Five New Nortropane Alkaloids and Six New Amino Acids from the Fruit of *Morus alba* **LINNE Growing in Turkey**

Genjirou Kusano,*^{,a} Shiho Orihara,^a Daisuke Tsukamoto,^a Makio Shibano,^a Maksut Coskun,^b Aysegul GUVENC, *^b* and Ceyda Sibel ERDURAK*^b*

Osaka University of Pharmaceutical Sciences,^a 4–20–1 Nasahara, Takatsuki, Osaka 569–1094, Japan and Ankara *University, Faculty of Pharmacy,^b Tandogan, Ankara, Turkey.* Received August 1, 2001; accepted November 6, 2001

Investigation of the constituents of the fruits of *Morus alba* **LINNE (Moraceae) afforded five new nortropane alkaloids (1—5) along with nor-**y**-tropine (6) and six new amino acids, morusimic acids A—F (7—12). The** structures of the new compounds were determined to be 2α ,3 β -dihydroxynortropane (1), 2β ,3 β -dihydroxy**nortropane (2), 2**a**,3**b**,6***exo***-trihydroxynortropane (3), 2**a**,3**b**,4**a**-trihydroxynortropane (4), 3**b**,6***exo***-dihydroxynortropane (5), (3***R***)-3-hydroxy-12-{(1***S***,4***S***)-4-[(1***S***)-1-hydroxyethyl]-pyrrolidin-1-yl}-dodecanoic acid-3-***O***-**b**-Dglucopyranoside (7), (3***R***)-3-hydroxy-12-{(1***S***,4***S***)-4-[(1***S***)-1-hydroxyethyl]-pyrrolidin-1-yl}-dodecanoic acid (8), (3***R***)-3-hydroxy-12-[(1***R***,4***R***,5***S***)-4-hydroxy-5-methyl-piperidin-1-yl]-dodecanoic acid-3-***O***-**b**-D-glucopyranoside (9), (3***R***)-3-hydroxy-12-[(1***R***,4***R***,5***S***)-4-hydroxy-5-methyl-piperidin-1-yl]-dodecanoic acid (10), (3***R***)-3-hydroxy-12- [(1***R***,4***R***,5***S***)-4-hydroxy-5-hydroxymethyl-piperidin-1-yl]-dodecanoic acid-3-***O***-**b**-D-glucopyranoside (11), and (3***R***)-3-hydroxy-12-[(1***R***,4***S***,5***S***)-4-hydroxy-5-methyl-piperidin-1-yl]-dodecanoic acid (12) on the basis of spectral and chemical data.**

Key words *Morus alba*; nortropane; pyrrolidinyl dodecanoic acid; piperidinyl dodecanoic acid; structural elucidation; a-glucosidase inhibition

White mulberry, *Morus alba* L. (Moracae), is native to China and Korea and has been introduced to other countries in Asia, and Europe. White mulberry (in Turkish, *Akdut*), a species with white ripened fruit, is common in Turkey and in Europe, although a species with dark purple ripened fruit is common in Asia. Fresh fruit of the former is sold in fruit stores, and dried fruit in cake shops in Turkey.¹⁾

Numerous compounds as the constituents of mulberry tree have been reported. $2-5$) Among them polyhydroxy alkaloids,⁶⁾ such as 1-deoxynojirimycin (DNJ), fagomine (FAG), 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1), and calystegine $B₂$, from the roots, leaves, and fruit appear interesting as glycosidase inhibitors, because the fruit is used as food.

In the course of studies on the biologically active constituents of Moraceae, λ ⁷ we examined the constituents of the white ripened fruit of *M. alba* grown in Turkey. In this paper we deal with the isolation of five new nortropane alkaloids, along with nor- ψ -tropine and six new amino acids from them, the structural elucidation, and their inhibitory activities on α -glucosidase.

The fruit of *M. alba* grown in Turkey was extracted with MeOH–H₂O $(1:1)$ and the alkaloidal constituents were concentrated as follows. The extract was subjected to chromatography on an Amberlite CG-50 column. The adsorbed fraction was eluted with ammonia solution $(28\% \text{ NH}_3)$: $H₂O=1:9$. The eluates were subjected to silica-gel column chromatography using CHCl₃, MeOH, and H₂O to provide 16 fractions, which were respectively subjected to Sep-Pak C_{18} cartridge and Dowex 50W-X4 column chromatographies, followed by preparative HPLC to provide purified alkaloids and amino acids.

Compound 1 was obtained as a colorless powder, $[\alpha]_D$ -33.9° ($c=0.32$, H₂O) and showed a purplish-red spot on TLC when sprayed with ninhydrin reagent followed by heating on a hot plate (ninhydrin reaction). The molecular formula was determined to be $C_7H_{13}NO_2$ by positive high-resolution secondary ion mass spectroscopy (pos. HR-SI-MS) $(m/z: 144.1028 \text{ [M+H]}^+$, error, $+0.4 \text{ mmu}$). The IR spectrum showed a strong OH and NH band and a CH band as described in the experimental section.

The ¹H-NMR spectrum of 1 suggested the presence of 3 methylene groups $\lceil \delta \, 1.44 \, (1H, m), \, \delta \, 1.95 \, (1H, \text{ddd}, J=13.0,$ 6.6, 3.0 Hz), δ 1.58 (1H, m), δ 1.81 (2H, m), δ 1.67 (1H, m)], 2 oxymethine groups $\lceil \delta \cdot 3.49 \rceil$ (1H, m), $\delta \cdot 3.64 \rceil$ (1H, ddd, $J=11.0, 6.6, 8.5 \text{ Hz}$], 2 methine groups attached to a nitrogen atom $\lceil \delta \, 3.51 \, (1H, m), \, 3.41 \, (1H, dd, J=3.7, 6.9 \, Hz) \rceil$.

The 1 H- and 13 C-NMR signals were reasonably assigned on the basis of ${}^{1}H-{}^{1}H$ correlated spectroscopy (${}^{1}H-{}^{1}H$ COSY), total correlation spectroscopy (TOCSY), and heteronuclear single quantum coherence (HSQC), as summarized in Table 1.

Thus, 1 was assumed to be $2\alpha,3\beta$ -dihydroxynortorpane as follows. Nuclear Overhauser effects (NOEs) were found between H-2 β and H-4 β , H-3 α and H-6*endo*, and H-3 α and H-7*endo* in the nuclear Overhauser enhancement and exchange spectroscopy (NOESY) spectrum. The absolute configuration of the 2- and 3-carbons was determined to be 2*R* and 3*R* using a benzoate chirality method 8 as follows. The acetamide (**1a**) was prepared from **1** with acetic anhydride in pyridine at -4 °C, and then the dibenzoate (1b) was obtained by benzoylation of **1a** and purification of the product in preparative HPLC.

The circular dichroism (CD) curve of **1b** showed a negative Cotton effect ($\Delta \varepsilon$ 238 -15.9) and a positive effect ($\Delta \varepsilon$ 223 $+16.4$) to establish the chiral arrangement in a counterclockwise manner. Therefore, the above supposition that **1** should be $2\alpha,3\beta$ -dihydroxynortropane proved to be correct when including the absolute stereostructure (1*S*,2*R*,3*R*,5*R*). It is notable that **1** showed $[\alpha]_D$ -33.9°, while the enantiomer, 3β ,4 α -dihydroxynortropane (no data supporting the absolute stereostructure) showed $[\alpha]_D + 48.4^{\circ}$.⁹⁾

Compound 2 was obtained as a colorless powder, $[\alpha]_D$ -34.0° ($c=0.61$, H₂O), and showed a purplish-red spot on TLC by ninhydrin reaction, and the molecular formula was

determined to be $C_7H_{13}NO_2$ by pos. HR-SI-MS (*m*/z: 144.1022, $[M+H]$ ⁺, error, -0.2 mmu). The IR spectrum showed a strong OH and NH band and a CH band.

The 1 H- and 13 C-NMR signals were similar to those of 1, except for the ¹H-splitting pattern (H-2 α) and ¹³C-chemical shifts of the hydroxy methines (C-2,3), and assigned as shown in Table 1 by analyzing the ${}^{1}H-{}^{1}H$ COSY, TOCSY, and HSQC spectra. Thus, 2 was assumed to be 2β , 3β -dihydroxynortorpane, which is the 2-epimer of **1**, by the vicinal coupling constants $(J_{2,3} = 3.4 \text{ Hz})$ and NOEs between H-2 α and H-7*endo* in the NOESY spectrum.

The absolute configuration of 2- and 3-carbons was determined to be 2*S* and 3*R* by using a benzoate chirality method as follows. The CD curve of the dibenzoate (**2b**), prepared from the acetamide (**2a**), showed a positive Cotton effect $(\Delta \varepsilon)238 + 13.7)$ and a negative effect $(\Delta \varepsilon)21 - 8.0$ to establish the chiral arrangement in a clockwise manner. Therefore, the supposition that 2 should be 2β , 3β -dihydroxynortropane proved correct when including the absolute stereostructure (1 *S*,2 *S*,3 *R*,5 *R*).

Compound 3 was obtained as a colorless powder, $[\alpha]_D$ -27.3° (c =0.55, H₂O), showed a purplish-red spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_7H_{13}NO_3$ by pos. HR-SI-MS (m/z : 160.0971) $[M+H]$ ⁺, error, -0.2 mmu). The IR spectrum showed a strong OH and NH band and a CH band.

The 1 H-NMR spectrum of **3** was similar to that of **1**, except for the presence of an additional hydroxymethine (C-6), as summarized in Table 1. 3 was assumed to be $2\alpha,3\beta,6\alpha$ trihydroxynortropane by NOEs between H-2 β and H-4 β , H- 3α and H-6*endo*, and H-3 α and H-7*endo* in the NOESY spectrum.

After the confirmation of the relative stereostructure as above, the selection of one enatiomer was tried by the benzoate chirality method. The tribenzoate of 3-acetamide **3b** was prepared similarly as in **1** and **2**, and it showed a weak Cotton effect probably owing to overlapping clockwise (2,6- *O*-dibenzoyl) and counter clockwise (2,3-*O*-dibenzoyl) contribution by molecular model consideration. The difference CD curve between **1b** and **3b** showed a positive Cotton effect $(\Delta \varepsilon)237 + 14.8$ and a negative Cotton effect ($\Delta \varepsilon$ 224 - 13.2) to establish the chiral arrangement of 2,6- *O*-dibenzoyl in a clockwise manner. The $[\alpha]_D$ and $[M]_D$ values $(-27.7^{\circ},$ -43.4°) similar to the difference (-32.6° , -46.6°) between those of **1** and **5**, and the small contribution of the 6*exo*-hydroxy group in $[\alpha]_D$ and $[M]_D$ of nortropane alkaloids, judging from those of 5 and 6 , and from the reference,¹⁰⁾ also supported that the absolute stereostructure of **3** was proposed as shown in Fig. 1. Therefore, the above assumption proved correct when including the absolute stereostructure (1 *S*,2 *R*,3 *R*,5 *S*,6 *R*).

Compound 4 was obtained as a colorless powder, $[\alpha]_D$ $\pm 0^{\circ}$ (*c*=0.40, H₂O), showed a purplish-red spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_7H_{13}NO_3$ by pos. HR-SI-MS (m/z : 160.0983 $[M+H]^+$, error, $+1.0$ mmu). The IR spectrum showed a strong OH and NH band and a CH band.

The 13 C-NMR spectrum showed only 4 signals, suggesting that the structure of **4** has a plane of intramolecular symmetry. Thus, 4 was assumed to be $2\alpha,3\beta,4\alpha$ -trihydroxynortropane by the vicinal coupling constants $(J_{2,3}=J_{3,4}=8.7)$

1 : R₁ – H, R₂ – H, R₃ – OH R₄ – R₅ – R₆ H
1a : R₁ – Ac, R₂ = H, R₅ = OH, R₅ = R₅ = R₆ = H
1b : R₁ – Ac, R₂ – H, R₃ – OCOPb, R₄ – COPb, R₅ = R₆ = H
2 : R₁ – H, R₂ – OH, R₃ – R₄ 16: $K_1 = AC$, $R_2 = 0H$, $R_3 = R_4 = R_5 = 1H$

28: $R_1 = A$, $R_2 = 0H$, $R_3 = R_4 = R_5 = R_6 = H$

28: $R_1 = Ac$, $R_2 = 0H$, $R_3 = R_4 = R_5 = R_6 = H$

25: $R_1 = Ac$, $R_2 = 0CDPh$, $R_3 = H$, $R_4 = COPh$, $R_5 = R_6 = H$

3: $R_1 = R_2 = IL$, $R_1 = OIL$, $R_4 =$ 4 : $R_1 = R_2 = H$, $R_3 = OH$, $R_4 - H$, $R_5 = OH$, R_6 5 : $R_1 = R_2 = R_3 = R_4 = R_5 = H$, $R_6 = OH$ 5a : R_1 – Me, R_2 – R_3 = R_4 = R_5 – H, R_6 = OH
5b : R_1 – Me, R_2 – R_3 – H, R_4 = MTPA, R_5 = H, R_6 = OMTPA $6: R_1 - R_2 - R_3 - R_4 - R_5 - R_6 = H$

Fig. 1. Structures of **1**—**6** and Their Derivative

Fig. 2. $\Delta \delta$ Values (=5b*S*—5b*R*) Obtained for the MTPA Esters

Hz) and NOEs between H-3 α and H-6*endo*, and H-3 α and H-7*endo* in the NOESY spectrum.

Compound 5 was obtained as a colorless powder, $[\alpha]_D$ -1.3° ($c=0.60$, H₂O), showed a purplish-red spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_7H_{13}NO_2$ by pos. HR-SI-MS (m/z : 144.1028) $[M+H]^+$, error, $+0.5$ mmu). The IR spectrum showed a strong OH and NH band and a CH band.

The ¹H-NMR spectrum suggested the presence of 2 hydroxymethines and 2 methines attached to a nitrogen atom. Then, 5 was assumed to be 3β , 6*exo*-dihydroxytropane by NOEs between H-3 α and H-6*endo*, H-3 α and H-7*endo*, and $H-4\alpha$ and $H-6$ *endo* in the NOESY. The absolute configuration of the 3- and 6-carbons was deduced from $\Delta\delta$ values between a pair of the di-2-methoxy-2-phenyl-2-(trifluoromethyl)acetic acid (MTPA) due to 5 (Fig. 2).¹¹⁾ Therefore, the above assumption that **5** should be 3β ,6*exo*-dihydoxynortropane proved correct when including the absolute stereostructure (1*R*,3*S*,5*S*,6*R*).

Compound 6 was obtained as a colorless powder, $[\alpha]_D$ $\pm 0^{\circ}$ (*c*=0.60, H₂O), showed a purplish-red spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_7H_{13}NO$ by pos. HR-SI-MS (m/z : 128.1069 $[M+H]^+$, error, -0.6 mmu). The IR spectrum showed a strong OH and NH band and a CH band.

The ¹³C-NMR spectrum showed only 4 signals, suggesting that the structure of **6** has a plane of intramolecular symmetry. Then, $\boldsymbol{6}$ was assumed to be 3β -hydroxynortropane (=nor- ψ -tropine)¹²⁾ by NOEs between H-3 α and H-6*endo*, and H-3 α and H-7*endo* in the NOESY spectrum. ψ -Tropine is common, and nor- ψ -tropine has been reported as a synthesized compound. This was the first isolation of **6** from natural sources to our knowledge.

Compound **7**, morusimic acid A, was obtained as a colorless powder, $[\alpha]_D$ +15.3° (c =0.18, MeOH), showing a reddish-brown spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{24}H_{45}NO_9$ by pos. HR-SI-MS (m/z : 492.3163 [M+H]⁺, error, -0.7 mmu). The IR spectrum showed a strong OH and NH band and a COOH band as described in the experimental section.

The ¹H-NMR spectrum showed an anomeric proton [δ 4.40 (1H, d, $J=7.7$ Hz)]. Hydrolysis of 7 with 3.5% HCl provided a genuine aglycone (8) and D-glucose ($[\alpha]_D$ +38.8°). Partial structures **A1**, **B1**, and **C1** of **7** were obtained by ¹H-¹H COSY cross peaks, and they were connected by heteronuclear maltiple bond connectivity (HMBC) spectrum to establish the planar structure (Fig. 4). The $\mathrm{^{1}H}$ - and $\mathrm{^{13}C\text{-}NMR}$ signals were reasonably assigned to the structure by TOCSY, HSQC, and distortionless enhancement by polarization transfer (DEPT), as shown in Table 2.

The relative stereostructure of the pyrrolidine moiety in **7** was disclosed by the vicinal coupling constants $(J_{1,4})$ 4.0 Hz) and NOEs between H-3' α and H-2", H-3' α and H- 1 ", and H-4' and H-2" in the NOESY spectrum (Fig. 5). The same stereostructure was confirmed by the NOESY spectrum of *N*-methyl-**8** (**8a**) (Fig. 5). The absolute stereostructure of **7** was determined to be $3R$,1'S,4'S,1"S by a modification of Mosher's method¹¹⁾ of **8a**, as shown in Fig. 6.

Compound **8**, morusimic acid B, was obtained as a colorless powder, $[\alpha]_D$ +8.8° (c =0.42, MeOH), showing a reddish-brown spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{18}H_{35}NO_4$ by pos. HR-SI-MS (m/z : 330.2638 [M+H]⁺, error, -0.5 mmu). The IR spectrum showed a strong OH and NH band and a COOH band.

The spectroscopic data and the specific rotation value of **8** were identical to those of the aglycone of **7**. Thus, **8** was formulated as (3*R*)-3-hydroxy-12-{(1*S*,4*S*)-4-[(1*S*)-1-hydroxyethyl]-pyrrolidin-1-yl}-dodecanoic acid, and **7** as (3*R*)-3-hydroxy-12-{(1*S*,4*S*)-4-[(1*S*)-1-hydroxyethyl]-pyrrolidin-1-yl} dodecanoic acid-3- O - β -D-glucopyranoside, as shown in Fig. 3.

Compound **9**, morusimic acid C, was obtained as a colorless powder, $[\alpha]_D$ -20.3° ($c=0.24$, MeOH), showing a brownish spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{24}H_{45}NO_9$ by pos. HR-SI-MS (m/z : 492.3173 [M+H]⁺, error, -0.3 mmu). The IR spectrum showed a strong OH and NH band and a COOH band.

The ¹H-NMR spectrum showed an anomeric proton [δ 4.40 (1H, d, J=7.7 Hz)]. Hydrolysis of 9 with 3.5% HCl provided a genuine aglycone (10) and D-glucose ($[\alpha]_D$ +52.3°). The ¹H- and ¹³C-NMR spectra of 9 were similar to those of **7**, except for the presence of a methyl group instead of the 1 hydroxyethyl group. Partial structures **A2**, **B2**, and **C2** of **9** were obtained by ${}^{1}H-{}^{1}H$ COSY cross peaks and they were connected by HMBC spectrum to establish the planar structure (Fig. 4). These signals were assigned reasonably as sum-

Fig. 3. Structures of **7**—**12**

Fig. 4. Partial Structures and HMBC Spectra of **7** and **9**

marized in Table 2.

The relative stereostructure of the piperidine moiety in **9** was disclosed by the vicinal coupling constants $(J_{4',5'}=12.8)$ Hz) and NOEs between H-1' and H-5', H-3' α and H-5', and $H-4'$ and $CH₃$ in the NOESY spectrum. The absolute stereostructure of 9 was determined to be $3R,1/R,4/R,5'S$ by the $\Delta\delta$ value between both MTPA esters from 10 by a modification of Mosher's method,¹¹⁾ as shown in Fig. 6.

Compound **10**, morusimic acid D, was obtained as a colorless powder, $[\alpha]_D$ -14.6° (c =0.25, MeOH), showing a brownish spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{18}H_{35}NO_4$ by pos. HR-SI-MS (m/z : 330.2653 [M+H]⁺, error, +1.1 mmu). The IR spectrum showed a strong OH and NH and a COOH band as above.

The spectroscopic data and $[\alpha]_D$ value of 10 were identical to those of the aglycone of **9**. Thus, **10** was formulated as (3*R*)-3-hydroxy-12-[(1*R*,4*R*,5*S*)-4-hydroxy-5-methyl-piperidin-1-yl]-dodecanoic acid, and 9 as $10-3-*O*-*β*-*D*-glucopyranoside.$

Compound **11**, morusimic acid E, was obtained as a colorless powder, $[\alpha]_D$ -17.2° (c =0.61, MeOH), showing a yellowish-brown spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{24}H_{45}NO_{10}$ by pos. HR-SI-MS (*m*/*z*: 508.3124 [M+H]⁺, error, +0.5 mmu). The IR spectrum showed a strong OH and NH and a COOH band as above.

The ¹H- and ¹³C-NMR spectra of 11 were strikingly similar to those of **9**, except for the presence of a hydroxymethyl group $\lceil \delta \, 3.80 \, (1H, dd, J=5.5, 12.0 \, Hz), \delta \, 3.93 \, (1H, dd,$ $J=3.0$, 12.0 Hz), δ_c 60.09] instead of a methyl group. These signals were assigned as summarized in Table 2. Hydolysis of **11** with 3.5% HCl provided a genuine aglycone (**11a**) $([\alpha]_D$ -12.7°) and D-glucose. After the relative stereostructure was deduced as in **9**, the absolute stereostructure of **11** was established by comparison of the values such as $[\alpha]_D$ -12.7° ([M]_D -43.8°) for **11a** and -14.6° ([M]_D -48.0°) for **10**. Because of the low yield of **11a**, any application of a modification of Mosher's Method and a dibenzoate chirality method ended in a failure. Thus, **11** was formulated as (3*R*)- 3-hydroxy-12-[(1*R*,4*R*,5*S*)-4-hydroxy-5-hydroxymethylpiperidin-1-yl]-dodecanoic acid-3-*O*-β-_D-glucopyranoside.

Compound **12**, morusimic acid F, was obtained as a colorless powder, $\lceil \alpha \rceil_D + 6.4^\circ$ (*c*=0.28, MeOH), showing a brownish spot on TLC by ninhydrin reaction, and the molecular formula was determined to be $C_{18}H_{35}NO_4$ on the basis of pos. HR-SI-MS (m/z : 330.2635 [M+H]⁺, error, -0.7 mmu). The IR spectrum showed a strong OH and NH band and a COOH band as above.

The ¹H- and ¹³C-NMR spectra of 12 were strikingly similar to those of 10, except for the $\mathrm{^{1}H}\text{-}spliting$ pattern and $\mathrm{^{13}C}\text{-}$ chemical shift of the hydroxymethine $(4')$. These signals were assigned as summarized in Table 2. Then, **12** was established to be the 4'-epimer of 10 by the vicinal coupling constants $(J_{4',5'}=1.5 \text{ Hz})$ and NOEs between H-1' and H-5', and H-3' α and H-5' in the NOESY spectrum.

The absolute stereostructure of **12** was determined by a modification of Mosher's method¹¹⁾ between the *N*-methyl MTPA esters from **12**, as shown in Fig 6.

The inhibitory activities of **1**—**12**, DNJ and FAG were assessed with respect to α -glucosidase by methods described in the experimental section, and the results are summarized in Table 3.

Compounds 3, 4, and 5 inhibited α -glucosidase weakly, suggesting that more than 3 hydroxy groups or the 6*exo*-hydroxy group on nortropane skeleton may enhance the inhibitory activity.

February 2002 189

Fig. 5. NOEs Detected for **7** and **8a**

Fig. 6. $\Delta\delta$ Values (=8c*S*—8c*R*, 10c*S*—10c*R*, 12c*S*—12c*R*) Obtained for the MTPA Esters

Experimental

General The instruments used in the work were a JASCO digital polarimeter (for specific rotation, measured at 25 °C); a Perkin-Elmer 1720X-FTIR spectrometer (for IR spectra); a Hitachi M-80 spectrometer (for MS spectra); a Varian Mercury 300, Unity Inova-500 (for NMR spectra, measured in pyridine- d_5 on the δ scale using tetramethylsilane as an internal standard); and a Shimadzu spectrophotometer UV 1200 (for enzyme assay).

Column chromatography was carried out on ion-exchange resin (Amberlite CG-50, Amberlite IRA-67, Organo Company, and Dowex 50W-X4, Dow Chemical Company), and silica gel (Chromatorex DM1020, Fuji Silysia Chemical Ltd.). HPLC was conducted on a Gilson 305 pump or a JASCO-PU 980 equipped with a JASCO 830-RI or UV-970 as a detector. Silica gel $60F_{254}$ (Merck)-precoated TLC plates were used, developed with a CHCl₃– MeOH–AcOH–H₂O (20 : 10 : 7 : 5) solvent system, and detection was carried out with ninhydrin reagent followed by heating.

Table 3. α -Glucosidase Inhibition

Compounds	IC_{50} (M)
DNJ	9.8×10^{-4}
FAG	1.5×10^{-2}
1	NI
$\mathbf{2}$	NI
3	2.5×10^{-2}
4	1.5×10^{-2}
5	3.3×10^{-2}
6	NI
7	NI
8	NI
9	NI
10	NI
11	NI
12	NI

NI: no inhibition.

Isolation of Compounds 1—12 Dried fruit of *M. alba* (4.5 kg collected in Turkey in 1999) was refluxed with methanol–water $(1 \cdot 1)$ (301) in a water bath for 1 h. The extracted solution was chromatographed on an Amberlite CG-50 (H^+ form) column (i.d. 5.0 \times 20 cm, repeated 6 times). After washing the column with water and then MeOH, the adsorbed material was eluted with 50% MeOH–28% ammonia solution $(9:1)$. The eluted fraction was concentrated *in vacuo* to give a fraction (4.5 g). This fraction was chromatographed on a silica gel (Chromatorex DM1020) and eluted with CHCl₃–MeOH (10 : 0), (10 : 1), (9 : 1), (7 : 1), (5 : 1), (3 : 1), (1 : 1), and (0 : 1) and MeOH–H₂O (10 : 1), (9 : 1), (7 : 1), (5 : 1), (3 : 1), (1 : 1), and (0 : 1). The fractions eluted with CH₂Cl–MeOH were respectively chromatographed on a Sep-pak C_{18} cartridge (Waters) and eluted with H₂O. The H₂O fractions were chromatographed on Dowex 50W-X4 column (200—400 mesh) pretreated with formic acid–ammonium formate buffer (0.2 ^M ammonia formate, adjusted to pH 5.7 with 1 N formic acid), with gradient elution (H₂O $(200 \text{ ml}) \rightarrow H_2O-28\%$ ammonia solution $(9:1, 200 \text{ ml})$. The fractions containing **1**—**6** were rechromatographed on preparative HPLC [(a) Develosil ODS-UG-5 (i.d. 10×250 mm); solvent: CH₃CN–H₂O (3:97), adjusted to pH 12.0 with ammonia solution; flow rate: 1.2 ml/min; detection: refractive index (RI); column temperature: ambient or (b) COSMOSIL PAKED COL-UMN 5NH₂-MS (i.d. 6.0×250 mm); solvent: CH₃CN–H₂O (80:20); flow rate: 0.8 ml/min; detection: RI; column temperature: 30 °C]. Compounds **1** (11.2 mg), **2** (30.2 mg), **3** (8 mg), **4** (2.8 mg), **5** (0.6 mg), and **6** (28.6 mg) were finally obtained.

The fractions eluted with MeOH–H₂O were chromatographed on a Seppak C_{18} cartridge (Waters) and eluted with MeOH, respectively. The fractions containing **7**—**12** were rechromatographed on preparative HPLC [(a) Develosil ODS-UG-5 (i.d. 10×250 mm); solvent: CH₂CN–H₂O (13:87), adjusted to pH 12.0 with ammonia solution; flow rate: 1.2 ml/min; detection: RI; column temperature: ambient or (b) Develosil ODS-UG-5 (i.d. 10×250 mm); solvent: CH₃CN–H₂O (14:86), adjusted to pH 12.0 with ammonia solution; flow rate: 1.2 ml/min; detection: RI; column temperature: ambient]. Compounds **7** (35.7 mg), **8** (25.0 mg), **9** (16.8 mg), **10** (8.7 mg), **11** (4.6 mg), and **12** (9.3 mg) were finally obtained.

1: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D$ -33.9° ($c=0.32$, H₂O), C₇H₁₃NO₂, pos. HR-SI-MS *m/z*; 144.1028 ($[M+H]^+$), error, +0.4 mmu, IR v (KBr) cm⁻¹: 3414 (OH, NH), 2925 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

2: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D$ -34.0° ($c=0.61$, H₂O), C₇H₁₃NO₂, pos. HR-SI-MS m/z ; 144.1022 ($[M+H]^+$), error, -0.2 mmu, IR v (KBr) cm⁻¹: 3303 (OH, NH), 2927 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

3: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D$ -27.3° ($c=0.55$, H₂O), C₇H₁₃NO₃, pos. HR-SI-MS *m*/*z*; 160.0971 ($[M+H]^+$), error, -0.2 mmu, IR v (KBr) cm⁻¹: 3400 (OH, NH), 2925 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

4: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D \pm 0^\circ$ (*c*=0.40, H₂O), C₇H₁₃NO₃, pos. HR-SI-MS *m*/*z*; 160.0983 $([M+H]^+)$, error, $+1.0$ mmu, IR v (KBr) cm⁻¹: 3469 (OH, NH), 2928 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

5: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D$ -1.3° ($c=0.60$, H₂O), C₇H₁₃NO₂, pos. HR-SI-MS m/z ; 144.1028 ($[M+H]^+$), error, +0.5 mmu, IR v (KBr) cm⁻¹: 3430 (OH, NH), 2933 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

6: Colorless powder, ninhydrin reaction: positive (a purplish-red spot on TLC), $[\alpha]_D = 0^\circ$ ($c = 0.60$, H₂O), C₇H₁₃NO, pos. HR-SI-MS m/z ; 128.1069 $([M+H]^+)$, error, -0.6 mmu, IR v (KBr) cm⁻¹: 3404 (OH, NH), 2971 (CH), ¹H- and ¹³C-NMR (D₂O): Table 1.

7: Colorless powder, ninhydrin reaction: positive (a redish-brown spot on TLC), $[\alpha]_D$ +15.3° (c =0.18, MeOH), C₂₄H₄₅NO₉, pos. HR-SI-MS *m*/*z*; 492.3163 ($[M+H]^+$), error, -0.7 mmu, IR v (KBr) cm⁻¹: 3385 (OH, NH), 1562 (COOH), ¹H- and ¹³C-NMR (CD₃OD): Table 2.

8: Colorless powder, ninhydrin reaction: positive (a redish-brown spot on TLC), $[\alpha]_D$ +8.8° (c =0.42, MeOH), C₁₈H₃₅NO₄, pos. HR-SI-MS *m/z*; 330.2638 ($[M+H]^+$), error, -0.5 mmu, IR v (KBr) cm⁻¹: 3389 (OH, NH), 1553 (COOH), ¹H- and ¹³C-NMR (CD₃OD): Table 2.

9: Colorless powder, ninhydrin reaction: positive (a brown spot on TLC), $[\alpha]_D$ -20.3° (*c*=0.24, MeOH), C₂₄H₄₅NO₉, pos. HR-SI-MS *m*/*z*; 492.3173 $([M+H]^+)$, error, -0.3 mmu, IR v (KBr) cm⁻¹: 3403 (OH, NH), 1567 (COOH), ¹H- and ¹³C-NMR (CD₃OD): Table 2.

10: Colorless powder, ninhydrin reaction: positive (a brown spot on TLC), $[\alpha]_D$ -14.6° (c =0.25, MeOH), C₁₈H₃₅NO₄, pos. HR-SI-MS *m*/*z*; 330.2653 $([M+H]^+)$, error, +1.1 mmu, IR v (KBr) cm⁻¹: 3371 (OH, NH), 1548 (COOH), 1 H- and 13 C-NMR (CD₃OD): Table 2.

11: Colorless powder, ninhydrin reaction: positive (a yellow spot on TLC), $[\alpha]_D$ -17.2° (c =0.61, MeOH), C₂₄H₄₅NO₁₀, pos. HR-SI-MS *m/z*; 508.3124 ($[M+H]^+$), error, +0.5 mmu, IR v (KBr) cm⁻¹: 3414 (OH, NH), 1560 (COOH), ¹H- and ¹³C-NMR (CD₃OD): Table 2.

12: Colorless powder, ninhydrin reaction: positive (a brown spot on TLC), $[\alpha]_{D}$ +6.4° (*c*=0.28, MeOH), C₁₈H₃₅NO₄, pos. HR-SI-MS *m*/*z*; 330.2635 $([M+H]^+)$, error, -0.7 mmu, IR v (KBr) cm⁻¹: 3399 (OH, NH), 1560 (COOH), ¹H- and ¹³C-NMR (CD₃OD): Table 2.

Dibenzoate (1b) Compound **1** (7.5 mg) was treated with acetic anhydride (50 μ l) in pyridine at -4 °C for 1 h to provide an acetamide (1a). 1a was dissolved in pyridine (3.0 ml), benzoylchloride (500 μ l) was added, and the solution was stirred at room temperature for 48 h. The reaction products were subjected to HPLC [column, Develosil UG-5 (i.d. 10×250 mm); solvent, CH₃CN–H₂O (30 : 70→100 : 0, 60 min); flow rate, 2.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. **1b** was obtained as a colorless oil. **1b**: pos. SI-MS *m*/*z*: 394 ([M+H]⁺, 28.0%). ¹H-NMR (CDCl₃) δ: 1.89 (1H, m, H-4*exo*), 1.95 (1H, m, H-6*endo*), 2.02 (1H, m, H-7*exo*), 2.20 (2H, m, H-6*exo*, H-7*endo*), 2.27 (1H, ddd, J=13.0, 6.6, 2.5 Hz, H-4*exo*), 2.28 (3H, s, COCH3), 4.47 (1H, m, H-1), 4.80 (1H, m, H-5), 5.14 (1H, dd, *J*59.0, 3.7 Hz, H-2*exo*), 5.68 (1H, ddd, *J*511.0, 9.0, 6.6 Hz, H-3*endo*), 7.37—7.58 (6H, m, ArH), 7.94 (4H, m, ArH). CD (MeOH): $\Delta \varepsilon$: -15.9 (238) , $+16.4$ (223).

Dibenzoate (2b) Compound **2** (11.4 mg) was treated as above to provide an acetamide (**2a**). **2a** was treated as above to provide **2b** as a colorless oil, pos. SI-MS *m/z*: 394 ([M+H]⁺, 28.0%). ¹H-NMR (CDCl₃) δ: 1.95 (1H, m, H-6*endo*), 1.97 (1H, m, H-4*exo*), 2.00 (1H, m, H-7*endo*), 2.02 (2H, m, H-6*exo*, H-7*exo*), 2.09 (1H, m, H-4*endo*), 2.21 (3H, s, COCH3), 4.61 (1H, m, H-1), 5.01 (1H, m, H-5), 5.51 (1H, t, $J=3.7$ Hz, H-2*endo*), 5.60 (1H, m, H-3endo), 7.75-7.86 (6H, m, ArH), 7.97 (4H, m, ArH). CD (MeOH): $\Delta \varepsilon$: $+13.7$ (238), -8.0 (221).

*N***-Methyl Derivative (5a)** Compound **5** (2.0 mg) was treated with formaldehyde solution (1.0 ml) in MeOH (2.0 ml) and palladium carbon (10%, 5.0 mg) was added, and then the reaction solution was stirred under a hydrogen atmosphere at room temperature overnight. **5a** (2.0 mg) was provided by filtration in Millex®-LH (0.45 μ m) and the removal of the solvent from the reaction solution *in vacuo.*

 (S) -(-)-MTPA Ester $((S)$ -5b) Compound 5a (1.0 mg) was treated with (R) -(-)-MTPA-Cl (20 μ l) in pyridine (300 μ l) at room temperature overnight, and *N*,*N*-dimethyl-1,3-propanediamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6× 150 mm); solvent, CH₃CN–H₂O (20:80 \rightarrow 100:0, 40 min); flow rate, 1.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. (*S*)-**5b** was obtained as a colorless oil (1.0 mg), $C_{28}H_{29}NO_6F_6$, pos. SI-MS m/z : 590 (M+H)⁺, ¹H-NMR (CDCl₃) δ: 1.714 (1H, m, H-2*exo*), 1.845 (1H, dd, *J*= 3.4, 11.4, 11.4 Hz, H-4*exo*), 1.906 (1H, m, H-2*exo*), 2.156 (1H, m, H-4*endo*), 2.242* (3H, s, N-CH3), 2.262 (2H, m, H-7), 3.236 (1H, m, H-5), 3.383 (1H, m, H-1), 3.552 (3H, s, OCH₃), 3.544 (3H, s, OCH₃), 5.055 (1H, m, H-3), 5.360 (1H, dd, J=4.6, 6.4 Hz, H-6), 7.340*—7.530* (10H, m, MTPA–ArH) (*overlapped signals).

 (R) -(+)-MTPA Ester $((R)$ -5b) Compound 5a (1.0 mg) was treated with (S) -(+)-MTPA–Cl (20 μ l) in pyridine (300 μ l) at room temperature overnight, and *N*,*N*-dimethyl-1,3-propanediamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6×150 mm); solvent, CH₃CN–H₂O (20:80 \rightarrow 100:0, 40 min); flow rate, 1.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. (*R*)-**5b** was obtained as a colorless oil (1.0 mg), $C_{28}H_{29}NO_6F_6$, pos. SI-MS m/z : 590 (M+H)⁺, ¹H-NMR (CDCl₃) δ: 1.768 (1H, ddd, *J*=3.4, 11.4, 11.4 Hz, H-4*exo*), 1.837 (1H, m, H-2*exo*), 1.918 (1H, m, H-2*endo*), 2.079 (1H, m, H-4*endo*), 2.168 (1H, m, H-7*exo*), 2.273 (1H, dd, *J*57.7, 14.4 Hz, H-7*endo*), 2.346 (3H, s, N-CH₃), 3.305 (1H, m, H-5), 3.395 (1H, m, H-1), 3.530* (3H, s, OCH₃), 3.535* (3H, s, OCH₃), 5.071 (1H, m, H-3), 5.335 (1H, dd. *J*=3.3, 7.7 Hz, H-6), 7.360*—7.540* (10H, m, MTPA–ArH) (*overlapped signals).

Hydrolysis of 7 Compound **7** (6 mg) was dissolved in 3.5% HCl (10 ml) and the solution was refluxed in a water bath for 2 h. After cooling, the reaction mixture was passed through an Amberlite IRA-67 (OH⁻ form) column (i.d. 20×50 mm) to neutralize. The resulting solution was chromatogaphed on a Sep-pak C_{18} column (Waters), eluted with water, and afforded D-glucose (1.2 mg), $[\alpha]_D$ +38.9° (c =0.09, H₂O), which was identified by TLC $(Rf=0.34, \text{ AcOEt}: \text{AcOH}: \text{MeOH}: \text{H}_2\text{O} = 6:1.5:1.5:1$), and ¹H-NMR. Elution with MeOH afforded the aglycone (**8**) (4 mg) as a colorless powder (identified by comparison of ${}^{1}H_{7}$, ${}^{13}C$ -NMR, and HPLC data).

*N***-Methyl Derivative (8a)** Compound **8** (7.1 mg), which was prepared as in **5a**, was treated as above to provide **8a** (3.5 mg).

Methyl Ester (8b) Compound **8a** (3.5 mg) in MeOH (2.0 ml) was treated with a diazomethane–ether solution (5.0 ml) prepared from *p*-toluenesulfonyl-*N*-methyl-*N*-nitrosoamide (1.0 g) in diethylether (20 ml) and 50% KOH solution (10 ml) at room temperature overnight, and then **8b** (2.0 mg) was provided by the removal of ether from the solution *in vacuo.*

 (S) -(-)-MTPA Ester $((S)$ -8c) Compound 8b (1.0 mg) was treated with (R) -(-)-MTPA-Cl (20 μ l) in pyridine (300 μ l) at room temperature overnight, and *N*,*N*-dimethyl-1,3-propane diamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6×150 mm); solvent, CH₃CN–H₂O (20 : 80 \rightarrow 100 : 0, 40 min); flow rate, 1.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. (*S*)-**8c** was obtained as a colorless oil (1.0 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ : 1.239* (3H, d, J=6.6 Hz, H-2"), 1.267* (1H, H-2"), 1.642* (2H, H-4), 1.713* (2H, H-3'), 1.808 (1H, quintet, $J=6.4$ Hz, H-2), 2.192 (1H, m, H-1'), 2.284 (3H, s, N-CH₃), 2.359 (1H, ddd, J=2.3, 7.9, 7.9 Hz, H-4'), 2.605 (1H, dd, *J*=4.7, 15.8 Hz, H-2), 2.697 (1H, dd, *J*=8.2, 15.8 Hz, H-2), 3.542 (3H, s, OCH₃), 3.574 (3H, s, OCH₃), 3.661 (3H, s, COOC_{H₃}), 5.373 (1H, dddd, J=2.3, 6.5, 6.5, 6.5 Hz, H-1"), 5.475 (1H, m, H-3), 7.330*—7.700* (10H, m, MTPA–ArH) (*overlapped signals).

 (R) -(+)-MTPA Ester $((R)$ -8c) Compound 8b (1.0 mg) was treated with $(S)-(+)$ -MTPA–Cl $(20 \,\mu l)$ in pyridine $(300 \,\mu l)$ at room temperature overnight, and *N*,*N*-dimethyl-1,3-propanediamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6×150 mm); solvent, CH₃CN–H₂O (20 : 80 \rightarrow 100 : 0, 40 min); flow rate, 1.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. (*R*)-**8c** was obtained as a colorless oil (1.0 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ: 1.331* (1H, m, H-2"), 1.709* (2H, 4-H), 2.262 (3H, s, N-CH₃), 2.574 (1H, dd, *J*=5.0, 16.0 Hz, H-2), 2.647 (1H, dd, *J*=8.0, 16.0 Hz, H-2), 3.527 (3H, s, OCH₃), 3.551 (3H, s, OCH₃), 3.587 (3H, s, COOCH₃), 5.349 (1H, m, H-1"), 5.477 (1H, m, H-3), 7.330*-7.590* (10H, m, MTPA-ArH) (*overlapped signals).

Hydrolysis of 9 Compound **9** (5.0 mg) was dissolved in 3.5% HCl (10 ml) and the solution was treated as above to afford p -glucose (1.0 mg) , $[\alpha]_{\text{D}}$ +52.3° (*c*=0.08, H₂O), which was identified by TLC (*Rf*=0.34, $AcOEt: AcOH: MeOH: H₂O = 6:1.5:1.5:1$), and ¹H-NMR. Elution of the adsorbed fraction with MeOH afforded the aglycone (**10**) (3.2 mg) as a colorless powder (identified by comparison of ${}^{1}H_{2}$, ${}^{13}C_{2}NMR$, and HPLC data).

*N***-Methyl Derivative (10a)** Compound **10** (5.8 mg) was treated as above to provide 10a (3.0 mg) by filtration in Millex[®]-LH (0.45 μ m) and the removal of solvent from the reaction solution *in vacuo.*

Methyl Ester (10b) Compound **10a** (3.0 mg) in MeOH (2.0 ml) was treated with the diazomethane–ether solution (5.0 ml) as above to provide **10b** (2.0 mg).

 (S) -(-)-MTPA Ester $((S)$ -10c) Compound 10b (1.0 mg) was treated with (R) -(-)-MTPA–Cl (20 μ l) in pyridine (300 μ l) at room temperature overnight, and *N*,*N*-dimethyl-1,3-propanediamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6×150 mm); solvent, CH₃CN–H₂O (20 : 80– \rightarrow 100 : 0, 40 min); flow rate, 1.0 ml/min; detection, UV 230 nm; column temperature, 40 °C]. (*S*)-**10c** was obtained as a colorless oil (1.0 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ: 0.965 (3H, d, J=6.2 Hz, CH₃-H), 1.468* (1H, m, H-3'), $1.633*$ (2H, m, H-4), $2.205*$ (3H, s, N-C \underline{H}_3), $2.234*$ (1H, m, H-3'), 2.343 (1H, m, H-5'), 2.604 (1H, dd, *J*=4.6, 16.0 Hz, H-2), 2.695 (1H, dd, *J*=8.2, 16.0 Hz, H-2), 3.540 (3H, s, OC \underline{H}_3), 3.565 (3H, s, OC \underline{H}_3), 3.661 (3H, s, $COOCH₃$), 4.788 (1H, m, H-4'), 5.471 (1H, m, H-3), 7.360*-7.560* (10H, m, MTPA–ArH) (*overlapped signals).

 (R) -(+)-MTPA Ester $((R)$ -10c) Compound 10b (1.0 mg) was treated with $(S)-(+)$ -MTPA–Cl $(20 \mu l)$ in pyridine $(300 \mu l)$ at room temperature overnight, and *N*,*N*-dimethyl-1,3-propanediamine was added. The reaction products were subjected to HPLC [column, CrestPak C18S (i.d. 4.6×150 mm); solvent, CH₃CN–H₂O (20 : 80 \rightarrow 100 : 0, 40 min); flow rate, 1.0 ml/min: detection, UV 230 nm; column temperature, 40 °C]. (*R*)-**10c** was obtained as a colorless oil (1.0 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ : 1.137 (3H, d, J=6.2 Hz, CH₃-H), 1.312^{**} (1H, m, H-3'), $1.704*$ (1H, H-4), 2.168 (1H, m, H-3'), 2.224 (3H, s, N-C \underline{H}_3), 2.381 (1H, m, H-5'), 2.572 (1H, dd, *J*=4.9, 16.0 Hz, H-2), 2.645 (1H, dd, *J*=8.0, 16.0 Hz, H-2), 3.527^* (3H, s, OC \underline{H}_3), 3.536^* (3H, s, OC \underline{H}_3), 3.588 (3H, s, COOC \underline{H}_3), 4.767 (1H, m, H-4'), 5.474 (1H, m, H-3), $7.370*-7.550*$ (10H, m, MTPA–ArH) (*overlapped signals).

Hydrolysis of 11 Compound **11** (3.0 mg) was dissolved in 3.5% HCl (4 ml) and the solution was treated as above to afford D-glucose, which was identified by TLC $(Rf=0.34, \text{ACOEt} : \text{ACOH} : \text{MeOH} : H_2O=6 : 1.5 : 1.5 : 1$. Elution of the adsorbed fraction with MeOH afforded the aglycone (**11a**) (2.0 mg) as a colorless powder.

*N***-Methyl Derivative (12a)** Compound **12** (7.0 mg) was treated as above to provide **12a** by filtration in Millex[®]-LH (0.45 μ m) and the removal of solvent from the reaction solution *in vacuo.*

Methyl Ester (12b) Compound **12a** (3.0 mg) in MeOH (2.0 ml) was treated with the diazomethane–ether solution (5 ml) as above to provide **12b** $(1.4 \,\text{mg})$.

 (S) -(-)-MTPA $((S)$ -12c) Compound 12b (0.7 mg) was treated with (R) -(-)-MTPA–Cl (20 μ l) in pyridine (300 μ l) as above to provide (*S*)-12c as a colorless oil (1.0 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ : 1.126* (3H, m, CH₃-H), 1.610* (2H, m, H-4), 2.085 (3H, s, N-CH₃), 2.538 (1H, m, H-5'), 2.603 (1H, dd, J=4.6, 16.0 Hz, H-2), 2.709 (1H, dd, $J=8.2$, 16.0 Hz, H-2), 3.540 (3H, s, OC \underline{H}_3), 3.572 (3H, s, OC \underline{H}_3), 3.661 (3H, s, COOC \underline{H}_3), 5.015 (1H, m, H-4'), 5.470 (1H, m, H-3), $7.360*$ 7.550* (10H, m, MTPA–ArH) (*overlapped signals).

 (R) -(+)-MTPA Ester $((R)$ -12c) Compound 12b (0.7 mg) was treated with (S) -(+)-MTPA–Cl (20 μ l) in pyridine (300 μ l) as above to provide (*R*)-**12c** as a colorless oil (0.7 mg), $C_{40}H_{53}NO_8F_6$, pos. SI-MS m/z : 790 (M+H)⁺; ¹H-NMR (CDCl₃) δ : 0.950 (3H, m, CH₃-H), 1.684* (2H, H-4), 2.051* (3H, s, N-CH₃), 2.554* (1H, m, H-5'), 2.573* (1H, dd, J=5.0, 16.0 Hz, H-2), 2.644 (1H, dd, J=8.0, 16.0 Hz, H-2), 3.527 (3H, s, OCH₃), 3.587^{*} (3H, s,

OC H_3), 3.587* (3H, s, COOC H_3), 5.020 (1H, m, H-4'), 5.472 (1H, m, H-3), 7.370*—7.600* (10H, m, MTPA–ArH) (*overlapped signals).

Assay of α **-Glucosidase Inhibition** The α -glucosidase activity was measured by the modified method of Dahlvist.¹³⁾ The reaction mixture consisted of 50 mm phosphate buffer 200 μ l (pH 7.0), 100 mm sucrose 175 μ l in phosphate buffer, α -glucosidase (stock solution of 1.0 mg/ml in 10 mm phosphate buffer, pH 7.8, was diluted 40 times with the same buffer), with the substrates $1-12$, DNJ, or FAG $(25 \mu l)$ solution, concentration: $20-0.1$ mg/ml).

Acknowledgment The authors are grateful to Mr. K. Minoura for obtaining NMR spectra and Mrs. M. Fujitake for obtaining mass spectra at Osaka University of Pharmaceutical Sciences.

References

- 1) "Flora of Turkey and the East Aegean Islands," ed. by Davis P. H., Edinburgh University Press, Edinburgh, 1982, pp. 641—642.
- 2) Yagi M., Kouno T., Aoyagi Y., Murai H., *Nippon Nogeikagaku Kaishi*, **50**, 571—572 (1976).
- 3) Nomura T., Fukai T., *Chem. Parm. Bull*., **28**, 2548—2552 (1980).
- 4) Oshima Y., Kono C., Hikino H., *Tetrahedron Lett*., **21**, 3381—3384 (1980).
- 5) Kojima D., Inamori Y., Takemoto T., *Chem. Parm. Bull*., **34**, 2243— 2246 (1986).
- 6) Asano N., Oseki K., Tomioka E., Kizu H., Matsui K., *Carbohydr. Res*., **259**, 243—255 (1994).
- 7) Shibano M., Kitagawa S., Kusano G., *Chem. Pharm. Bull*., **45**, 503— 508 (1997).
- 8) *a*) Koreeda M., Harada N., Nakanishi K., *Chem. Commun*., **1969**, 548—549; *b*) Harada N., Sato H., Nakanishi K., *ibid*., **1970**, 1691— 1693.
- 9) Asano N., Yokoyama K., Sakurai M., Ikeda K., Kizu H., Kato A., Arisawa M., Dirk H., Birgit D., Alison A. W., Robert J. N., *Phytochemistry*, **57**, 721—726 (2001).
- 10) Asano N., Kato A., Oseki K., Kizu H., Matsui K., *Eur. J. Biochem*., **229**, 369—376 (1995).
- 11) Ohtani I., Kusumi T., Kashman Y., Kakisawa H., *J. Am. Chem. Soc*., **113**, 4092—4096 (1991).
- 12) Alex N., Louis F. F., *J. Am. Chem. Soc*., **74**, 5566—5570 (1952).
- 13) Dahlqvist A., *Anal. Biochem*., **7**, 18—25 (1964).