9	108.69	68.55	68.58	69.12	69.11	69.21	69.08	69.15	69.0
C-10	21.21	22.23	21.96	21.92	21.96	21.57	21.72	21.53	21.98
	10	11	12	13	3	14	14a	15	15a
C-1	70.45 (-0.3)	70.27 (-0.6)	70.24 (-0.6)) 73.52		30.29 (-4.5)	34.75	137.35 (-3.5)	140.8
C-2	83.65 (+9.6)	85.43 (+11.1) 85.32 (+11.0	0) 77.92		78.01 (+5.9)	72.09	63.91	64.4
C-3	33.53 (-1.9)	29.49 (-1.9)	28.24 (-2.2)) 33.87		33.31 (-2.3)	35.58	37.44	37.6
C-4	38.64	38.15	37.24	44.00		40.47	40.59	36.01	36.1
C-5	26.95	22.27	23.10	24.18		25.94	25.88	31.28	31.1
C-6	34.99	35.46	35.16	39.73		30.88	31.27	127.69	124.1
C-7	28.07	28.74	28.66	19.81		11.38	11.37	71.69 (+6.8)	64.8
C-8	150.88	74.56	74.73	73.36 (-0.5)	155.06	155.49	149.93	150.1
C-9	108.73	68.73	69.69	77.65 (+8.6)	107.05	106.95	109.26	109.1
C-10	21.25	22.06	20.77	21.91		64.32	64.50	20.92	20.92
Glc-1	106.25	106.46	106.11	106.09		101.46		103.60	
Glc-2	75.64	75.70	75.63	75.32		75.40		75.22	
Glc-3	78.65	78.72	78.69	78.72		78.69		78.73	
Glc-4	71.74	71.83	72.06	71.69		71.74		71.89	
Glc-5	78.21	78.39	78.46	78.62		78.47		78.52	
Glc-6	62.85	63.12	63.28	62.81		62.81		62.92	

 δ in ppm from tetramethylsilane (TMS). $\Delta\delta$ (δ glucoside – δ aglycone) are given in parentheses. *a*) Assignments may be interchanged.

vealed the presence of one tert-methyl, one sec-methyl, one hydroxymethyl, two methylenes, four methines (two oxygenated), and one oxygenated quaternary carbon. From the analysis of HMBC spectral data (H-4_{ax}/C-2, C-3, C-5, C-6, C-8, C-9, C-10; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9), 4 was suggested to be p-menthane-2,6,8,9-tetrol. As cross-peaks based on the NOE interactions between H₃-7/H-3_{ax}, H-5_{ax}, between H-3_{ax}/H-5_{ax}, and between $H-4/H-2_{ax}$, $H-6_{ax}$ were observed in the NOESY spectrum (Fig. 1), the conformation of the cyclohexane ring was indicated to be the chair form with a 7,8-cis substituent, and the C-2 and C-6 hydroxyl groups were equatorial. The broad H-2 and H-6 signals (each δ 4.21, ddd J=3.5, 3.5, 12.0 Hz) also suggested the presence of an equatorial hydroxyl group. Therefore 4 was characterized as 4β H-cis-p-menthane- $2\alpha, 6\alpha, 8, 9$ -tetrol.

Tetrols 5 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{22} + 30^\circ$) and 6 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{22} + 27^\circ$) revealed an $[M+H]^+$ ion peak at m/z 205 in the positive FAB-MS, and showed similar ¹H- and ¹³C-NMR spectral features (Tables 2, 1). They have two *tert*-methyls, one hydroxymethyl, three methylenes, two methines (one oxygenated), and two oxygenated quaternary carbons. From the result of the HMBC experiment on 5 (H-4_{ax}/C-5, C-9; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9), they were suggested to be *p*-menthane-1,2,8,9-tetrol. The conformation of 5 and 6 was found to be the 7,8-*trans* form from the observed NOE interactions between H₃-7/H-6_{ax}, H-6_{eq}, and between H-4/H-6_{ax} in their NOESY spectra (Fig. 1), and the configuration of the C-2 hydroxyl was suggested to be axial by the equatorial H-2 signal which found a narrow double doublet with a half-bandwidth of 3 Hz in their ¹H-NMR spectra. Therefore **5** and **6** were revealed to be stereoisomers of *trans-p*-menthane-1,2_{ax},8,9-tetrol at C-8, respectively. Furthermore, the ¹³C chemical shift of the C-3 of **5** (δ 31.4) was downfield from that of **6** (δ 30.5), and the C-5 of **5** (δ 22.3) appeared upfield from that of **6** (δ 23.3), with the same relationship as that between **2** and **3**. This conclusion was supported by the results of NOESY spectra of **5** and **6**, which showed the same interactions as the (4*R**,8*S**)-form of *p*menthane-2,8,9-triols (between H₃-10/H₂-3, H₂-5, and between H₂-9/H-3_{eq}) and the (4*R**,8*R**)-form of *p*-menthane-2,8,9-triols (between H₃-10/H₂-3, H₂-5, and between H₂-9/H-5_{eq}).¹¹

Glucoside **11** (C₁₆H₃₀O₉, mp 137–138 °C, $[\alpha]_D^{24} + 22^\circ)$ and **12** (C₁₆H₃₀O₉, an amorphous powder, $[\alpha]_D^{24} + 17^\circ)$ showed an [M+H]⁺ ion peak at *m/z* 367 and an [M– C₆H₁₂O₆+H]⁺ ion peak at *m/z* 187 in the positive FAB-MS. They were hydrolyzed with β-glucosidase and **5** from **11**, and **6** from **12**, were obtained from the hydrolyzed mixtures together with D-glucose. Consequently, **11** and **12** were monoglucosides of **5** and **6**, respectively. The position of the β-glucosyl unit of both glucosides was confirmed to be C-2 from the HMBC correlation of glucosyl H-1/C-2 of **11**, and from the observed NOE interaction between the glucosyl H-1/H-2 in their NOESY spectra (Fig. 1). The absolute configurations at C-2 of **11** and **12** were indicated to be *S* by the values of the glycosylation shift of the α - and β -carbons, and

	2	3		4
H-3 _{ax}	2.58 dd (14.0, 14.0)	2.63 dd (13.0, 13.0)	H-1 _{eq}	2.86 m
H-3 _{eq}	2.93 ddd (2.0, 2.0, 14.0)	3.12 dd (2.0, 13.0)	H-2 _{ax}	4.21 ddd (3.5, 3.5, 12.0)
H-4 _{ax}	2.63 m	2.65 m	H-3 _{ax}	2.05 ddd (12.0, 12.0, 12.0)
H-5 _{ax}	2.50 m	2.39 m	H-3 _{eq}	2.49 ddd (3.5, 3.5, 12.0)
H-5 ^{ax} _{eq}	2.66 dddd (2.0, 3.0, 5.5, 13.0)	2.47 ddd (3.5, 5.0, 13.5)	H-4 _{ax}	2.18 dddd (3.5, 3.5, 12.0, 12.0
Н-6	6.65 br d (5.5)	6.62 br d (5.0)	H-5 _{ax}	1.93 ddd (12.0, 12.0, 12.0)
H ₃ -7	1.83 s	1.83 s	H-5 _{eq}	2.25 ddd (3.5, 3.5, 12.0)
H ₂ -9	3.89 d (11.0)	3.87 d (11.0)	$H-6_{ax}$	4.21 ddd (3.5, 3.5, 12.0)
2	3.92 d (11.0)	3.92 d (11.0)	H ₃ -7	1.50 d (7.0)
H ₃ -10	1.42 s	1.41 s	H ₂ -9	3.96 d (11.0)
5			2	3.99 d (11.0)
			H ₃ -10	1.47 s

Table 2.	¹ H-NMR Chemical Shifts of 2—15 (in Pyridine- d_5 , 500 MHz)	
----------	---	--

	5	6	7	8
H-2 _{ax}	_	_	3.71 dd (3.0, 12.0)	3.73 dd (4.0, 12.0)
H-2 _{eq}	4.24 dd (3.0, 3.0)	4.27 dd (3.0, 3.0)		
H-3 _{ax}	2.53 ddd (3.0, 13.0, 13.0)	2.62 ddd (3.0, 13.0, 13.0)	2.10 ddd (12.0, 12.0, 12.0)	2.25 ddd (12.0, 12.0, 12.0)
H-3 _{eq}	2.27 ddd (3.0, 3.0, 13.0)	2.53 dddd (3.0, 3.0, 3.0, 13.0)	2.33 ddd (3.0, 3.0, 12.0)	2.60 dddd (3.0, 3.0, 4.0, 12.0)
H-4 _{ax}	2.74 dddd (3.0, 3.0, 13.0, 13.0)	2.76 dddd (3.0, 3.0, 13.0, 13.0)	2.15 dddd (3.0, 3.0, 12.0, 12.0)	2.12 dddd (3.0, 3.0, 12.0, 12.0)
H-5 _{ax}	2.28 dddd (3.0, 13.0, 13.0, 13.0)	2.15 dddd (3.0, 13.0, 13.0, 13.0)	2.10 br ddd (12.0, 12.0, 12.0)	1.97 dddd (3.0, 12.0, 12.0, 12.0)
H-5 _{eq}	2.19 dddd (3.0, 3.0, 3.0, 13.0)	1.90 dddd (3.0, 3.0, 3.0, 13.0)	2.07 dddd (3.0, 3.0, 3.0, 12.0)	1.77 dddd (3.0, 3.0, 3.0, 12.0)
H-6 _{ax}	2.31 ddd (3.0, 13.0, 13.0)	2.26 ddd (3.0, 13.0, 13.0)	1.47 ddd (3.0, 12.0, 12.0)	1.47 ddd (3.0, 12.0, 12.0)
H-6 _{eq}	1.92 ddd (3.0, 3.0, 13.0)	1.91 ddd (3.0, 3.0, 13.0)	2.11 ddd (3.0, 3.0, 12.0)	2.07 ddd (3.0, 3.0, 12.0)
H ₃ -7	1.71 s	1.71 s	1.55 s	1.55 s
H ₂ -9	3.97 d (11.0)	3.94 d (10.5)	3.92 d (10.5)	3.92 d (10.5)
-	4.02 d (11.0)	4.02 d (10.5)	3.99 d (10.5)	3.97 d (10.5)
H ₃ -10	1.52 s	1.49 s	1.45 s	1.44 s

	9	10	11	12
H-2 _{ax}	4.10 dd (4.5, 11.5)	_	_	_
H-2 _{eq}	_	4.20 dd (3.0, 3.0)	4.17 dd (3.0, 3.0)	4.21 dd (3.0, 3.0)
H-3 _{ax}	1.81 ddd (11.5, 12.0, 12.0)	2.39 ddd (3.0, 13.0, 13.0)	2.38 ddd (3.0, 13.0, 13.0)	2.48 ddd (3.0, 13.0, 13.0)
H-3 _{eq}	2.47 ddd (3.5, 4.5, 12.0)	2.32 ddd (3.0, 3.0, 13.0)	2.69 ddd (3.0, 3.0, 13.0)	2.88 ddd (3.0, 3.0, 13.0)
H-4 _{ax}	2.20 dddd (3.5, 3.5, 12.0, 12.0)	2.67 dddd (3.0, 3.0, 13.0, 13.0)	2.72 dddd (3.0, 3.0, 13.0, 13.0)	2.75 dddd (3.0, 3.0, 13.0, 13.0)
H-5 _{ax}	1.68 dddd (3.5, 12.0, 12.0, 12.0)	2.01 dddd (3.0, 13.0, 13.0, 13.0)	2.19 dddd (3.0, 13.0, 13.0, 13.0)	2.04 dddd (3.0, 13.0, 13.0, 13.0)
H-5 _{eq}	2.18 m	1.59 dddd (3.0, 3.0, 3.0, 13.0)	2.05 dddd (3.0, 3.0, 3.0, 13.0)	1.74 dddd (3.0, 3.0, 3.0, 13.0)
H-6 _{ax}	1.85 ddd (3.5, 12.0, 12.0)	2.05 ddd (3.0, 13.0, 13.0)	2.10 ddd (3.0, 13.0, 13.0)	2.10 ddd (3.0, 13.0, 13.0)
H-6 _{eq}	2.10 ddd (3.5, 3.5, 12.0)	1.79 ddd (3.0, 3.0, 13.0)	1.86 ddd (3.0, 3.0, 13.0)	1.81 ddd (3.0, 3.0, 13.0)
H ₃ -7	1.60 s	1.82 s	1.83 s	1.81 s
H-9a	3.93 d (11.0)	4.74 br s	3.90 d (11.0)	3.92 d (11.0)
H-9b	3.96 d (11.0)	4.84 br s	4.06 d (11.0)	3.94 d (11.0)
H ₃ -10	1.46 s	1.73 s	1.45 s	1.42 s
Glc-1	—	5.02 d (7.5)	5.01 d (8.0)	5.00 d (8.0)

H-1 _{eq}		2.45 m	H-2 _{eq}	4.80 dd (4.0, 4.0)
H-2 _{ax}	4.03 dd (3.5, 11.5)	4.26 dd (4.5, 4.5, 12.0)	H-3 _{ax}	1.65 ddd (4.0, 12.0, 12.0)
H-3 ^{ax}	1.71 ddd (11.5, 12.5, 12.5)	1.84 ddd (12.0, 12.0, 12.0)	H-3 _{eq}	2.18 ddd (4.0, 4.0, 12.0)
H-3 ^{ax} _{eq}	2.45 ddd (3.0, 3.5, 12.5)	2.14 ddd (3.0, 4.5, 12.0)	H-4 _{ax}	2.81 dddd (4.0, 4.0, 12.0, 12.0)
H-4 _{ax}	2.16 dddd (3.0, 3.0, 12.5, 12.5)	2.11 dddd (3.0, 3.0, 12.0, 12.0)	H-5 _{ax}	1.91 br dd (12.0, 17.5)
H-5 _{ax}	1.60 dddd (3.0, 12.5, 13.0, 13.0)	1.43 dddd (3.0, 12.0, 12.0, 12.0)	H-5 _{eq}	2.15 ddd (3.0, 4.0, 17.5)
H-5 _{eq}	2.09 dddd (3.0, 3.0, 3.0, 13.0)	1.51 dddd (3.0, 3.0, 3.0, 12.0)	H-6	6.01 br d (3.0)
H-6 _{ax}	1.79 ddd (3.0, 13.0, 13.0)	1.44 dddd (3.0, 3.0, 12.0, 12.0)	H-7a	4.55 d (12.0)
H-6 _{eq}	2.05 ddd (3.0, 3.0, 13.0)	1.56 br ddd (3.0, 3.0, 12.0)	H-7b	4.97 d (12.0)
H ₃ -7	1.57 s	1.18 d (7.0)	H-9a	4.78 br s
H-9a	3.84 d (10.5)	5.00 d (2.0)	H-9b	4.80 br s
H-9b	4.29 d (10.5)	5.28 d (2.0)	H ₃ -10	1.68 s
H ₃ -10	1.37 s		Glc-1	4.98 d (7.5)
H ₂ -10	_	4.36 br s		
Glc-1	4.96 d (8.0)	5.02 d (7.5)		

 δ in ppm from TMS [coupling constants (*J*) in Hz are given in parentheses].

69

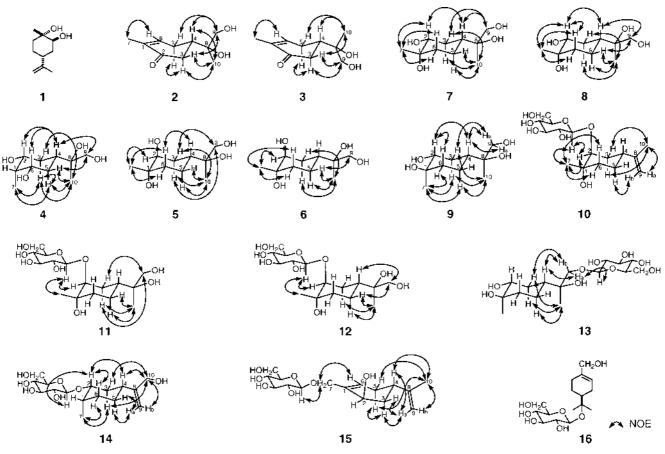


Fig. 1. Structures of 1-16, and NOE Interactions Observed in the NOESY Spectra of 2-15

the chemical shift of the glucosyl anomeric carbon, as shown in Table 1.^{1,8)} Thus **5**, **6**, **11**, and **12** were characterized as (1S,2S,4R,8S)-*p*-menthane-1,2,8,9-tetrol, (1S,2S,4R,8R)-*p*menthane-1,2,8,9-tetrol, (1S,2S,4R,8S)-*p*-menthane-1,2,8,9tetrol 2-*O*- β -D-glucopyranoside, and (1S,2S,4R,8R)-*p*-menthane-1,2,8,9-tetrol 2-*O*- β -D-glucopyranoside, respectively.

Tetrols 7 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{23} + 11^\circ$) and 8 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{23} + 26^\circ$) showed similar ¹H- and ¹³C-NMR spectral features (Tables 2, 1) and revealed an $[M+H]^+$ ion peak at m/z 205 in the positive FAB-MS. From the result of the HMBC experiment on 7 (H-4_{ax}/C-3, C-5, C-6, C-8, C-9; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H_3 -10/C-4, C-8, C-9), they were also indicated to be p-menthane-1,2,8,9-tetrol. The configuration of the C-2 hydroxyl was concluded to be equatorial by the axial H-2 signal pattern of their ¹H-NMR spectra (dd, J=3.0, 12.0 Hz for 7 and dd, J=4.0, 12.0 Hz for 8; Table 2). The stereochemical relationship between C-7 and C-8 was suggested to be trans from the observed NOE interactions in their NOESY spectra (Fig. 1). Therefore 7 and 8 were concluded to be stereoisomers at the C-8 of *trans-p*-menthane-1,2_{eq},8,9-tetrol, respectively. The ¹³C chemical shifts of C-3 (7, δ 33.0; 8, δ 31.9) and C-5 (7, δ 22.1; 8, δ 23.1) suggested that the relative configurations at C-4 and C-8 were 4R*,8S* for 7 and $4R^{*},8R^{*}$ for 8. This suggestion was supported by the NOESY spectrum of 7, which showed NOE interactions between H_3 -10/H-3_{ax}, H_2 -5, and between H_2 -9/H-3_{eq}, and that of 8 which showed NOE interactions between H_3 -10/ H_2 -3, H_2 -5, and between H_2 -9/H-5_{eq} (Fig. 1). Therefore 7 and 8

were concluded to be rel-(1*S*,2*R*,4*R*,8*S*)-*p*-menthane-1,2,8,9-tetrol and rel-(1*S*,2*R*,4*R*,8*R*)-*p*-menthane-1,2,8,9-tetrol, respectively.

Tetrol 9 ($C_{10}H_{20}O_4$, an amorphous powder, $[\alpha]_D^{21} - 3^\circ$) was indicated to be p-menthane-1,2,8,9-tetrol by the same methods as described in 2 to 8, and the configuration of the C-2 hydroxyl was concluded to be equatorial by the axial H-2 signal patterns of the ¹H-NMR spectrum (Table 1). The stereochemical relationship between C-7 and C-8 was suggested to be cis from the observed NOE interactions between H_3 -7/H-3_{ax}, H-5_{ax}, and between H-2_{ax}/H-4_{ax}, H-6_{ax} in the NOESY spectra, and comparison of chemical shifts of H-3_{ax} $(\delta 1.81)$ and H-5_{ax} $(\delta 1.68)$ with those of 7 and 8, which were lowfield shifted by the effect of the C-1 axial hydroxyl group (H-3_{ax}, 7; δ 2.10, 8; δ 2.10; H-5_{ax}, 7; δ 2.25, 8; δ 1.97). Therefore 9 was revealed to be cis-p-menthane- $1,2_{ea},8,9$ -tetrol. In addition, the NOESY spectrum of 9 showed the NOE interactions between H_3 -10/ H_2 -3, H-5_{ax}, and between H-9b/H- 3_{eq} , which were also observed in the NOESY spectra of 4 and 7 (Fig. 1). The relative configuration at C-4 and C-8 was assumed to be $4R^*, 8S^*$. From this evidence, 9 was concluded to be rel-(1R, 2R, 4R, 8S)-p-menthane-1,2,8,9-tetrol.

Glucoside **13** ($C_{16}H_{30}O_9$, an amorphous powder, $[\alpha]_D^{23}$ -15°) showed an $[M+H]^+$ ion peak at m/z 367 and an $[M-C_6H_{12}O_6+H]^+$ ion peak at m/z 187 in the positive FAB-MS. By comparison of ¹H- and ¹³C-NMR data with those of **9** (Tables 2, 1), and from the observed NOE interaction between the glucosyl H-1/H-9b in the NOESY spectrum (Fig. 1), **13** was suggested to be a glucoside of **9**, and the position of attachment of the glucosyl unit was revealed to be C-9. Since the glucose was suggested to be D-form from its $[M]_D$ value $[\Delta[M]_D$ (**13**-**9**) -47°; methyl β -D-glucopyranoside -62°],⁴⁾ **13** was concluded to be rel-(1R, 2R, 4R, 8S)-*p*-menthane-1,2,8,9-tetrol 9-*O*- β -D-glucopyranoside.

Glucoside 14 (C₁₆H₂₈O₇, an amorphous powder, $[\alpha]_D^{25}$ -26°) showed an [M+H]⁺ ion peak at m/z 333 and an $[M-C_6H_{12}O_6+H]^+$ ion peak at m/z 153 in the positive FAB-MS. The¹¹H-, ¹³C-, and ¹³C-¹H correlation spectroscopy (COSY) NMR spectral data (Tables 2, 1) showed the presence of one β -glucopyranosyl, one *sec*-methyl, four methylenes (one oxygenated), three methines (one oxygenated), and one terminal-methylene group. From the result of the HMBC experiment on 14 (H-4_{av}/C-2, C-5, C-6, C-8, C-9, C-10; H₃-7/C-1, C-6; H-9a/C-4, C-8, C-10; H-9b/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Glc H-1/C-2), the aglycone was suggested to be p-menth-8-ene-2,10-diol and the position of the glucosyl unit was found to be C-2. The configuration of C-2 hydroxyl was concluded to be equatorial by the axial H-2 signal pattern of its ¹H-NMR spectrum (ddd, J=4.5, 4.5, 12.0 Hz; Table 2). The stereochemical relationship between C-7 and C-8 was indicated to be *cis*, and the conformation of the cyclohexane ring was suggested to be the chair form from the NOE interactions between H_3 -7/H-3_{ax}, H-6_{eq} and between H- $2_{ax}/H-4_{ax}$, H-6_{ax} in the NOESY spectrum (Fig. 1). Enzymatic hydrolysis of 14 gave an aglycone (an amorphous powder, $[\alpha]_{\rm D}^{22}$ –11°; 14a) and D-glucose, and the absolute configuration at C-2 was confirmed to be R by the values of the glycosylation shift of the α - and β -carbons, and the chemical shift of the glucosyl anomeric carbon, as shown in Table 1.^{1,8)} From these data, 14 was characterized as (1S,2R,4R)-pmenth-8-ene-2,10-diol 2-O- β -D-glucopyranoside.

Glucoside 15 (C₁₆H₂₆O₇, an amorphous powder, $[\alpha]_D^{24}$ +12°) showed an $[M+H]^+$ ion peaks at m/z 331 and an $[M-C_6H_{12}O_6+H]^+$ ion peaks at m/z 151 in the positive FAB-MS. Enzymatic hydrolysis of 15 gave an aglycone (an amorphous powder, $[\alpha]_D^{22} + 36^\circ$; **15a**) and D-glucose. The ¹H, ¹³C-, and ¹³C-¹H COSY NMR spectral data (Tables 2, 1) of 15 showed the presence of one β -glucopyranosyl, one *tert*methyl, three methylenes (one oxygenated), two methines (one oxygenated), one tri-substituted double bond, and one terminal-methylene group, and the result of the HMBC experiment (H-6/C-2, C-4, C-5, C-7; H₂-7/C-1, C-2, C-6, Glc C-1; H-9a/C-4, C-8, C-10; H-9b/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Glc H-1/C-7) suggested that 15 was 7-hydroxycarveol 7-O- β -D-glucopyranoside. As the equatorial H-2 signal pattern was shown in the ¹H-NMR spectrum (dd, J=4.0, 4.0 Hz; Table 2), and the NOE interactions between $H-3_{av}/H 5_{ax}$, between H-9a/H- 3_{ax} , H- 3_{eq} , H-4, and between H₃-10/H-4, H-5_{ax}, H-5_{eq} were observed in the NOESY spectrum (Fig. 1), the configuration of the C-2 hydroxyl was concluded to be axial and the stereochemical relationship between the C-2 hydroxyl and C-4 isopropenyl group was *trans*. It has been reported that the (2R,4S)- and (2S,4R)-forms of carveol show positive and negative optical rotations, respectively.⁹⁾ Becouse 15a showed positive optical rotation, 15 was concluded to be (2R,4S)-7-hydroxycarveol 7-O- β -D-glucopyranoside.

Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-370 digital polarimeter. The CD spectra were recorded with a JASCO J-600 spectropolarimeter at 23 °C. FAB-MS were recorded with a JEOL HX-110 spectrometer using glycerol as a matrix. ¹H- and ¹³C-NMR spectra were recorded on JEOL A-500 spectrometers with TMS as an internal standard, and chemical shifts were recorded as δ values. ¹³C–¹H COSY, HMBC, NOESY, and 1D-NOESY spectra were obtained with the usual pulse sequence, and data processing was performed with standard JEOL software. Column chromatography was carried out under TLC monitoring using Kieselgel 60 (70-230 mesh, Merck), Sephadex LH-20 (25-100 µm, Pharmacia), Lobar RP-8 column (Merck), and Amberlite XAD-II (Organo). TLC was performed on silica gel (Merck 5721), and spots were detected with panisaldehyde-H2SO4 reagent. HPLC separation was carried out with Symmetryprep C₁₈ 7 μ m (Waters; column size, 7.8×300 mm; octadecyl silica (ODS)), Carbohydrate Analysis (Waters; column size, 3.9×300 mm; CHA) columns. Acetylation was done in the usual way using Ac₂O and pyridine. No acetoxyl group had been detected by NMR spectral analysis of the materials prior to acetylation.

Extraction and Separation Commercial caraway (the fruit of Carum carvi L.; purchased from Asaoka Spices Ltd., lot no. 93010, 2.0 kg) was extracted with 70% methanol (41×2), and the extract was partitioned into ether-water and ethyl acetate-water, respectively. The aqueous portion was chromatographed on Amberlite XAD-II (H₂O→MeOH), and the methanol eluate (27.6 g) was subjected to Sephadex LH-20 (MeOH) column chromatography to give eight fractions (frs. A-H). Fraction B (18.9g) was chromatographed on silica gel [CHCl₃-MeOH-H₂O (17:3:0.2 \rightarrow $4:3:0.1\rightarrow7:3:0.5)\rightarrow$ MeOH] to give 14 fractions (frs. B_1-B_{14}). Fraction B_2 (1.32 g) was passed through a Lobar RP-8 column [MeCN-H₂O $(1:4\rightarrow 1:1)$] to give seven fractions (frs. B_{2-1} — B_{2-7}), and fr. B_{2-2} was subjected to HPLC [ODS, MeOH-H2O (1:4)] and silica gel [CHCl3-MeOH (19:1)] chromatography to give 2 (7 mg) and 3 (9 mg). Fraction B₂₋₄ was subjected to HPLC [ODS, MeCN-H₂O (3:7)] to give 1 (4 mg). Fraction B₅ (0.44 g) was subjected to a Lobar RP-8 column [MeCN-H₂O (3:17)] and HPLC [CHA, MeCN-H₂O (19:1)] to give 15 (8 mg). Fraction B₆ (0.94 g) was passed through a Lobar RP-8 column [MeCN-H₂O (3:17)] to give eight fractions (frs. B₆₋₁—B₆₋₈). Fraction B₆₋₂ was subjected to HPLC [ODS, MeCN-H₂O (1:19)] to give 7 (7 mg) and 8 (5 mg). Fraction $B_{6.5}$ was subjected to HPLC [CHA, MeCN-H₂O (39:7)] and then ODS [MeCN-H₂O (7:33)] to give 14 (11 mg). Fraction $B_{\rm 6-6}$ was subjected to silica gel column chromatography [CHCl₃-MeOH-H₂O (17:3:0.2)] and then HPLC [CHA, MeCN-H₂O (97:3)] to give 10 (302 mg). Fraction B_7 (0.99 g) was subjected to a Lobar RP-8 column [MeCN-H2O (3:17)] and Sephadex LH-20 (MeOH) to give 16 (38 mg). Fraction B_8 (0.60 g) was subjected to a Lobar RP-8 column [MeCN-H2O (3:17)] and HPLC [ODS, MeCN-H2O (1:19)] to give 5 (5 mg), 6 (16 mg), and 9 (25 mg), respectively. Fraction B_{10} (1.38 g) was also subjected to a Lobar RP-8 column [MeCN-H2O (3:17)] to give eight fractions (frs. B₁₀₋₁—B₁₀₋₈). Fraction B₁₀₋₂ was subjected to silica gel column chromatography [CHCl₃-MeOH-H₂O (8:2:0.2)] to give 4 (98 mg). Fraction B₁₄ (1.44 g) was passed through a Lobar RP-8 column [MeCN-H₂O (3:17)] to give eight fractions (frs. B₁₄₋₁—B₁₄₋₈), and fr. B₁₄₋₃ was acetylated with Ac₂O and pyridine, and the acetylated fraction was subjected to silica gel column chromatography [CHCl₃-MeOH (20:1)] and then HPLC [ODS, MeCN-H2O (2:3)] to give two fractions. These two fractions were deacetylated by heating in a water bath with 5% NH₄OH-MeOH for 2 h. From the former fraction, 11 (16 mg) and 13 (2 mg) were isolated by HPLC [CHA, MeCN-H₂O (7:13)], and from the latter fraction, 12 (9 mg) was isolated by Sephadex LH-20 (MeOH) column chromatography.

The following compounds were identified by comparison with authentic compounds or published physical and spectral data: (1S,2S,4R)-*p*-menth-8-ene-1,2-diol (1) and (4*S*)-*p*-menth-1-ene-7,8-diol 8-*O*- β -D-glucopyranoside (16).

(45,8*R*)-8,9-Dihydroxy-8,9-dihydrocarvone (2) An amorphous powder, $[\alpha]_{2^5}^{D-6^\circ}$ (*c*=0.1, MeOH). Positive FAB-MS *m/z*: 369 [2M+H]⁺, 223 [M+K]⁺, 207 [M+Na]⁺ (base), 185.1175 [M+H]⁺ (Calcd for C₁₀H₁₇O₃: 185.1177), 167 [M-H₂O+H]⁺, 149 [M-2H₂O+H]⁺. ¹H-NMR (pyridine*d*₅, 500 MHz) δ : Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ : Table 1. CD: (*c*=0.0100 M, MeOH) $\Delta \varepsilon$ (nm): -0.48 (250).

(45,85)-8,9-Dihydroxy-8,9-dihydrocarvone (3) An amorphous powder, $[\alpha]_{2^{D}}^{-5} - 7^{\circ}$ (*c*=0.2, MeOH). Positive FAB-MS *m/z*: 369 [2M+H]⁺, 223 [M+K]⁺, 207 [M+Na]⁺ (base), 185.1180 [M+H]⁺ (Calcd for C₁₀H₁₇O₃: 185.1177), 167 [M-H₂O+H]⁺, 149 [M-2H₂O+H]⁺. ¹H-NMR (pyridine*d*₅, 500 MHz) δ : Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ : Table 1. CD: (*c*=0.0125 M, MeOH) Δε (nm): -0.39 (240). HMBC correlations: H-3_{ax}/C-2, C-4, C-5; H-3_{eq}/C-1, C-2, C-4, C-5, C-8; H-4_{ax}/C-2, C-3, C-5, C-8, C-9, C-10; H-5_{ax}/C-1, C-3, C-4, C-6; H-5_{eq}/C-3, C-4; H-6/C-4, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.

4βH-*cis*-*p*-**Menthane**-2*α*,6*α*,8,9-tetrol (4) An amorphous powder, $[α]_D^{21} + 4^\circ (c=1.6, MeOH)$. Positive FAB-MS *m/z*: 205.1448 [M+H]⁺ (base, Calcd for C₁₀H₂₁O₄: 205.1439), 187 [M-H₂O+H]⁺, 169 [M-2H₂O+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1. HMBC correlations: H-1_{eq}/C-2, C-3, C-5, C-6, C-7; H-2_{ax}/C-1, C-3, C-4, C-6, C-7; H-3_{ax}/C-1, C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-4, C-5; H-4_{ax}/C-2, C-3, C-4, C-6, C-7; H-6_{ax}/C-1, C-2, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.

(1*S*,2*S*,4*R*,8*S*)-*p*-Menthane-1,2,8,9-tetrol (5) An amorphous powder, $[α]_{D}^{22} + 30^{\circ} (c=0.4, MeOH)$. Positive FAB-MS *m/z*: 243 [M+K]⁺, 227.1245 [M+Na]⁺ (Calcd for C₁₀H₂₀O₄Na: 227.1259), 205 [M+H]⁺, 187 [M-H₂O+H]⁺, 169 [M-2H₂O+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ : Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ : Table 1. HMBC correlations: H-2_{eq}/C-1, C-4; H-3_{ax}/C-4, C-5, C-8; H-3_{eq}/C-5; H-4_{ax}/C-5, C-9; H-5_{ax}/C-6; H-5_{eq}/C-6; H-6_{ax}/C-1, C-2, C-4, C-7; H-6_{eq}/C-1, C-2, C-5; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.

(1*R*,2*S*,4*R*,8*R*)-*p*-Menthane-1,2,8,9-tetrol (6) An amorphous powder, $[α]_D^{22} + 27^\circ$ (*c*=0.8, MeOH). Positive FAB-MS *m/z*: 243 [M+K]⁺, 227 [M+Na]⁺, 205.1424 [M+H]⁺ (Calcd for C₁₀H₂₁O₄: 205.1439), 187 [M-H₂O+H]⁺, 169 [M-2H₂O+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1.

rel-(1*S***,2***R***,4***R***,8***S***)-***p***-Menthane-1,2,8,9-tetrol (7) An amorphous powder, [\alpha]_D^{23} + 11^\circ (***c***=0.1, MeOH). Positive FAB-MS** *m/z***: 243 [M+K]⁺, 227 [M+Na]⁺, 205.1438 [M+H]⁺ (Calcd for C₁₀H₂₁O₄: 205.1439), 187 [M-H₂O+H]⁺ (base), 169 [M-2H₂O+H]⁺. ¹H-NMR (pyridine-***d***₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-***d***₅, 125 MHz) δ: Table 1. HMBC correlations: H-2_{ax}/C-1, C-4, C-6; H-3_{ax}/C-4, C-5, C-8; H-3_{eq}/C-1, C-5, C-8; H-4_{ax}/C-3, C-5, C-6, C-8, C-9; H-5_{ax}/C-3, C-4, C-6; H-5_{eq}/C-4, C-6; H-6_{ax}/C-2, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-4, C-7; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.**

rel-(I*S*,2*R*,4*R*,8*R*)-*p*-Menthane-1,2,8,9-tetrol (8) An amorphous powder, $[\alpha]_D^{23} + 26^\circ$ (*c*=0.1, MeOH). Positive FAB-MS *m/z*: 227 [M+Na]⁺, 205.1425 [M+H]⁺ (base, Calcd for C₁₀H₂₁O₄: 205.1439), 187 [M-H₂O+H]⁺, 169 [M-2H₂O+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1.

rel-(1*R*,2*R*,4*R*,8*S*)-*p*-Menthane-1,2,8,9-tetrol (9) An amorphous powder, $[\alpha]_D^{21} - 3^\circ$ (*c*=0.2, MeOH). Positive FAB-MS *m/z*: 409 [2M+H]⁺, 227 [M+Na]⁺, 205.1429 [M+H]⁺ (base, Calcd for C₁₀H₂₁O₄: 205.1439), 187 [M-H₂O+H]⁺, 169 [M-2H₂O+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1.

(15,25,4*R***)**-*p*-**Menth-8-ene-1,2-diol 2-***O***-β-D-Glucopyranoside (10)** Colorless needles (MeOH), mp 154—156 °C, $[\alpha]_D^{25} + 13^\circ$ (*c*=1.7, MeOH). Positive FAB-MS *m/z*: 665 [2M+H]⁺, 371 [M+K]⁺, 355.1731 [M+Na]⁺ (Calcd for C₁₆H₂₈O₇Na: 355.1733), 333 [M+H]⁺, 315 [M-H₂O+H]⁺, 153 [M-C₆H₁₂O₆+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ : Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ : Table 1. HMBC correlations: H-2_{eq}/C-1, C-4, C-6, C-7, Glc C-1; H-3_{ax}/C-1, C-2, C-4, C-5; H-3_{eq}/C-1, C-2, C-4, C-5; H-4_{ax}/C-3, C-5, C-6, C-10; H-5_{ax}/C-1, C-3, C-4, C-6; H-6_{ax}/C-5; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-10; H₃-10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 10 A mixture of **10** (11 mg) and hesperidinase (5 mg, ICN Biomedicals Inc., lot 72635) in water (5 ml) was shaken in a water bath at 37 °C for 20 d. The mixture was concentrated *in vacuo* to dryness and the residue was chromatographed over silica gel [CHCl₃–MeOH–H₂O (4:1:0.1 and 1:1:0.1)] to afford **1** (3 mg) and a sugar fraction. The sugar fraction was passed through Sephadex LH-20 (MeOH) to give a syrup, and HPLC [carbohydrate analysis (waters), detector; JASCO RI-930 detector and JASCO OR-990 chiral detector, solv.; MeCN–H₂O (17:3), 2 ml/min; t_R 4.50 min (same location as that of D-glucose)] showed the presence of D-glucose.

(15,25,4*R*,85)-*p*-Menthane-1,2,8,9-tetrol 2-*O*-β-D-Glucopyranoside (11) Colorless needles (MeOH), mp 137–138 °C, $[\alpha]_D^{24} + 22^\circ$ (*c*=1.3, MeOH). Positive FAB-MS *m/z*: 389 [M+Na]⁺, 367.1983 [M+H]⁺ (Calcd for C₁₆H₃₁O₉: 367.1968), 349 [M-H₂O+H]⁺, 187 [M-C₆H₁₂O₆+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1. HMBC correlations: H-2_{eq}/C-1, C-4; H-3_{ax}/C-4, C-5, C-8; H-3_{eq}/C-5; H-4_{ax}/C-5, C-9; H-5_{ax}/C-6; H-5_{eq}/C-6; H-6_{ax}/C-1, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-5; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Glc H-1/C-2. the sugar fraction, as described for **10**. (**15**,**25**,**4**,**8**,**8**)-*p*-**Menthane-1**,**2**,**8**,**9**-tetrol **2**-*O*-**β**-D-Glucopyranoside (**12**) An amorphous powder, $[\alpha]_D^{24} + 17^\circ (c=0.7, \text{ MeOH})$. Positive FAB-MS *m/z*: 389 $[M+Na]^+$, 367.1982 $[M+H]^+$ (Calcd for $C_{16}H_{31}O_5$: 367.1968), 349 $[M-H_2O+H]^+$, 187 $[M-C_6H_{12}O_6+H]^+$ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ : Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ : Table 1. HMBC correlations: H-2_{eq}/C-1, C-4, C-6; H-3_{ax}/C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-5, C-8; H-4_{ax}/C-2, C-3, C-8, C-9, C-10; H-5_{ax}/C-1, C-4, C-6, C-8; H-5_{eq}/C-3; H-6_{ax}/C-1, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-5; H₃-7/C-1, 1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 12 A mixture of **12** (6 mg) and β -glucosidase in water (5 ml) was shaken in a water bath at 37 °C for 16 d. The mixture was treated in the same way as described for **10** to afford **6** (3 mg) and a sugar fraction. D-Glucose was detected from the sugar fraction, as described for **10**.

rel-(1*R*,2*R*,4*R*,8*S*)-*p*-Menthane-1,2,8,9-tetrol 9-*O*-β-D-Glucopyranoside (13) An amorphous powder, $[\alpha]_{2^3}^{2^3}$ -15° (*c*=0.2, MeOH). Positive FAB-MS *m/z*: 733 [2M+H]⁺, 405 [M+K]⁺, 389.1782 [M+Na]⁺ (base, Calcd for C₁₆H₃₀O₉Na: 389.1788), 367 [M+H]⁺, 187 [M-C₆H₁₂O₆+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1.

(15,2*R*,4*R*)-*p*-Menth-8-ene-2,10-diol 2-*O*-β-D-Glucopyranoside (14) An amorphous powder, $[\alpha]_D^{25} - 26^\circ$ (*c*=0.9, MeOH). Positive FAB-MS *m/z*: 665 [2M+H]⁺, 355 [M+Na]⁺, 333.1921 [M+H]⁺ (base, Calcd for C₁₆H₂₉O₇: 333.1913), 153 [M-C₆H₁₂O₆+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1. HMBC correlations: H-1_{eq}/C-2, C-3, C-5, C-6, C-7; H-2_{ax}/C-1, C-3, C-4, C-6, C-7; H-3_{ax}/C-1, C-4, C-5, C-8; H-3_{eq}/C-1, C-4, C-5, C-8; H-4_{ax}/C-2, C-5, C-6, C-7; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H-6_{eq}/C-1, C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 14 A mixture of **14** (8 mg) and β -glucosidase (5 mg) in water (5 ml) was shaken in a water bath at 37 °C for 7 d. The mixture was treated in the same way as described for **10** to afford **14a** (4 mg) and a sugar fraction. D-Glucose was detected from the sugar fraction, as described for **10**.

(15,2*R*,4*R*)-*p*-Menth-8-ene-2,10-diol (14a) An amorphous powder, $[\alpha]_D^{22} - 11^{\circ}$ (*c*=0.3, MeOH). Positive FAB-MS *m/z*: 171 [M+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ : 5.46 (1H, d, *J*=2.0 Hz, H-9b), 5.09 (1H, d, *J*=2.0 Hz, H-9a), 4.45 (2H, brs, H₂-10), 4.07 (1H, ddd, *J*=4.5, 4.5, 12.0 Hz, H-2_{ax}), 2.29 (1H, m, H-1_{eq}), 2.28 (1H, dddd, *J*=3.0, 3.0, 12.0, 12.0 Hz, H-4_{ax}), 2.13 (1H, ddd, *J*=3.0, 4.5, 12.0 Hz, H-3_{eq}), 1.86 (1H, ddd, *J*=12.0, 12.0, 12.0 Hz, H-3_{ax}), 1.63 (1H, dddd, *J*=3.0, 3.0, 12.0, 12.0 Hz, H-6_{ax}), 1.54–1.61 (2H, m, H-5_{eq}, H-6_{eq}), 1.51 (1H, dddd, *J*=3.0, 12.0, 1

(4*R*,6*S*)-7-Hydroxycarveol 7-*O*-β-D-Glucopyranoside (15) An amorphous powder, $[\alpha]_D^{24} + 12^{\circ}$ (*c*=0.4, MeOH). Positive FAB-MS *m/z*: 661 [2M+H]⁺, 369 [M+K]⁺, 331.1755 [M+H]⁺ (base, Calcd for C₁₆H₂₇O₇: 331.1757), 151 [M-C₆H₁₂O₆+H]⁺. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: Table 2. ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1. HNBC correlations: H-2_{eq}/C-4; H-3_{ax}/C-4, C-5, C-8; H-3_{eq}/C-2, C-5; H-4_{ax}/C-3, C-5, C-6, C-8, C-9, C-10; H-5_{ax}/C-1, C-4, C-6, C-8; H-5_{eq}/C-1, C-3, C-4, C-6, C-8; H-6/C-2, C-4, C-5, C-7; H₂-7/C-1, C-2, C-6, Gle C-1; H-9a/ C-4, C-8, C-10; H-9b/C-4, C-8, C-10; H-3_a-10/C-4, C-8, C-9; Gle H-1/C-7.

Enzymatic Hydrolysis of 15 A mixture of **15** (6 mg) and β -glucosidase (5 mg) in water (5 ml) was shaken in a water bath at 37 °C for 10 d. The mixture was treated in the same way as described for **10** to afford **15a** (3 mg) and a sugar fraction. D-Glucose was detected from the sugar fraction, as described for **10**.

(4*R*,6*S*)-7-Hydroxycarveol (15a) An amorphous powder, $[\alpha]_{2}^{22} + 36^{\circ}$ (*c*=0.2, MeOH). Positive FAB-MS *m/z*: 169 [M+H]⁺ (base). ¹H-NMR (pyridine-*d*₅, 500 MHz) δ: 6.05 (1H, br d, *J*=4.0 Hz, H-6), 4.80 (1H, br s, H-9b), 4.77 (1H, br s, H-9a), 4.73 (1H, dd, *J*=4.0, 4.0 Hz, H-2_{eq}), 4.70 (1H, d, *J*=13.0 Hz, H-7b), 4.64 (1H, d, *J*=13.0 Hz, H-7a), 2.83 (1H, dddd, *J*=4.0, 4.0, 13.0, 13.0 Hz, H-4_{ax}), 2.21 (1H, ddd, *J*=4.0, 4.0, 13.0 Hz, H-3_{eq}), 2.18 (1H, ddd, *J*=4.0, 4.0, 13.0 Hz, H-4_{ax}), 2.21 (1H, ddd, *J*=4.0, 13.0, 13.0 Hz, H-3_{eq}), 1.68 (3H, s, H₃-10), 1.65 (1H, ddd, *J*=4.0, 13.0, 13.0 Hz, H-3_{ax}). ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ: Table 1.

Acknowledgments The authors thank Mr. Y. Takase and Dr. H. Suzuki of the Analytical Center of Showa Pharmaceutical University for NMR and MS measurements.

References and Notes

- Matsumura T., Ishikawa T., Kitajima J., *Tetrahedron*, 57, 8067–8074 (2001).
- "Herbal Drugs and Phytopharmaceuticals," ed. by Wichtl M., CRC Press, Stuttgart, 1994, pp. 128—129.
- Ishikawa T., Sega Y., Kitajima J., Chem. Pharm. Bull., 49, 840–844 (2001).
- Klyne W., "Determination of Organic Structure by Physical Methods," ed. by Braude E. A., Nachod F. C., Academic Press, New York, 1975, p. 73; *Idem, Biochem. J.*, 47, XIi—XIii (1950).
- 5) Diaz J. G., Barba B., Herz W., *Phytochemistry*, **36**, 703–707 (1994); Piatkowski K., Simienuk A., Kuczynski H., *Bull. Acad. Pol. Sci. Ser.*

Chim., 23, 883-894 (1975).

- Kitajima J., Aoki Y., Ishikawa T., Tanaka Y., Chem. Pharm. Bull., 47, 639–642 (1999).
- CD spectra of (4*S*)-(+)- and (4*R*)-(-)-carvone in MeOH were as follows: (+)-carvone (c=0.0573 м); Δε (nm): -0.41 (260), (-)-carvone (c=0.0740 м); Δε (nm): +0.33 (260).
- Kasai R., Suzuo M., Asakawa J., Tanaka O., *Tetrahedron Lett.*, **1977**, 175–178; Tori K., Seo S., Yoshimura Y., Arita Y., Tomita Y., *ibid.*, **1977**, 179–182; Kasai R., Okihara M., Asakawa J., Mizutani K., Tanaka O., *Tetrahedron*, **35**, 1427–1432 (1979); Mizutani K., Kasai R., Tanaka O., *Carbonhydr. Res.*, **87**, 19–26 (1980); Kitajima J., Ishikawa T., Tanaka Y., *Chem. Pharm. Bull.*, **46**, 1591–1594 (1998); Ishikawa T., Kitajima J., Tanaka Y., Ono M., Ito Y., Nohara T., *ibid.*, **46**, 1738–1742 (1998); Kitajima J., Kimizuka K, Tanaka Y., *ibid.*, **48**, 77–80 (1999).
- 9) Klein E., Ohloff G., Tetrahedron, 19, 1091-1099 (1963).