
In a previous paper, we reported the isolation and charac-
terization of 10 new p-menthanetriols, including eight
stereoisomers of p-menthane-2,8,9-triol and five new gluco-
sides from the methanolic extract of caraway (fruit of Carum
carvi LINN., Umbelliferae), which has been used as a popular
aromatic herb and medicine.1,2) In continuation of our studies
on the water-soluble constituents of spices, and to reveal the
relationship between the essential oil and the water-soluble
constituents,1,3) we undertook the isolation and structure elu-
cidation of monoterpenoids related to carvone, and their glu-
cosides.

Commercial caraway was extracted with 70% methanol,
and the methanolic extract was worked up as described in the
previous paper.1) From the same aqueous portion, monoter-
penoid diol (1), monoterpenoid enone-diols (2, 3), monoter-
penoid tetrols (4 to 9), and monoterpenoid glucosides (10 to
16) were isolated by the combination of Sephadex LH-20,
silica gel, Lobar RP-8 column chromatography, and HPLC.
Among them, eight monoterpenoids (2 to 9) and six
monoterpenoid glucosides (10 to 15) were new. All new glu-
cosides described in this paper were b-D-glucopyranosides as
shown by their 13C-NMR data (Table 1), and this was con-
firmed by hydrolysis to yield D-glucose, or by comparison of
the [a]D or [M]D values with those of their aglycones.4) Their
molecular formulae were suggested from the accurate mass
number of [M1H]1 or [M1Na]1 ion peaks in the high-reso-
lution positive FAB-MS.

Diol 1 (C10H18O2, an amorphous powder, [a]D
21 134°) and

glucoside 16 (C16H28O7, an amorphous powder, [a]D
25 250°)

were identified as (1S,2S,4R)-p-menth-8-ene-1,2-diol5) and
(4S )-p-menth-1-ene-7,8-diol 8-O-b-D-glucopyranoside,6) re-
spectively.

Glucoside 10 (C16H28O7, mp 154—156 °C, [a]D
25 113°)

showed [M1H]1 ion peak at m/z 333 and [M2
C6H12O61H]1 ion peak at m/z 153 in the positive FAB-MS.
Glucoside 10 was hydrolyzed with hesperidinase and, from
the hydrolyzed mixtures, 1 and D-glucose were obtained.
Consequently, 10 was a monoglucoside of 1. The position of
the b-glucosyl unit of 10 was proved to be C-2 from the
cross-peak between the glucosyl H-1/C-2 in the heteronu-
clear multiple bond connectivity (HMBC) spectrum and the
observed nuclear Overhauser effect (NOE) interaction be-
tween the glucosyl H-1/H-2 in the NOE spectroscopy
(NOESY) spectrum. Thus 10 was characterized as (1S,2S,4R)-
p-menth-8-ene-1,2-diol 2-O-b-D-glucopyranoside.

Enone-diol 2 (C10H16O3, an amorphous powder, [a]D
25

26°) and 3 (C10H16O3, an amorphous powder, [a]D
25 27°)

showed an [M1H]1 ion peak at m/z 185 in the positive FAB-
MS. They showed similar 1H- and 13C-NMR spectra (Tables
2, 1), and have two tert-methyls, one hydroxymethyl, two
methylenes, one methine, one oxygenated quaternary carbon,
and one carbonyl group conjugated with a trisubstituted dou-
ble bond. From analysis of the HMBC correlation data of 3
(H-6/C-4, C-5, C-7; H3-7/C-1, C-2, C-6; H2-9/C-4, C-8, C-
10; H3-10/C-4, C-8, C-9), they were suggested to be 8,9-di-
hydroxy-8,9-dihydro derivatives of carvone. Therefore 2 and
3 were revealed to be stereoisomers of C-8. In a previous
paper, we reported that comparison of C-3 and C-5 13C-
chemical shifts was useful to determine the C-8 configuration
of 8-epimeric pairs of p-menthane-2,8,9-triol.1) In these
pairs, C-3 signals in the (4R*,8S*)-forms were found signifi-
cantly downfield from those in the (4R*,8R*)-forms; on the
contrary, the C-5 signals in (4R*,8S*)-forms appeared signif-
icantly upfield from those in the (4R*,8R*)-forms. For 2 and
3, the 13C chemical shift at C-3 of 2 (d 40.2) was downfield
from that of 3 (d 39.6), whereas the C-5 of 2 (d 27.2) was
upfield from that of 3 (d 27.8). Therfore the stereochemical
relationship between C-4 and C-8 was considered to be
4R*,8S* in 2 and 4R*,8R* in 3. Comparison of the 1H-chem-
ical shifts of the H2-3 and H2-5 signals of 2 and 3 was also
useful to determine the relative configuration at C-8. As in
the case of the 8-epimeric pairs of p-menthane-2,8,9-triol,
the H2-3 signals of 2 (H-3ax d 2.58; H-3eq d 2.98) were
shifted upfield from those of 3 (H-3ax d 2.63; H-3eq d 3.12),
and the H2-5 signals of the (4R*,8S*)-form (2; H-5ax d 2.50;
H-5eq d 2.66) were shifted downfield from those of the
(4R*,8R*)-form (3; H-5ax d 2.39; H-5eq d 2.47).1) The ab-
solute configuration of C-4 was determined to be S by the re-
sults of circular dichroism (CD) spectra which showed a neg-
ative Cotton effect [250 nm for 2 (De 20.48) and 240 nm for
3 (De 20.39)], as observed for (1)-carvone [260 nm (De
20.41)].7) Furthermore, the NOE interactions observed in
the one-dimensional (1D)-NOESY spectrum (2; between H-
3ax/H-5ax, between H2-9/H-3eq, H-4, H-5eq, and between H3-
10/H-3ax, H-3eq, H-4, 3; between H-3ax/H-5ax, between H2-
9/H-3ax, H-3eq, and between H3-10/H-3ax, H-4, H-5eq; Fig. 1)
supported the stereochemical structures. Thus 2 and 3 were
characterized as (4S,8R)-8,9-dihydroxy-8,9-dihydrocarvone
and (4S,8S)-8,9-dihydroxy-8,9-dihydrocarvone, respectively.

Tetrol 4 (C10H20O4, an amorphous powder, [a]D
21 14°)

showed an [M1H]1 ion peak at m/z 205 in the positive FAB-
MS, and the 1H- and 13C-NMR spectral data (Tables 2, 1) re-
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vealed the presence of one tert-methyl, one sec-methyl, one
hydroxymethyl, two methylenes, four methines (two oxy-
genated), and one oxygenated quaternary carbon. From the
analysis of HMBC spectral data (H-4ax/C-2, C-3, C-5, C-6,
C-8, C-9, C-10; H3-7/C-1, C-2, C-6; H2-9/C-4, C-8, C-10;
H3-10/C-4, C-8, C-9), 4 was suggested to be p-menthane-
2,6,8,9-tetrol. As cross-peaks based on the NOE interactions
between H3-7/H-3ax, H-5ax, between H-3ax/H-5ax, and be-
tween H-4/H-2ax, H-6ax were observed in the NOESY spec-
trum (Fig. 1), the conformation of the cyclohexane ring was
indicated to be the chair form with a 7,8-cis substituent, and
the C-2 and C-6 hydroxyl groups were equatorial. The broad
H-2 and H-6 signals (each d 4.21, ddd J53.5, 3.5, 12.0 Hz)
also suggested the presence of an equatorial hydroxyl group.
Therefore 4 was characterized as 4bH-cis-p-menthane-
2a ,6a ,8,9-tetrol.

Tetrols 5 (C10H20O4, an amorphous powder, [a]D
22 130°)

and 6 (C10H20O4, an amorphous powder, [a]D
22 127°) re-

vealed an [M1H]1 ion peak at m/z 205 in the positive FAB-
MS, and showed similar 1H- and 13C-NMR spectral features
(Tables 2, 1). They have two tert-methyls, one hydroxy-
methyl, three methylenes, two methines (one oxygenated),
and two oxygenated quaternary carbons. From the result of
the HMBC experiment on 5 (H-4ax/C-5, C-9; H3-7/C-1, C-2,
C-6; H2-9/C-4, C-8, C-10; H3-10/C-4, C-8, C-9), they were
suggested to be p-menthane-1,2,8,9-tetrol. The conformation
of 5 and 6 was found to be the 7,8-trans form from the ob-
served NOE interactions between H3-7/H-6ax, H-6eq, and be-
tween H-4/H-6ax in their NOESY spectra (Fig. 1), and the

configuration of the C-2 hydroxyl was suggested to be axial
by the equatorial H-2 signal which found a narrow double
doublet with a half-bandwidth of 3 Hz in their 1H-NMR
spectra. Therefore 5 and 6 were revealed to be stereoisomers
of trans-p-menthane-1,2ax,8,9-tetrol at C-8, respectively. Fur-
thermore, the 13C chemical shift of the C-3 of 5 (d 31.4) was
downfield from that of 6 (d 30.5), and the C-5 of 5 (d 22.3)
appeared upfield from that of 6 (d 23.3), with the same rela-
tionship as that between 2 and 3. This conclusion was sup-
ported by the results of NOESY spectra of 5 and 6, which
showed the same interactions as the (4R*,8S*)-form of p-
menthane-2,8,9-triols (between H3-10/H2-3, H2-5, and be-
tween H2-9/H-3eq) and the (4R*,8R*)-form of p-menthane-
2,8,9-triols (between H3-10/H2-3, H2-5, and between H2-9/H-
5eq).

1)

Glucoside 11 (C16H30O9, mp 137—138 °C, [a]D
24 122°)

and 12 (C16H30O9, an amorphous powder, [a]D
24 117°)

showed an [M1H]1 ion peak at m/z 367 and an [M2
C6H12O61H]1 ion peak at m/z 187 in the positive FAB-MS.
They were hydrolyzed with b-glucosidase and 5 from 11, 
and 6 from 12, were obtained from the hydrolyzed mixtures
together with D-glucose. Consequently, 11 and 12 were
monoglucosides of 5 and 6, respectively. The position of the
b-glucosyl unit of both glucosides was confirmed to be C-2
from the HMBC correlation of glucosyl H-1/C-2 of 11, and
from the observed NOE interaction between the glucosyl H-
1/H-2 in their NOESY spectra (Fig. 1). The absolute configu-
rations at C-2 of 11 and 12 were indicated to be S by the val-
ues of the glycosylation shift of the a- and b-carbons, and
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Table 1. 13C-NMR Chemical Shifts of 1—15, 14a, and 15a (in Pyridine-d5, 125 MHz)

1 2 3 4 5 6 7 8 9

C-1 70.70 134.87 134.96 42.90 70.88 70.87 70.89 70.91 73.56
C-2 74.03 199.88 200.23 71.49a) 74.38 74.34 75.91 76.02 77.95
C-3 35.39 40.17 39.58 29.37 31.41 30.47 32.97 31.91 33.87
C-4 38.44 42.43 42.28 40.08 38.01 37.87 44.27 44.15 43.91
C-5 27.31 27.24 27.77 30.30 22.35 23.30 22.09 23.13 24.23
C-6 34.69 145.93 145.44 71.51a) 34.92 34.88 38.63 38.64 39.74
C-7 28.64 15.88 15.86 5.96 28.89 28.86 28.16 28.12 19.75
C-8 151.30 73.09 73.13 74.01 74.38 74.44 74.12 74.05 73.84
C-9 108.69 68.55 68.58 69.12 69.11 69.21 69.08 69.15 69.07
C-10 21.21 22.23 21.96 21.92 21.96 21.57 21.72 21.53 21.98

10 11 12 13 14 14a 15 15a

C-1 70.45 (20.3) 70.27 (20.6) 70.24 (20.6) 73.52 30.29 (24.5) 34.75 137.35 (23.5) 140.89
C-2 83.65 (19.6) 85.43 (111.1) 85.32 (111.0) 77.92 78.01 (15.9) 72.09 63.91 64.48
C-3 33.53 (21.9) 29.49 (21.9) 28.24 (22.2) 33.87 33.31 (22.3) 35.58 37.44 37.66
C-4 38.64 38.15 37.24 44.00 40.47 40.59 36.01 36.19
C-5 26.95 22.27 23.10 24.18 25.94 25.88 31.28 31.19
C-6 34.99 35.46 35.16 39.73 30.88 31.27 127.69 124.13
C-7 28.07 28.74 28.66 19.81 11.38 11.37 71.69 (16.8) 64.86
C-8 150.88 74.56 74.73 73.36 (20.5) 155.06 155.49 149.93 150.17
C-9 108.73 68.73 69.69 77.65 (18.6) 107.05 106.95 109.26 109.16
C-10 21.25 22.06 20.77 21.91 64.32 64.50 20.92 20.92
Glc-1 106.25 106.46 106.11 106.09 101.46 103.60
Glc-2 75.64 75.70 75.63 75.32 75.40 75.22
Glc-3 78.65 78.72 78.69 78.72 78.69 78.73
Glc-4 71.74 71.83 72.06 71.69 71.74 71.89
Glc-5 78.21 78.39 78.46 78.62 78.47 78.52
Glc-6 62.85 63.12 63.28 62.81 62.81 62.92

d in ppm from tetramethylsilane (TMS). Dd (d glucoside2d aglycone) are given in parentheses. a) Assignments may be interchanged.



68 Vol. 50, No. 1

Table 2. 1H-NMR Chemical Shifts of 2—15 (in Pyridine-d5, 500 MHz)

2 3 4

H-3ax 2.58 dd (14.0, 14.0) 2.63 dd (13.0, 13.0) H-1eq 2.86 m
H-3eq 2.93 ddd (2.0, 2.0, 14.0) 3.12 dd (2.0, 13.0) H-2ax 4.21 ddd (3.5, 3.5, 12.0)
H-4ax 2.63 m 2.65 m H-3ax 2.05 ddd (12.0, 12.0, 12.0)
H-5ax 2.50 m 2.39 m H-3eq 2.49 ddd (3.5, 3.5, 12.0)
H-5eq 2.66 dddd (2.0, 3.0, 5.5, 13.0) 2.47 ddd (3.5, 5.0, 13.5) H-4ax 2.18 dddd (3.5, 3.5, 12.0, 12.0)
H-6 6.65 br d (5.5) 6.62 br d (5.0) H-5ax 1.93 ddd (12.0, 12.0, 12.0)
H3-7 1.83 s 1.83 s H-5eq 2.25 ddd (3.5, 3.5, 12.0)
H2-9 3.89 d (11.0) 3.87 d (11.0) H-6ax 4.21 ddd (3.5, 3.5, 12.0)

3.92 d (11.0) 3.92 d (11.0) H3-7 1.50 d (7.0)
H3-10 1.42 s 1.41 s H2-9 3.96 d (11.0)

3.99 d (11.0)
H3-10 1.47 s

5 6 7 8

H-2ax — — 3.71 dd (3.0, 12.0) 3.73 dd (4.0, 12.0)
H-2eq 4.24 dd (3.0, 3.0) 4.27 dd (3.0, 3.0) — —
H-3ax 2.53 ddd (3.0, 13.0, 13.0) 2.62 ddd (3.0, 13.0, 13.0) 2.10 ddd (12.0, 12.0, 12.0) 2.25 ddd (12.0, 12.0, 12.0)
H-3eq 2.27 ddd (3.0, 3.0, 13.0) 2.53 dddd (3.0, 3.0, 3.0, 13.0) 2.33 ddd (3.0, 3.0, 12.0) 2.60 dddd (3.0, 3.0, 4.0, 12.0)
H-4ax 2.74 dddd (3.0, 3.0, 13.0, 13.0) 2.76 dddd (3.0, 3.0, 13.0, 13.0) 2.15 dddd (3.0, 3.0, 12.0, 12.0) 2.12 dddd (3.0, 3.0, 12.0, 12.0)
H-5ax 2.28 dddd (3.0, 13.0, 13.0, 13.0) 2.15 dddd (3.0, 13.0, 13.0, 13.0) 2.10 br ddd (12.0, 12.0, 12.0) 1.97 dddd (3.0, 12.0, 12.0, 12.0)
H-5eq 2.19 dddd (3.0, 3.0, 3.0, 13.0) 1.90 dddd (3.0, 3.0, 3.0, 13.0) 2.07 dddd (3.0, 3.0, 3.0, 12.0) 1.77 dddd (3.0, 3.0, 3.0, 12.0)
H-6ax 2.31 ddd (3.0, 13.0, 13.0) 2.26 ddd (3.0, 13.0, 13.0) 1.47 ddd (3.0, 12.0, 12.0) 1.47 ddd (3.0, 12.0, 12.0)
H-6eq 1.92 ddd (3.0, 3.0, 13.0) 1.91 ddd (3.0, 3.0, 13.0) 2.11 ddd (3.0, 3.0, 12.0) 2.07 ddd (3.0, 3.0, 12.0)
H3-7 1.71 s 1.71 s 1.55 s 1.55 s
H2-9 3.97 d (11.0) 3.94 d (10.5) 3.92 d (10.5) 3.92 d (10.5)

4.02 d (11.0) 4.02 d (10.5) 3.99 d (10.5) 3.97 d (10.5)
H3-10 1.52 s 1.49 s 1.45 s 1.44 s

9 10 11 12

H-2ax 4.10 dd (4.5, 11.5) — — —
H-2eq — 4.20 dd (3.0, 3.0) 4.17 dd (3.0, 3.0) 4.21 dd (3.0, 3.0)
H-3ax 1.81 ddd (11.5, 12.0, 12.0) 2.39 ddd (3.0, 13.0, 13.0) 2.38 ddd (3.0, 13.0, 13.0) 2.48 ddd (3.0, 13.0, 13.0)
H-3eq 2.47 ddd (3.5, 4.5, 12.0) 2.32 ddd (3.0, 3.0, 13.0) 2.69 ddd (3.0, 3.0, 13.0) 2.88 ddd (3.0, 3.0, 13.0)
H-4ax 2.20 dddd (3.5, 3.5, 12.0, 12.0) 2.67 dddd (3.0, 3.0, 13.0, 13.0) 2.72 dddd (3.0, 3.0, 13.0, 13.0) 2.75 dddd (3.0, 3.0, 13.0, 13.0)
H-5ax 1.68 dddd (3.5, 12.0, 12.0, 12.0) 2.01 dddd (3.0, 13.0, 13.0, 13.0) 2.19 dddd (3.0, 13.0, 13.0, 13.0) 2.04 dddd (3.0, 13.0, 13.0, 13.0)
H-5eq 2.18 m 1.59 dddd (3.0, 3.0, 3.0, 13.0) 2.05 dddd (3.0, 3.0, 3.0, 13.0) 1.74 dddd (3.0, 3.0, 3.0, 13.0)
H-6ax 1.85 ddd (3.5, 12.0, 12.0) 2.05 ddd (3.0, 13.0, 13.0) 2.10 ddd (3.0, 13.0, 13.0) 2.10 ddd (3.0, 13.0, 13.0)
H-6eq 2.10 ddd (3.5, 3.5, 12.0) 1.79 ddd (3.0, 3.0, 13.0) 1.86 ddd (3.0, 3.0, 13.0) 1.81 ddd (3.0, 3.0, 13.0)
H3-7 1.60 s 1.82 s 1.83 s 1.81 s
H-9a 3.93 d (11.0) 4.74 br s 3.90 d (11.0) 3.92 d (11.0)
H-9b 3.96 d (11.0) 4.84 br s 4.06 d (11.0) 3.94 d (11.0)
H3-10 1.46 s 1.73 s 1.45 s 1.42 s
Glc-1 — 5.02 d (7.5) 5.01 d (8.0) 5.00 d (8.0)

13 14 15

H-1eq — 2.45 m H-2eq 4.80 dd (4.0, 4.0)
H-2ax 4.03 dd (3.5, 11.5) 4.26 dd (4.5, 4.5, 12.0) H-3ax 1.65 ddd (4.0, 12.0, 12.0)
H-3ax 1.71 ddd (11.5, 12.5, 12.5) 1.84 ddd (12.0, 12.0, 12.0) H-3eq 2.18 ddd (4.0, 4.0, 12.0)
H-3eq 2.45 ddd (3.0, 3.5, 12.5) 2.14 ddd (3.0, 4.5, 12.0) H-4ax 2.81 dddd (4.0, 4.0, 12.0, 12.0)
H-4ax 2.16 dddd (3.0, 3.0, 12.5, 12.5) 2.11 dddd (3.0, 3.0, 12.0, 12.0) H-5ax 1.91 br dd (12.0, 17.5)
H-5ax 1.60 dddd (3.0, 12.5, 13.0, 13.0) 1.43 dddd (3.0, 12.0, 12.0, 12.0) H-5eq 2.15 ddd (3.0, 4.0, 17.5)
H-5eq 2.09 dddd (3.0, 3.0, 3.0, 13.0) 1.51 dddd (3.0, 3.0, 3.0, 12.0) H-6 6.01 br d (3.0)
H-6ax 1.79 ddd (3.0, 13.0, 13.0) 1.44 dddd (3.0, 3.0, 12.0, 12.0) H-7a 4.55 d (12.0)
H-6eq 2.05 ddd (3.0, 3.0, 13.0) 1.56 br ddd (3.0, 3.0, 12.0) H-7b 4.97 d (12.0)
H3-7 1.57 s 1.18 d (7.0) H-9a 4.78 br s
H-9a 3.84 d (10.5) 5.00 d (2.0) H-9b 4.80 br s
H-9b 4.29 d (10.5) 5.28 d (2.0) H3-10 1.68 s
H3-10 1.37 s — Glc-1 4.98 d (7.5)
H2-10 — 4.36 br s
Glc-1 4.96 d (8.0) 5.02 d (7.5)

d in ppm from TMS [coupling constants (J) in Hz are given in parentheses].



the chemical shift of the glucosyl anomeric carbon, as shown
in Table 1.1,8) Thus 5, 6, 11, and 12 were characterized as
(1S,2S,4R,8S )-p-menthane-1,2,8,9-tetrol, (1S,2S,4R,8R)-p-
menthane-1,2,8,9-tetrol, (1S,2S,4R,8S )-p-menthane-1,2,8,9-
tetrol 2-O-b-D-glucopyranoside, and (1S,2S,4R,8R)-p-men-
thane-1,2,8,9-tetrol 2-O-b-D-glucopyranoside, respectively.

Tetrols 7 (C10H20O4, an amorphous powder, [a]D
23 111°)

and 8 (C10H20O4, an amorphous powder, [a]D
23 126°) showed

similar 1H- and 13C-NMR spectral features (Tables 2, 1) and
revealed an [M1H]1 ion peak at m/z 205 in the positive
FAB-MS. From the result of the HMBC experiment on 7 (H-
4ax/C-3, C-5, C-6, C-8, C-9; H3-7/C-1, C-2, C-6; H2-9/C-4,
C-8, C-10; H3-10/C-4, C-8, C-9), they were also indicated to
be p-menthane-1,2,8,9-tetrol. The configuration of the C-2
hydroxyl was concluded to be equatorial by the axial H-2
signal pattern of their 1H-NMR spectra (dd, J53.0, 12.0 Hz
for 7 and dd, J54.0, 12.0 Hz for 8; Table 2). The stereochem-
ical relationship between C-7 and C-8 was suggested to be
trans from the observed NOE interactions in their NOESY
spectra (Fig. 1). Therefore 7 and 8 were concluded to be
stereoisomers at the C-8 of trans-p-menthane-1,2eq,8,9-tetrol,
respectively. The 13C chemical shifts of C-3 (7, d 33.0; 8, d
31.9) and C-5 (7, d 22.1; 8, d 23.1) suggested that the rela-
tive configurations at C-4 and C-8 were 4R*,8S* for 7 and
4R*,8R* for 8. This suggestion was supported by the
NOESY spectrum of 7, which showed NOE interactions be-
tween H3-10/H-3ax, H2-5, and between H2-9/H-3eq, and that
of 8 which showed NOE interactions between H3-10/H2-3,
H2-5, and between H2-9/H-5eq (Fig. 1). Therefore 7 and 8

were concluded to be rel-(1S,2R,4R,8S )-p-menthane-1,2,8,9-
tetrol and rel-(1S,2R,4R,8R)-p-menthane-1,2,8,9-tetrol, re-
spectively.

Tetrol 9 (C10H20O4, an amorphous powder, [a]D
21 23°) was

indicated to be p-menthane-1,2,8,9-tetrol by the same meth-
ods as described in 2 to 8, and the configuration of the C-2
hydroxyl was concluded to be equatorial by the axial H-2 sig-
nal patterns of the 1H-NMR spectrum (Table 1). The stereo-
chemical relationship between C-7 and C-8 was suggested to
be cis from the observed NOE interactions between 
H3-7/H-3ax, H-5ax, and between H-2ax/H-4ax, H-6ax in the
NOESY spectra, and comparison of chemical shifts of H-3ax

(d 1.81) and H-5ax (d 1.68) with those of 7 and 8, which
were lowfield shifted by the effect of the C-1 axial hydroxyl
group (H-3ax, 7; d 2.10, 8; d 2.10; H-5ax, 7; d 2.25, 8; d
1.97). Therefore 9 was revealed to be cis-p-menthane-
1,2eq,8,9-tetrol. In addition, the NOESY spectrum of 9
showed the NOE interactions between H3-10/H2-3, H-5ax,
and between H-9b/H-3eq, which were also observed in the
NOESY spectra of 4 and 7 (Fig. 1). The relative configura-
tion at C-4 and C-8 was assumed to be 4R*,8S*. From this
evidence, 9 was concluded to be rel-(1R,2R,4R,8S )-p-men-
thane-1,2,8,9-tetrol.

Glucoside 13 (C16H30O9, an amorphous powder, [a]D
23

215°) showed an [M1H]1 ion peak at m/z 367 and an
[M2C6H12O61H]1 ion peak at m/z 187 in the positive FAB-
MS. By comparison of 1H- and 13C-NMR data with those of
9 (Tables 2, 1), and from the observed NOE interaction be-
tween the glucosyl H-1/H-9b in the NOESY spectrum (Fig.
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1), 13 was suggested to be a glucoside of 9, and the position
of attachment of the glucosyl unit was revealed to be C-9.
Since the glucose was suggested to be D-form from its [M]D

value [D[M]D (1329) 247°; methyl b-D-glucopyranoside
262°],4) 13 was concluded to be rel-(1R,2R,4R,8S )-p-men-
thane-1,2,8,9-tetrol 9-O-b-D-glucopyranoside.

Glucoside 14 (C16H28O7, an amorphous powder, [a]D
25

226°) showed an [M1H]1 ion peak at m/z 333 and an
[M2C6H12O61H]1 ion peak at m/z 153 in the positive FAB-
MS. The 1H-, 13C-, and 13C–1H correlation spectroscopy
(COSY) NMR spectral data (Tables 2, 1) showed the pres-
ence of one b-glucopyranosyl, one sec-methyl, four methyl-
enes (one oxygenated), three methines (one oxygenated), and
one terminal-methylene group. From the result of the HMBC
experiment on 14 (H-4ax/C-2, C-5, C-6, C-8, C-9, C-10; H3-
7/C-1, C-6; H-9a/C-4, C-8, C-10; H-9b/C-4, C-8, C-10; H3-
10/C-4, C-8, C-9; Glc H-1/C-2), the aglycone was suggested
to be p-menth-8-ene-2,10-diol and the position of the gluco-
syl unit was found to be C-2. The configuration of C-2 hy-
droxyl was concluded to be equatorial by the axial H-2 signal
pattern of its 1H-NMR spectrum (ddd, J54.5, 4.5, 12.0 Hz;
Table 2). The stereochemical relationship between C-7 and
C-8 was indicated to be cis, and the conformation of the cy-
clohexane ring was suggested to be the chair form from the
NOE interactions between H3-7/H-3ax, H-6eq and between H-
2ax/H-4ax, H-6ax in the NOESY spectrum (Fig. 1). Enzymatic
hydrolysis of 14 gave an aglycone (an amorphous powder,
[a]D

22 211°; 14a) and D-glucose, and the absolute configura-
tion at C-2 was confirmed to be R by the values of the glyco-
sylation shift of the a- and b-carbons, and the chemical shift
of the glucosyl anomeric carbon, as shown in Table 1.1,8)

From these data, 14 was characterized as (1S,2R,4R)-p-
menth-8-ene-2,10-diol 2-O-b-D-glucopyranoside.

Glucoside 15 (C16H26O7, an amorphous powder, [a]D
24

112°) showed an [M1H]1 ion peaks at m/z 331 and an
[M2C6H12O61H]1 ion peaks at m/z 151 in the positive
FAB-MS. Enzymatic hydrolysis of 15 gave an aglycone (an
amorphous powder, [a]D

22 136°; 15a) and D-glucose. The 1H,
13C-, and 13C–1H COSY NMR spectral data (Tables 2, 1) of
15 showed the presence of one b-glucopyranosyl, one tert-
methyl, three methylenes (one oxygenated), two methines
(one oxygenated), one tri-substituted double bond, and one
terminal-methylene group, and the result of the HMBC ex-
periment (H-6/C-2, C-4, C-5, C-7; H2-7/C-1, C-2, C-6, Glc
C-1; H-9a/C-4, C-8, C-10; H-9b/C-4, C-8, C-10; H3-10/C-4,
C-8, C-9; Glc H-1/C-7) suggested that 15 was 7-hydroxy-
carveol 7-O-b-D-glucopyranoside. As the equatorial H-2 sig-
nal pattern was shown in the 1H-NMR spectrum (dd, J54.0,
4.0 Hz; Table 2), and the NOE interactions between H-3ax/H-
5ax, between H-9a/H-3ax, H-3eq, H-4, and between H3-10/H-4,
H-5ax, H-5eq were observed in the NOESY spectrum (Fig. 1),
the configuration of the C-2 hydroxyl was concluded to be
axial and the stereochemical relationship between the C-2
hydroxyl and C-4 isopropenyl group was trans. It has been
reported that the (2R,4S )- and (2S,4R)-forms of carveol show
positive and negative optical rotations, respectively.9) Be-
couse 15a showed positive optical rotation, 15 was con-
cluded to be (2R,4S )-7-hydroxycarveol 7-O-b-D-glucopyra-
noside.

Experimental
Melting points were determined on a Yanagimoto micromelting point ap-

paratus and are uncorrected. Optical rotations were measured on a JASCO
DIP-370 digital polarimeter. The CD spectra were recorded with a JASCO J-
600 spectropolarimeter at 23 °C. FAB-MS were recorded with a JEOL HX-
110 spectrometer using glycerol as a matrix. 1H- and 13C-NMR spectra were
recorded on JEOL A-500 spectrometers with TMS as an internal standard,
and chemical shifts were recorded as d values. 13C–1H COSY, HMBC,
NOESY, and 1D-NOESY spectra were obtained with the usual pulse se-
quence, and data processing was performed with standard JEOL software.
Column chromatography was carried out under TLC monitoring using
Kieselgel 60 (70—230 mesh, Merck), Sephadex LH-20 (25—100 mm, Phar-
macia), Lobar RP-8 column (Merck), and Amberlite XAD-II (Organo). TLC
was performed on silica gel (Merck 5721), and spots were detected with p-
anisaldehyde–H2SO4 reagent. HPLC separation was carried out with Sym-
metryprep C18 7 mm (Waters; column size, 7.83300 mm; octadecyl silica
(ODS)), Carbohydrate Analysis (Waters; column size, 3.93300 mm; CHA)
columns. Acetylation was done in the usual way using Ac2O and pyridine.
No acetoxyl group had been detected by NMR spectral analysis of the mate-
rials prior to acetylation.

Extraction and Separation Commercial caraway (the fruit of Carum
carvi L.; purchased from Asaoka Spices Ltd., lot no. 93010, 2.0 kg) was ex-
tracted with 70% methanol (4 l32), and the extract was partitioned into
ether–water and ethyl acetate–water, respectively. The aqueous portion was
chromatographed on Amberlite XAD-II (H2O→MeOH), and the methanol
eluate (27.6 g) was subjected to Sephadex LH-20 (MeOH) column chro-
matography to give eight fractions (frs. A—H). Fraction B (18.9 g) was
chromatographed on silica gel [CHCl3–MeOH–H2O (17 : 3 : 0.2→
4 : 3 : 0.1→7 : 3 : 0.5)→MeOH] to give 14 fractions (frs. B1—B14). Fraction
B2 (1.32 g) was passed through a Lobar RP-8 column [MeCN–H2O
(1 : 4→1 : 1)] to give seven fractions (frs. B2-1—B2-7), and fr. B2-2 was sub-
jected to HPLC [ODS, MeOH–H2O (1 : 4)] and silica gel [CHCl3–MeOH
(19 : 1)] chromatography to give 2 (7 mg) and 3 (9 mg). Fraction B2-4 was
subjected to HPLC [ODS, MeCN–H2O (3 : 7)] to give 1 (4 mg). Fraction B5

(0.44 g) was subjected to a Lobar RP-8 column [MeCN–H2O (3 : 17)] and
HPLC [CHA, MeCN–H2O (19 : 1)] to give 15 (8 mg). Fraction B6 (0.94 g)
was passed through a Lobar RP-8 column [MeCN–H2O (3 : 17)] to give
eight fractions (frs. B6-1—B6-8). Fraction B6-2 was subjected to HPLC [ODS,
MeCN–H2O (1 : 19)] to give 7 (7 mg) and 8 (5 mg). Fraction B6-5 was sub-
jected to HPLC [CHA, MeCN–H2O (39 : 7)] and then ODS [MeCN–H2O
(7 : 33)] to give 14 (11 mg). Fraction B6-6 was subjected to silica gel column
chromatography [CHCl3–MeOH–H2O (17 : 3 : 0.2)] and then HPLC [CHA,
MeCN–H2O (97 : 3)] to give 10 (302 mg). Fraction B7 (0.99 g) was subjected
to a Lobar RP-8 column [MeCN–H2O (3 : 17)] and Sephadex LH-20
(MeOH) to give 16 (38 mg). Fraction B8 (0.60 g) was subjected to a Lobar
RP-8 column [MeCN–H2O (3 : 17)] and HPLC [ODS, MeCN–H2O (1 : 19)]
to give 5 (5 mg), 6 (16 mg), and 9 (25 mg), respectively. Fraction B10 (1.38 g)
was also subjected to a Lobar RP-8 column [MeCN–H2O (3 : 17)] to give
eight fractions (frs. B10-1—B10-8). Fraction B10-2 was subjected to silica gel
column chromatography [CHCl3–MeOH–H2O (8 : 2 : 0.2)] to give 4 (98 mg).
Fraction B14 (1.44 g) was passed through a Lobar RP-8 column [MeCN–H2O
(3 : 17)] to give eight fractions (frs. B14-1—B14-8), and fr. B14-3 was acetylated
with Ac2O and pyridine, and the acetylated fraction was subjected to silica
gel column chromatography [CHCl3–MeOH (20 : 1)] and then HPLC [ODS,
MeCN–H2O (2 : 3)] to give two fractions. These two fractions were deacety-
lated by heating in a water bath with 5% NH4OH–MeOH for 2 h. From the
former fraction, 11 (16 mg) and 13 (2 mg) were isolated by HPLC [CHA,
MeCN–H2O (7 : 13)], and from the latter fraction, 12 (9 mg) was isolated by
Sephadex LH-20 (MeOH) column chromatography.

The following compounds were identified by comparison with authentic
compounds or published physical and spectral data: (1S,2S,4R)-p-menth-8-
ene-1,2-diol (1) and (4S )-p-menth-1-ene-7,8-diol 8-O-b-D-glucopyranoside
(16).

(4S,8R)-8,9-Dihydroxy-8,9-dihydrocarvone (2) An amorphous pow-
der, [a]D

25 26° (c50.1, MeOH). Positive FAB-MS m/z: 369 [2M1H]1, 223
[M1K]1, 207 [M1Na]1 (base), 185.1175 [M1H]1 (Calcd for C10H17O3:
185.1177), 167 [M2H2O1H]1, 149 [M22H2O1H]1. 1H-NMR (pyridine-
d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. CD:
(c50.0100 M, MeOH) De (nm): 20.48 (250).

(4S,8S)-8,9-Dihydroxy-8,9-dihydrocarvone (3) An amorphous pow-
der, [a]D

25 27° (c50.2, MeOH). Positive FAB-MS m/z: 369 [2M1H]1, 223
[M1K]1, 207 [M1Na]1 (base), 185.1180 [M1H]1 (Calcd for C10H17O3:
185.1177), 167 [M2H2O1H]1, 149 [M22H2O1H]1. 1H-NMR (pyridine-
d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. CD:
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(c50.0125 M, MeOH) De (nm): 20.39 (240). HMBC correlations: H-3ax/C-
2, C-4, C-5; H-3eq/C-1, C-2, C-4, C-5, C-8; H-4ax/C-2, C-3, C-5, C-8, C-9,
C-10; H-5ax/C-1, C-3, C-4, C-6; H-5eq/C-3, C-4; H-6/C-4, C-5, C-7; H3-7/C-
1, C-2, C-6; H2-9/C-4, C-8, C-10; H3-10/C-4, C-8, C-9.

4bbH-cis-p-Menthane-2aa ,6aa ,8,9-tetrol (4) An amorphous powder,
[a]D

21 14° (c51.6, MeOH). Positive FAB-MS m/z: 205.1448 [M1H]1 (base,
Calcd for C10H21O4: 205.1439), 187 [M2H2O1H]1, 169 [M22H2O1H]1.
1H-NMR (pyridine-d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5,
125 MHz) d : Table 1. HMBC correlations: H-1eq/C-2, C-3, C-5, C-6, C-7;
H-2ax/C-1, C-3, C-4, C-6, C-7; H-3ax/C-1, C-2, C-4, C-5, C-8; H-3eq/C-1, C-
2, C-4, C-5; H-4ax/C-2, C-3, C-5, C-6, C-8, C-9, C-10; H-5ax/C-1, C-3, C-4,
C-6, C-8; H-5eq/C-1, C-3, C-4, C-6; H-6ax/C-1, C-2, C-5, C-7; H3-7/C-1, C-
2, C-6; H2-9/C-4, C-8, C-10; H3-10/C-4, C-8, C-9.

(1S,2S,4R,8S)-p-Menthane-1,2,8,9-tetrol (5) An amorphous powder,
[a]D

22 130° (c50.4, MeOH). Positive FAB-MS m/z: 243 [M1K]1, 227.1245
[M1Na]1 (Calcd for C10H20O4Na: 227.1259), 205 [M1H]1, 187 [M2
H2O1H]1, 169 [M22H2O1H]1 (base). 1H-NMR (pyridine-d5, 500 MHz)
d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. HMBC correla-
tions: H-2eq/C-1, C-4; H-3ax/C-4, C-5, C-8; H-3eq/C-5; H-4ax/C-5, C-9; H-
5ax/C-6; H-5eq/C-6; H-6ax/C-1, C-2, C-4, C-7; H-6eq/C-1, C-2, C-5; H3-7/C-1,
C-2, C-6; H2-9/C-4, C-8, C-10; H3-10/C-4, C-8, C-9.

(1R,2S,4R,8R)-p-Menthane-1,2,8,9-tetrol (6) An amorphous powder,
[a]D

22 127° (c50.8, MeOH). Positive FAB-MS m/z: 243 [M1K]1, 227
[M1Na]1, 205.1424 [M1H]1 (Calcd for C10H21O4: 205.1439), 187
[M2H2O1H]1, 169 [M22H2O1H]1 (base). 1H-NMR (pyridine-d5, 500
MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1.

rel-(1S,2R,4R,8S)-p-Menthane-1,2,8,9-tetrol (7) An amorphous pow-
der, [a]D

23 111° (c50.1, MeOH). Positive FAB-MS m/z: 243 [M1K]1, 227
[M1Na]1, 205.1438 [M1H]1 (Calcd for C10H21O4: 205.1439), 187
[M2H2O1H]1 (base), 169 [M22H2O1H]1. 1H-NMR (pyridine-d5, 500
MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. HMBC cor-
relations: H-2ax/C-1, C-4, C-6; H-3ax/C-4, C-5, C-8; H-3eq/C-1, C-5, C-8; H-
4ax/C-3, C-5, C-6, C-8, C-9; H-5ax/C-3, C-4, C-6; H-5eq/C-4, C-6; H-6ax/C-2,
C-4, C-5, C-7; H-6eq/C-1, C-2, C-4, C-7; H3-7/C-1, C-2, C-6; H2-9/C-4, C-8,
C-10; H3-10/C-4, C-8, C-9.

rel-(1S,2R,4R,8R)-p-Menthane-1,2,8,9-tetrol (8) An amorphous pow-
der, [a]D

23 126° (c50.1, MeOH). Positive FAB-MS m/z: 227 [M1Na]1,
205.1425 [M1H]1 (base, Calcd for C10H21O4: 205.1439), 187 [M2
H2O1H]1, 169 [M22H2O1H]1. 1H-NMR (pyridine-d5, 500 MHz) d : Table
2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1.

rel-(1R,2R,4R,8S)-p-Menthane-1,2,8,9-tetrol (9) An amorphous pow-
der, [a]D

21 23° (c50.2, MeOH). Positive FAB-MS m/z: 409 [2M1H]1, 227
[M1Na]1, 205.1429 [M1H]1 (base, Calcd for C10H21O4: 205.1439), 187
[M2H2O1H]1, 169 [M22H2O1H]1. 1H-NMR (pyridine-d5, 500 MHz) d :
Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1.

(1S,2S,4R)-p-Menth-8-ene-1,2-diol 2-O-bb -D-Glucopyranoside (10)
Colorless needles (MeOH), mp 154—156 °C, [a]D

25 113° (c51.7, MeOH).
Positive FAB-MS m/z: 665 [2M1H]1, 371 [M1K]1, 355.1731 [M1Na]1

(Calcd for C16H28O7Na: 355.1733), 333 [M1H]1, 315 [M2H2O1H]1, 153
[M2C6H12O61H]1 (base). 1H-NMR (pyridine-d5, 500 MHz) d : Table 2.
13C-NMR (pyridine-d5, 125 MHz) d : Table 1. HMBC correlations: H-2eq/C-
1, C-4, C-6, C-7, Glc C-1; H-3ax/C-1, C-2, C-4, C-5; H-3eq/C-1, C-2, C-4, C-
5; H-4ax/C-3, C-5, C-6, C-10; H-5ax/C-1, C-3, C-4, C-6; H-5eq/C-1, C-3, C-4,
C-6; H-6ax/C-5; H-6eq/C-1, C-2, C-4, C-5, C-7; H3-7/C-1, C-2, C-6; H2-9/C-
4, C-10; H3-10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 10 A mixture of 10 (11 mg) and hesperidi-
nase (5 mg, ICN Biomedicals Inc., lot 72635) in water (5 ml) was shaken in
a water bath at 37 °C for 20 d. The mixture was concentrated in vacuo to
dryness and the residue was chromatographed over silica gel
[CHCl3–MeOH–H2O (4 : 1 : 0.1 and 1 : 1 : 0.1)] to afford 1 (3 mg) and a sugar
fraction. The sugar fraction was passed through Sephadex LH-20 (MeOH) to
give a syrup, and HPLC [carbohydrate analysis (waters), detector; JASCO
RI-930 detector and JASCO OR-990 chiral detector, solv.; MeCN–H2O
(17 : 3), 2 ml/min; tR 4.50 min (same location as that of D-glucose)] showed
the presence of D-glucose.

(1S,2S,4R,8S )-p-Menthane-1,2,8,9-tetrol 2-O-bb-D-Glucopyranoside
(11) Colorless needles (MeOH), mp 137—138 °C, [a]D

24 122° (c51.3,
MeOH). Positive FAB-MS m/z: 389 [M1Na]1, 367.1983 [M1H]1 (Calcd
for C16H31O9: 367.1968), 349 [M2H2O1H]1, 187 [M2C6H12O61H]1

(base). 1H-NMR (pyridine-d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5,
125 MHz) d : Table 1. HMBC correlations: H-2eq/C-1, C-4; H-3ax/C-4, C-5,
C-8; H-3eq/C-5; H-4ax/C-5, C-9; H-5ax/C-6; H-5eq/C-6; H-6ax/C-1, C-4, C-5,
C-7; H-6eq/C-1, C-2, C-5; H3-7/C-1, C-2, C-6; H2-9/C-4, C-8, C-10; H3-
10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 11 A mixture of 11 (8 mg) and b-glucosidase
(5 mg, Toyobo Co., Ltd., lot 52275) in water (5 ml) was shaken in a water
bath at 37 °C for 16 d. The mixture was treated in the same way described
for 10 to afford 5 (4 mg) and a sugar fraction. D-Glucose was detected from
the sugar fraction, as described for 10.

(1S,2S,4R,8R)-p-Menthane-1,2,8,9-tetrol 2-O-bb-D-Glucopyranoside
(12) An amorphous powder, [a]D

24 117° (c50.7, MeOH). Positive FAB-
MS m/z: 389 [M1Na]1, 367.1982 [M1H]1 (Calcd for C16H31O9:
367.1968), 349 [M2H2O1H]1, 187 [M2C6H12O61H]1 (base). 1H-NMR
(pyridine-d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d :
Table 1. HMBC correlations: H-2eq/C-1, C-4, C-6; H-3ax/C-2, C-4, C-5, C-8;
H-3eq/C-1, C-2, C-5, C-8; H-4ax/C-2, C-3, C-8, C-9, C-10; H-5ax/C-1, C-4,
C-6, C-8; H-5eq/C-3; H-6ax/C-1, C-4, C-5, C-7; H-6eq/C-1, C-2, C-5; H3-7/C-
1, C-2, C-6; H2-9/C-4, C-8, C-10; H3-10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 12 A mixture of 12 (6 mg) and b-glucosidase
in water (5 ml) was shaken in a water bath at 37 °C for 16 d. The mixture
was treated in the same way as described for 10 to afford 6 (3 mg) and a
sugar fraction. D-Glucose was detected from the sugar fraction, as described
for 10.

rel-(1R,2R,4R,8S)-p-Menthane-1,2,8,9-tetrol 9-O-bb-D-Glucopyranoside
(13) An amorphous powder, [a]D

23 215° (c50.2, MeOH). Positive FAB-
MS m/z: 733 [2M1H]1, 405 [M1K]1, 389.1782 [M1Na]1 (base, Calcd for
C16H30O9Na: 389.1788), 367 [M1H]1, 187 [M2C6H12O61H]1. 1H-NMR
(pyridine-d5, 500 MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d :
Table 1.

(1S,2R,4R)-p-Menth-8-ene-2,10-diol 2-O-bb-D-Glucopyranoside (14)
An amorphous powder, [a]D

25 226° (c50.9, MeOH). Positive FAB-MS m/z:
665 [2M1H]1, 355 [M1Na]1, 333.1921 [M1H]1 (base, Calcd for
C16H29O7: 333.1913), 153 [M2C6H12O61H]1. 1H-NMR (pyridine-d5,
500 MHz) d : Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. HMBC
correlations: H-1eq/C-2, C-3, C-5, C-6, C-7; H-2ax/C-1, C-3, C-4, C-6, C-7;
H-3ax/C-1, C-4, C-5, C-8; H-3eq/C-1, C-4, C-5, C-8; H-4ax/C-2, C-5, C-6, C-
8, C-9, C-10; H-5ax/C-1, C-3, C-4, C-8; H-5eq/C-3, C-4; H-6ax/C-1, C-4, C-5,
C-7; H-6eq/C-1, C-2, C-4, C-5, C-7; H3-7/C-1, C-6; H-9a/C-4, C-8, C-10; H-
9b/ C-4, C-8, C-10; H3-10/C-4, C-8, C-9; Glc H-1/C-2.

Enzymatic Hydrolysis of 14 A mixture of 14 (8 mg) and b-glucosidase
(5 mg) in water (5 ml) was shaken in a water bath at 37 °C for 7 d. The mix-
ture was treated in the same way as described for 10 to afford 14a (4 mg)
and a sugar fraction. D-Glucose was detected from the sugar fraction, as de-
scribed for 10.

(1S,2R,4R)-p-Menth-8-ene-2,10-diol (14a) An amorphous powder,
[a]D

22 211° (c50.3, MeOH). Positive FAB-MS m/z: 171 [M1H]1 (base).
1H-NMR (pyridine-d5, 500 MHz) d : 5.46 (1H, d, J52.0 Hz, H-9b), 5.09 (1H,
d, J52.0 Hz, H-9a), 4.45 (2H, br s, H2-10), 4.07 (1H, ddd, J54.5, 4.5,
12.0 Hz, H-2ax), 2.29 (1H, m, H-1eq), 2.28 (1H, dddd, J53.0, 3.0, 12.0,
12.0 Hz, H-4ax), 2.13 (1H, ddd, J53.0, 4.5, 12.0 Hz, H-3eq), 1.86 (1H, ddd,
J512.0, 12.0, 12.0 Hz, H-3ax), 1.63 (1H, dddd, J53.0, 3.0, 12.0, 12.0 Hz, H-
6ax), 1.54—1.61 (2H, m, H-5eq, H-6eq), 1.51 (1H, dddd, J53.0, 12.0, 12.0,
12.0 Hz, H-5ax), 1.19 (3H, d, J57.0 Hz, H3-7). 13C-NMR (pyridine-d5,
125 MHz) d : Table 1.

(4R,6S)-7-Hydroxycarveol 7-O-bb-D-Glucopyranoside (15) An amor-
phous powder, [a]D

24 112° (c50.4, MeOH). Positive FAB-MS m/z: 661
[2M1H]1, 369 [M1K]1, 331.1755 [M1H]1 (base, Calcd for C16H27O7:
331.1757), 151 [M2C6H12O61H]1. 1H-NMR (pyridine-d5, 500 MHz) d :
Table 2. 13C-NMR (pyridine-d5, 125 MHz) d : Table 1. HNBC correlations:
H-2eq/C-4; H-3ax/C-4, C-5, C-8; H-3eq/C-2, C-5; H-4ax/C-3, C-5, C-6, C-8,
C-9, C-10; H-5ax/C-1, C-4, C-6, C-8; H-5eq/C-1, C-3, C-4, C-6, C-8; H-6/C-
2, C-4, C-5, C-7; H2-7/C-1, C-2, C-6, Glc C-1; H-9a/ C-4, C-8, C-10; H-
9b/C-4, C-8, C-10; H3-10/C-4, C-8, C-9; Glc H-1/C-7.

Enzymatic Hydrolysis of 15 A mixture of 15 (6 mg) and b-glucosidase
(5 mg) in water (5 ml) was shaken in a water bath at 37 °C for 10 d. The mix-
ture was treated in the same way as described for 10 to afford 15a (3 mg)
and a sugar fraction. D-Glucose was detected from the sugar fraction, as de-
scribed for 10.

(4R,6S)-7-Hydroxycarveol (15a) An amorphous powder, [a]D
22 136°

(c50.2, MeOH). Positive FAB-MS m/z: 169 [M1H]1 (base). 1H-NMR
(pyridine-d5, 500 MHz) d : 6.05 (1H, br d, J54.0 Hz, H-6), 4.80 (1H, br s, H-
9b), 4.77 (1H, br s, H-9a), 4.73 (1H, dd, J54.0, 4.0 Hz, H-2eq), 4.70 (1H, d,
J513.0 Hz, H-7b), 4.64 (1H, d, J513.0 Hz, H-7a), 2.83 (1H, dddd, J54.0,
4.0, 13.0, 13.0 Hz, H-4ax), 2.21 (1H, ddd, J54.0, 4.0, 13.0 Hz, H-3eq), 2.18
(1H, ddd, J54.0, 4.0, 17.5 Hz, H-5eq), 1.93 (1H, br dd, J513.0, 17.5 Hz, H-
5ax), 1.68 (3H, s, H3-10), 1.65 (1H, ddd, J54.0, 13.0, 13.0 Hz, H-3ax). 

13C-
NMR (pyridine-d5, 125 MHz) d : Table 1.
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