Reaction of 1-Alkylthioisoquinolinium Salts with Active Methylene Compounds

Reiko Fujita,* Noriyuki WATANABE, and Hiroshi Tomisawa

Tohoku Pharmaceutical University, 4–4–1 Komatsushima, Aoba-ku, Sendai 981–8558, Japan. Received September 10, 2001; accepted October 23, 2001

2-Alkyl-1-alkylthioisoquinolinium salts were readily prepared from 2-alkyl-1(2H)-isoquinolones via 2-alkyl-1(2H)-thioisoquinolones in two steps. Under mild conditions, the reaction of 2-alkyl-l-alkylthioisoquinolinium salts with active methylene compounds in the presence of sodium hydride afforded 2-alkyl-1-(substituted methylene)iso-quinolines in good yields. Pyrrolo[2,1-a]isoquinolines were synthesized by the cyclization of 2-benzyl-1-(substituted methylene)isoquinolines using acetic anhydride.

Key words cyclization; pyrrolo[2,1-a]isoquinoline; dimethyl malonate; methylthioisoquinolinium salt; active methylene compound

We have previously reported on the reaction of 2methylthioquinolinium salts with active methylene compounds for the formation of a carbon-carbon bond.¹⁾ Additionally, various methods for the synthesis of indolizine derivatives have been reported.²⁾ In view of the recent report by Iwao and Kuraishi.²⁾ on the novel total synthesis of the marine alkaloid lamellarins, which contain the pyrrolo[2,1a]isoquinoline skeleton (Chart 1),³⁾ functionalized pyrrolo-[2,1-*a*]isoquinolines would function as very useful synthetic intermediates toward their syntheses. The conventional methods for preparing the substituted pyrrolo[2,1-a]isoquinoline derivatives are either via Michael condensation of Reissert compounds,⁴⁾ or *via* 1,3- and 1,5-dipolar cycloaddition reactions.^{5,6)} In this paper, we report a novel method for the synthesis of a pyrrolo [2, 1-a] isoquinoline skeleton using the cyclization of 2-benzyl-1-(substituted methylene) isoquinolines, which are readily prepared by the reaction of 2-benzyl-1-alkylthioisoquinolinium iodides with active methylene compounds.

Reaction of 1-Alkylthioisoquinolinium Iodides with Active Methylene Compounds Initially, the reaction of active methylene compounds with isoquinolinium salts that have a methylthio group as a leaving group at the 1-position was examined under mild conditions in the presence of sodium hydride (Chart 2, Table 1). 2-Methyl- and 2-benzyl-1(2H)thioisoquinolones (3, 7) 4) were prepared from 2-methyl- and 2-benzyl-1(2*H*)-isoquinolones $(1, {}^{8})$ 2) in excellent yields, respectively. The reaction of thioisoquinolones (3, 4) with methyl iodide (5a) afforded 2-methyl- and 2-benzyl-1methylthioisoquinolinium iodides (6a,9) 7) in 99 and 77% yields, respectively. The reactions of 6a with straight-chain active methylene compounds (8a-c) in the presence of sodium hydride for 1.5 h at room temperature afforded 2methyl-1-(substituted methylene)isoquinolines (9a, 88%; 9b, 81%; 9c, 85%, respectively) in high yields. However, reactions of **6a** with straight-chain active methylene compounds (8d—f) afforded 9d—f in moderate yields. Reactions of 6a with cyclic active methylene compounds (8g, h) at 90 °C for 3 h gave 2-methyl-1-(substituted methylene)isoquinolines (9g, h) in 92% and 61% yields, respectively. Similarly, the reaction of 7 with 8a-e produced 2-benzyl-1-(substituted methylene)-isoquinolines (10a, 95%; 10b, 98%; 10c, 99%; 10d, 88%; 10e, 53%, respectively). To examine the effects of

repeated using other alkyl iodides. In comparison to methyl iodide, the reaction of 3 with ethyl iodide (5b) and isopropyl iodide (5c) afforded low yields of the corresponding 1alkylthioisoquinolinium salts (6b, 75%; 6c, 52%). Furthermore, the reactions of 6b, c with 8a and with 8g gave products [9a (65%, 65%); 9g (42%, 40%)] in lower yields than that of **6a** with **8a**, **g** (Table 1). These results can be explained by assuming that the enol form arising from the active methylenes (8d—f) would be more stable than the corresponding keto form, and would tend to lower the yields. The reactions of 7 with bulky methylene compounds (8f-h) did not give the desired products (10f-h), whereas reactions of 6a bearing a smaller methyl group at the 2-position proceeded with 8f—h; hence it can be implied that steric hindrance between two bulky groups, specifically, 2-benzyl and phenyl in 8f or alicyclic rings (8g, h) was a main factor in reducing the yield. Spectroscopic studies of compound 10b showed nuclear Overhauser and exchange spectroscopy (NOE) correlations between the methyl of the ester and the 2-methylene groups, and therefore their configuration is suggested to be the Zform. Unfortunately, similar NOE correlations were not observed between the ester and the 2-substituent groups of 9b, d, and 10d. In summary, this type of reaction is a promising method to form a carbon-carbon bond at the 1-position of an isoquinoline ring.

the alkylthio group at the 1-position, the experiments were

Synthesis of Pyrrolo[2,1-*a***]isoquinolines** Our next step was cyclization of the 2-benzyl compounds (**10a**—**e**) in acetic anhydride to provide the functionalized pyrrolo[2,1-*a*]isoquinoline derivatives (Chart 3). Heating of **10a**, **d**, **e** in acetic anhydride at 130 °C for 4 h afforded the corresponding pyrrolo[2,1-*a*]isoquinolines (**11a**, 91%; **11b**, 88%; **11c**, 68%; respectively). Unfortunately, cyclizations of **10b**, **c** were unsuccessful, although **10b**, **c** were recovered. The structures of **11a**—**c** were determined as follows. ¹H-NMR spectra of **11a**—**c** showed that the signals (5.55—5.94 ppm) due to

9a-h,10a-h

1;3; 9a-h:R⊨Me 2;4;10a-h:R=Bn	8a ; 9a ; 10a : X = COOMe ∶ Y = COOMe 8b ; 9b ; 10b : X = CN ∶ Y = COOMe
5a : R ¹ = Me 5b : R ¹ = Et 5c : R ¹ = ∔Pro	8c;9c;10c : X=CN : Y=CN 8d;9d;10d : X=COMe : Y=COOMe 8e;9e;10e : X=COMe : Y=COMe 8d:9f:10f : X=PhCO : Y=COMe
6a : R = Me ; R ¹ = Me 99% 6b : R = Me ; R ¹ = Et 75% 6c : R = Me : R ¹ ≠ <i>i</i> Pro52% 7 : R = Bn : R ¹ = Me 77%	6g;9g;10g:X=COCH ₂ CH ₂ CH ₂ CO=Y 8h;9h;10h X=COCH ₂ CH ₂ CO=Y

Chart 2

 Table 1. Reaction of Isoquinolinium Salts with Active Methylene Compounds

Entry	Salt	Temp (°C)	Time	Solvent	8a—h			Yield
			(h)		Х	Y	Product	(%)
1	6a	rt ^{a)}	1.5	THF	COOMe	COOMe	9a	97
2	6a	rt	1.5	THF	CN	COOMe	9b	81
3	6a	rt	1.5	THF	CN	CN	9c	85
4	6a	rt	1.5	THF	COMe	COOMe	9d	69
5	6a	rt	1.5	THF	COMe	COMe	9e	47
6	6a	rt	1.5	THF	PhCO	COOEt	9f	49
7	6a	90	3	DMF	COCH ₂ CH ₂ CH ₂ CO		9g	92
8	6a	90	3	DMF	COCH,CH,CO		9ĥ	61
9	7	rt	2	THF	COOMe	COOMe	10a	95
10	7	rt	2	THF	CN	COOMe	10b	98
11	7	rt	2	THF	CN	CN	10c	99
12	7	rt	2	THF	COMe	COOMe	10d	88
13	7	rt	2	THF	COMe	COMe	10e	53
14	7	rt	2	THF	PhCO	COOEt	10f	0
15	7	90	3	DMF	COCH ₂ CH ₂ CH ₂ CO		10g	0
16	7	90	3	DMF	COCH ₂ CH ₂ CO		10h	0
17	6b	rt	1.5	THF	COOMe	COOMe	9a	65
18	6c	rt	1.5	THF	COOMe	COOMe	9a	59
19	6b	90	3	DMF	COCH ₂ CH ₂ CH ₂ CO		9g	42
20	6c	90	3	DMF	COCH ₂ CH ₂ CH ₂ CO		9g	40

a) Room temperature.

methylenes of benzyl groups in **10a**, **d**, **e** disappeared by dehydration and condensation.

In conclusion, we found that a novel reaction of active methylene compounds with isoquinolinium salts having a methylthio group as a leaving group at the 1-position gave 2alkyl-1-(substituted methylene)isoquinolines under mild condition in fairly good yields. Cyclization of 2-benzyl compounds having an ester or an acetyl group in acetic anhydride produced the pyrrolo[2,1-*a*]isoquinolines in excellent yields.

Experimental

The following instruments were used to obtain physical data: Melting points, Yanaco micromelting point apparatus (values are uncorrected); IR spectra, Perkin-Elmer ET-IR1725X spectrometer; MS, JEOL JMN-DX 303/JMA-DA 5000 spectrometer; NMR spectra, JNM-GSX 400 (¹H-NMR, 400 MHz; ¹³C-NMR, 100 MHz), JNM-EX270 (¹H-NMR, 270 MHz; ¹³C-NMR, 67.8 MHz), JEOL JNM- PMX 60_{S1} spectrometer with tetramethylsilane (TMS) as an internal standard; elemental analyses, Perkin-Elmer 2400 CHN Elemental Analyzer. The following experimental conditions were used for chromatography; column chromatography, Merck Kieselgel silica gel 60 (230–400 mesh); TLC, pre-coated TLC plates with 60F₂₅₄ (2 mm, Merck).

Synthesis of 2 An ethanol solution (20 ml) of KOH (0.59 g, 10.5 mmol), isoquinolone (1.45 g, 10 mmol), and benzyl chloride (1.35 g, 10.5 mmol) was heated at 100 °C for 10 h in a sealed tube. After removing the solvent *in vacuo*, the residue was washed with hexane and was recrystallized from isopropyl ether). IR (CHCl₃) cm⁻¹: 1650, 1599, 741, 692. ¹H-NMR (CDCl₃) δ : 5.22 (2H, s, CH₂), 6.47 (1H, d, *J*=7.4 Hz, H-4), 7.08 (1H, d, *J*=7.4 Hz, H-3), 7.24—7.39 (5H, m, H–Ph), 7.46—7.65 (3H, br m, H-5, 6, 7), 8.46 (1H, dd, *J*=1.2, 7.2 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 51.65, 106.38, 125.89, 126.32, 126.87, 127.79 (C2), 127.94, 128.06, 128.78 (C2), 131.27, 132.19, 136.90, 136.97, 162.24. MS *m/z*: 235 (M⁺). High resolution (HR)-MS *m/z*: Calcd for C₁₆H₁₃NO, 235.0997. Found: 235.0985.

Synthesis of 4 A solution of 2 (0.47 g, 2 mmol) and phosphorus pentasulfide (0.467 g, 2.1 mmol) in pyridine (6 ml) was heated at 150 °C for 5 h. The reaction mixture was mixed with water (10 ml) and the resulting solution was extracted with CHCl₃. The CHCl₃ layer was dried over MgSO₄ and evaporated. The residue was recrystallized from isopropyl ether to afford 4 as colorless needles (0.49 g, 97%): mp 95—97 °C. IR (CHCl₃) cm⁻¹: 1547, 1290, 773, 694. ¹H-NMR (CDCl₃) δ : 6.01 (2H, s, CH₂), 6.87 (1H, d, J=7.1 Hz, H-4), 7.31—7.34 (5H, m, H–Ph), 7.40 (1H, d, J=7.1 Hz, H-3), 7.54—7.61 (2H, br m, H-5, 7), 7.67 (1H, dd, J=1.5, 7.5, 7.5 Hz, 6-H), 9.16 (1H, dd, J=1.5, 7.5 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 59.26, 112.42, 126.67, 127.94 (C3), 127.97, 128.55, 128.85 (C2), 132.11, 132.41, 133.05 (C2), 135.76, 184.63. MS *m/z*: 251 (M⁺). HR-MS *m/z*: Calcd for C₁₆H₁₃NS, 251.0769. Found: 251.0727.

General Procedure for Synthesis of 2-Alkyl-1-alkylthioisoquinolinium Iodides (6a—c, 7) A solution of 4 (0.5 g, 2 mmol), 5a (1.42 g, 10 mmol), and benzene (7 ml) was gently refluxed for 17 h. The resulting yellow precipitate was collected by filtration and was recrystallized from methanol to give 7 (0.6 g, 77%). Reactions of 3 with 5a—c were carried out under similar conditions to afford 6a, 1-ethylthio-(6b), and 1-isopropylthio-2-methylisoquinolinium iodide (6c). Yields are listed in Chart 2.

6a⁹⁾: Yellow needles (methanol), mp 132—134 °C (mp 143—146 °C).⁹⁾ ¹H-NMR (DMSO- d_6) δ : 2.83 (3H, s, SMe), 4.66 (3H, s, NMe), 8.0—8.39 (3H, m, H-5, 6, 7), 8.75 (1H, d, J=7.0 Hz, H-4), 8.85 (1H, dd, J=2.0, 6.0 Hz, H-8), 9.0 (1H, d, J=7.0 Hz, H-3). ¹³C-NMR (CDCl₃) δ : 20.10, 48.77, 125.08, 128.17, 129.71, 130.10, 131.85, 136.00, 136.90, 138.22, 160.87.

6b: Yellow needles (methanol), mp 104 °C. IR (CHCl₃) cm⁻¹: 1604, 773, 755. ¹H-NMR (DMSO- d_6) δ : 1.36 (3H, dd, J=7.0, 7.0 Hz, CMe), 3.40 (2H, ddd, J=7.0, 7.0, 7.0 Hz, CH₂), 4.96 (3H, s, NMe), 8.00—8.50 (3H, m, H-5, 6, 7), 8.54 (1H, d, J=7.0 Hz, H-4), 8.87 (1H, br m, H-8), 9.21 (1H, d, J=7.0 Hz, H-3). ¹³C-NMR (CDCl₃) δ : 15.08, 32.64, 48.90, 125.30, 128.13, 129.92, 130.85, 131.91, 136.09, 136.94, 138.48, 159.29. *Anal.* Calcd for C₁,H₁₄INS: C, 43.52; H, 4.26; N, 4.23. Found: C, 43.33; H, 4.20; N, 4.03.

6c: Yellow needles (methanol), mp 139—140 °C. IR (CHCl₃) cm⁻¹: 1620, 785, 757. ¹H-NMR (DMSO- d_6) δ : 1.35 (6H, d, J=7.0 Hz, CMex2), 3.91 (1H, m, J=7.0 Hz, CH), 4.76 (3H, s, NMe), 8.00—8.63 (3H, m, H-5, 6, 7), 8.73 (1H, d, J=7.0 Hz, H-4), 9.00 (1H, br m, H-8), 9.09 (1H, d, J=7.0 Hz, H-3). ¹³C-NMR (CDCl₃) δ : 23.43 (C2), 44.83, 48.96, 125.57, 128.12, 130.08, 131.33, 132.02, 136.20, 137.06, 138.72, 158.20. *Anal.* Calcd for C₁₃H₁₆INS: C, 45.23; H, 4.67; N, 4.06. Found: C, 45.05; H, 4.37; N, 3.99.

7: Yellow needles (methanol), mp 110 °C. IR (CHCl₃) cm⁻¹: 1618, 725, 696. ¹H-NMR (CF₃COOD) δ : 2.67 (3H, s, SMe), 6.40 (2H, s, CH₂), 7.32—7.45 (5H, m, H–Ph), 8.17 (1H, ddd, J=1.3, 7.1, 8.4 Hz, H-6), 8.30 (1H, ddd, J=1.3, 7.1, 8.4 Hz, H-7), 8.45 (1H, dd, J=1.3, 8.4 Hz, H-5), 8.74 (1H, dd, J=6.8 Hz, H-4), 8.87 (1H, dd, J=1.3, 8.4 Hz, H-8), 9.13 (1H, d, J=6.8 Hz, H-3). ¹³C-NMR (CDCl₃) δ : 21.62, 63.24, 111.90, 126.05, 127.51 (C2), 128.38, 128.46, 128.96 (C2), 132.19, 134.62, 136.50, 137.34, 137.33, 137.72, 161.43. *Anal.* Calcd for C₁₇H₁₆INS: C, 51.92; H, 4.10; N, 3.56. Found: C, 51.76; H, 3.83; N, 3.59.

General Procedure for Reaction of Isoquinolinium Salts (6a--c, 7) with Active Methylene Compounds (8a--h) To a suspension of NaH

(15 mg, 0.6 mmol) in tetrahydrofuran (THF) (5 ml) was added dimethyl malonate (79 mg, 0.6 mmol) at 0 °C under N_2 . The mixture was stirred for 10 min at room temperature followed by the addition of 6a (165 mg, 0.5 mmol). The reaction mixture was stirred for 1.5 h at room temperature, then quenched with water (5 ml) followed by saturated $Na_2S_2O_3$ solution (3 ml). The reaction mixture was extracted with CHCl3 and dried over MgSO4. The organic layer was concentrated in vacuo to give 1,2-dihydro-1-[bis(methoxycarbonyl)methylene]-2-methylisoquinoline [9a (166 mg, 97%)]. Reactions of 1-ethylthio-, 1-isopropylthio-2-methylisoquinoline (6b, c) and 7 with dimethyl malonate (8a), methyl cyanoacetate (8b), malononitrile (8c), methyl acetoacetate (8d), acetylacetone (8e), ethyl benzoacetate (8f), 1,3-dioxocyclohexane (8g), and 1,3-dioxocyclopentane (8h) were carried out under the conditions shown in Table 1 and were similarly treated to give 1-[cyano(methoxycarbonyl)methylene]-1,2-dihydro-2-methyl-isoquinoline (9b), 1-[bis(cyano)methylene]-1,2-dihydro-2-methylisoquinoline (9c), 1-[acetyl(methoxy-carbonyl)methylene]-1,2-dihydro-2-methylisoquinoline (9d), 1-[bis(acetyl)methylene]-1,2-dihydro-2-methylisoquinoline (9e), 1-[benzoyl(ethoxycarbonyl)methylene]-1,2-dihydro-2-methylisoquinoline (9f), 1,2-dihydro-2-methyl-1-(2,6-dioxocyclohexylidene)isoquinoline (9g), 1,2dihydro-2-methyl-1-(2,5-dioxocyclopentylidene)isoquinoline (9h), 2-benzyl-1,2-dihydro-1-[bis(methoxycarbonyl)methylene]isoquinoline (10a), 2-benzyl-1,2-dihydro-1-[cyano(methoxycarbonyl)methylene]isoquinoline (10b), 2-benzyl-1,2-dihydro-1-[bis(cyano)methylene]isoquinoline (10c), 1-[acetyl-(methoxycarbonyl)methylene]-2-benzyl-1,2-dihydroisoquinoline (10d), and 1-[bis(acetyl)methylene]-2-benzyl-1,2-dihydroisoquinoline (10e). Yields are listed in Table 1.

9a: Yellow crystalline powder (acetone), mp 237–239 °C. IR (KBr) cm⁻¹: 1720, 1600. ¹H-NMR (CDCl₃) δ : 3.62 (6H, s, OMe×2), 4.22 (3H, s, NMe), 7.66 (1H, d, *J*=7.0 Hz, H-4), 7.72 (1H, d, *J*=2.0, 6.0, 8.0 Hz, H-7), 7.84–7.87 (2H, m, H-5, 6), 7.90 (1H, d, *J*=7.0 Hz, H-3), 8.50 (1H, dd, *J*=1.5, 8.0 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 45.00, 50.23 (C2), 121.07, 126.63, 129.69, 130.55, 131.40, 132.16, 133.54, 134.21, 136.31, 165.63, 167.27 (C2). MS *m/z*: 273 (M⁺). *Anal.* Calcd for C₁₅H₁₅N0₄: C, 65.92; H, 5.53; N, 5.13. Found: C, 65.56; H, 5.07; N, 5.60.

9b: Yellow needles (benzene), mp 194—196 °C. IR (KBr) cm⁻¹: 2200, 1660. ¹H-NMR (CDCl₃) δ : 3.80 (3H, s, OMe), 4.06 (3H, s, NMe), 7.39 (1H, d, *J*=7.1 Hz, H-4), 7.65 (1H, d, *J*=7.1 Hz, H-3), 7.70—7.86 (3H, m, H-5, 6, 7), 8.93 (1H, dd, *J*=1.0, 7.8 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 47.22, 51.32, 118.61, 123.94, 126.97, 128.28, 129.33, 130.67, 133.96, 133.99, 135.59 (C2), 159.57, 167.77. MS *m/z*: 240 (M⁺). *Anal.* Calcd for C₁₄H₁₂N₂0₂: C, 69.99; H, 5.03; N, 11.66. Found: C, 69.77; H, 4.94; N, 11.65.

9c: Yellow needles (acetone–chloroform), mp 226–227 °C. IR (KBr) cm⁻¹: 2200, 1630. ¹H-NMR (CF₃COOD) δ : 4.11 (3H, s, NMe), 7.10 (1H, d, J=7.3 Hz, H-4), 7.32 (1H, d, J=7.3 Hz, H-3), 7.65–7.84 (3H, m, H-5, 6, 7), 9.12 (1H, dd, J=1.0, 8.1 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 47.51, 116.00, 120.04 (C2), 125.91, 127.16, 128.53, 129.09, 133.89 (C2), 134.80 (C2), 158.17. MS: *m*/*z*: 207 (M⁺). *Anal.* Calcd for C₁₃H₉N₃: C, 75.34; H, 4.38; N, 20.28. Found: C, 75.28; H, 4.56; N, 20.31.

9d: Yellow crystalline powder (acetone), mp 224—225 °C. IR (KBr) cm⁻¹: 1660, 1650. ¹H-NMR (CDCl₃) δ : 2.62 (3H, s, COMe), 3.44 (3H, s, NMe), 4.22 (3H, s, OMe), 7.69—7.78 (1H, br m, H-aromatic), 7.71 (1H, d, J=7.3 Hz, H-4), 7.84—7.92 (2H, m, H-aromatic), 7.95 (1H, d, J=7.3 Hz, H-3), 8.45 (1H, dd, J=1.0, 8.6 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 28.44, 45.83, 49.74, 118.55, 121.85, 126.66, 129.90, 131.00, 131.93, 133.65, 134.49, 136.47, 167.00, 167.66, 190.04. MS *m/z*: 257 (M⁺). *Anal.* Calcd for C₁₅H₁₅NO₄: C, 70.02; H, 5.88; N, 5.44. Found: C, 69.90; H, 5.97; N, 5.50.

9e: Yellow crystalline powder (acetone), mp 210—211 °C. IR (KBr) cm⁻¹: 1670, 1640. ¹H-NMR (CF₃COOD) δ : 1.95 (6H, s, COMe×2), 4.54 (3H, s, NMe), 8.20 (1H, dd, *J*=7.6, 7.6 Hz, H-6 or 7), 8.34—8.39 (3H, m, H-aromatic), 8.51 (1H, d, *J*=6.8 Hz, H-3 or 4), 8.67 (1H, d, *J*=6.8 Hz, H-3 or 4). ¹³C-NMR (CF₃COOD) δ : 25.54 (C2), 48.81, 107.62, 130.12, 130.67, 131.18, 132.31, 136.36, 139.08, 140.78, 141.72, 157.94, 196.13 (C2). MS *m/z*: 241 (M⁺). HR-MS *m/z*: Calcd for C₁₅H₁₅NO₂, 241.1109. Found: 241.1111.

9f: Yellow crystalline powder (benzene), mp 175—178 °C. IR (KBr) cm⁻¹: 1640, 1620. ¹H-NMR (CDCl₃) δ : 0.85 (3H, dd, *J*=8.0, 8.0 Hz, CMe), 3.38 (2H, ddd, *J*=8.0, 8.0, 8.0 Hz, COOCH₂), 4.16 (3H, s, NMe), 7.16—8.85 (10H, m, H-3, 4, 5, 6, 7, Ph), 8.32—8.60 (1H, m, H-8). ¹³C-NMR (CDCl₃) δ : 14.06, 45.93, 58.52, 91.11, 121.18, 126.73, 127.40 (C2), 127.45 (C2), 128.54, 129.71, 130.81, 131.81, 133.79, 134.21, 136.34, 144.35, 166.04, 168.12, 188.91. MS *m/z*: : 333 (M⁺). *Anal.* Calcd for C₂₁H₁₉NO₃: C, 75.65; H, 5.74; N, 4.20. Found: C, 75.61; H, 6.00; N, 4.17.

9g: Pale yellow crystalline powder (benzene), mp 230–233 °C. IR (KBr) cm⁻¹: 1620, 1600, 820, 750. ¹H-NMR (CDCl₃) δ: 2.00–2.40 (2H, m, CH₂),

2.66—2.79 (4H, m, COCH₂×2), 4.23 (3H, s, NMe), 7.73 (1H, d, J=7.0 Hz, H-4), 7.72—8.00 (3H, m, H-5, 6, 7), 7.96 (1H, d, J=7.0 Hz, H-3), 8.43 (1H, br m, H-8). ¹³C-NMR (CDCl₃) δ : 21.52, 37.13 (C2), 46.09, 105.84, 122.62, 126.76, 129.89, 130.15, 132.35, 133.97, 134.95, 136.47, 165.31, 192.17 (C2). MS *m*/*z*: 253 (M⁺). *Anal.* Calcd for C₁₆H₁₅NO₂: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.44; H, 6.02; N, 5.44.

9h: Yellow needles (benzene), mp 291—293 °C. IR (KBr) cm⁻¹: 1625, 1600, 810, 755. ¹H-NMR (CDCl₃) δ : 2.73 (4H, s, COCH₂×2), 4.33 (3H, s, NMe), 7.50—8.06 (5H, m, H-3, 4, 5, 6, 7), 8.43 (1H, m, H-8). ¹³C-NMR (CDCl₃) δ : 34.48 (C2), 46.83, 106.45, 121.69, 126.68, 128.46, 129.82, 132.66, 134.21, 135.02, 136.31, 159.89, 199.66 (C2). MS *m/z*: 239 (M⁺). *Anal.* Calcd for C₁₅H₁₃NO₂: C, 75.30; H, 5.48; N, 5.87. Found: C, 75.03; H, 5.34; N, 5.87.

10a: Red plates (acetone), mp 239 °C. IR (KBr) cm⁻¹: 1701, 1595, 758. ¹H-NMR (CDCl₃) δ : 3.63 (6H, s, OMe×2), 5.76 (2H, s, CH₂), 7.25 (2H, dd, J=2.0, 6.6 Hz, H–Ph), 7.32—7.39 (3H, m, H–Ph), 7.58 (1H, d, J=7.0 Hz, H-4), 7.72—7.88 (4H, m, H-3, 5, 6, 7), 8.60 (1H, d, J=8.2 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 50.10 (C2), 60.49, 121.38, 126.63 (C2), 128.95, 129.04, 129.30 (C3), 129.81, 131.34, 132.26, 132.69, 134.54 (C2), 134.90, 136.33, 166.25, 167.24. MS *m/z*: 349 (M⁺), 230. HR-MS *m/z*: Calcd for C₂₁H₁₉NO₄, 349.1314. Found: 349.1283.

10b: Red needles (acetone), mp 91—93 °C. IR (KBr) cm⁻¹: 2172, 1713, 1643, 756. ¹H-NMR (CDCl₃) δ : 3.81 (3H, s, OMe), 5.77 (2H, s, CH₂), 7.17—7.24 (2H, m, H–Ph), 7.34—7.39 (4H, m, H-4, Ph), 7.50 (1H, d, J=7.2 Hz, H-3), 7.70—7.87 (3H, m, H-5, 6, 7), 9.09 (1H, d, J=8.9 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 51.29, 61.92, 118.47, 124.12, 127.02 (C2), 128.28, 128.50, 129.11 (C2), 129.42 (C2), 130.66, 132.56, 134.16, 135.08, 135.31 (C2), 139.87, 168.09. MS *m/z*: : 316 (M⁺), 285, 257, 91. HR-MS *m/z*: Calcd for C₂₀H₁₆N₂0₂, 316.1212. Found: 316.1248.

10c: Yellow needles (acetone), mp 215—216 °C. IR (KBr) cm⁻¹: 2191, 2162, 1629, 732. ¹H-NMR (CDCl₃) δ : 5.62 (2H, s, CH₂), 7.00 (1H, d, J=7.0 Hz, H-4), 7,18—7.26 (3H, m, H-3, Ph), 7.38—7.44 (3H, m, H–Ph), 7.65—7.72 (2H, m, H-5, 6), 7.80 (1H, dd, J=1.0, 7.6 Hz, H-7), 9.13 (1H, d, J=8.6 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 61.42, 115.60, 119.98, 126.15, 127.13, 128.36, 128.53, 128.97, 129.11, 129.42, 132.83 (C5), 133.89, 134.00, 134.63, 158.54. MS: m/z: 283 (M⁺). Anal. Calcd for C, 80.54; N, 14.83; H, 4.63. Found: C, 80.61; N, 14.75; H, 4.91.

10d: Yellow plates (acetone), mp 250 °C. IR (KBr) cm⁻¹: 1733, 1716, 1655, 772. ¹H-NMR (CDCl₃) δ : 2.65 (3H, s, COMe), 3.43 (3H, s, OMe), 5.55 (1H, d, *J*=15.0 Hz, CH–Ph), 5.94 (1H, d, *J*=15.0 Hz, CH–Ph), 7.25 (5H, s, H–Ph), 7.66 (1H, d, *J*=7.1 Hz, H-4), 7.72–7.92 (4H, m, H-3, 5, 6, 7), 8.53 (1H, d, *J*=8.4 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 28.37, 49.65, 60.52, 122.06, 126.72, 128.92 (C2), 129.11 (C2), 129.31, 130.02, 130.84 (C2), 132.42, 134.02 (C2), 130.84, 136.56 (C2), 167.60, 190.13. MS *m/z*: 333 (M⁺), 274, 260, 91. HR-MS *m/z*: Calcd for C₂₁H₁₉NO₃, 333.1365. Found: 333.1378.

10e: Yellow plates (acetone), mp 190 °C. IR (CHCl₃) cm⁻¹: 1735, 1718, 1699, 1629, 772, 686. ¹H-NMR (CDCl₃) δ : 2.17 (6H, s, COMe×2), 5.74 (2H, s, CH₂), 7.30—7.35 (2H, m, H–Ph), 7.36—7.41 (3H, m, H–Ph), 7.71—7.82 (2H, m, H-aromatic), 7.86—7.94 (3H, m, H-aromatic), 8.57 (1H, d, J=8.6 Hz, H-8). ¹³C-NMR (CDCl₃) δ : 29.65, 30.88, 60.42, 122.27, 126.84, 129.16 (C2), 129.43 (C3), 129.46, 132.28 (C2), 132.47, 134.17, 135.20, 136.70 (C2), 169.98, 196.22 (C2). MS *m/z*: 317 (M⁺), 274, 260, 232. HR-MS *m/z*: Calcd for C₂₁H₁₉NO₂, 317.1416. Found: 317.1387.

General Procedure for Reaction of 10a, d, e with Acetic Anhydride A mixture of **10a** (0.349 g, 1.0 mmol) and acetic anhydride (4 ml) was refluxed for 4 h and concentrated *in vavuo*. The residue was dissolved in water (5 ml), and the resulting solution was extracted with CHCl₃. The organic layer was dried over $MgSO_4$, and concentrated *in vacuo*. The residue was purified using column chromatography on aluminum oxide (CHCl₃-acetone, 2:1) to give 2-acetoxy-1-methoxycarbonyl-3-phenylpyrrolo[2-1-*a*]isoquino-line [**11a** (0.357 g, 99%)]. Reactions of **10d**, **e** with acetic anhydride were similarly performed to give 2-acetoxy-1-acetyl-3-phenylpyrrolo[2-1-*a*]isoquinoline (**11b**), and 1-acetyl-2-methyl-3-phenylpyrrolo[2-1-*a*]isoquinoline (**11c**). Yields are listed in Chart 3.

11a: Yellow needles (Et₂O), mp 165—166 °C. IR (CHCl₃) cm⁻¹: 1764, 1702, 1606. ¹H-NMR (CDCl₃) δ : 2.25 (3H, s, COMe), 3.95 (3H, s, COOMe), 6.93 (1H, d, J=7.4 Hz, H-6), 7.45—7.60 (8H, m, H-7, 8, 9, Ph), 7.83 (1H, d, J=7.4 Hz, H-5), 9.40 (1H, d, J=8.0 Hz, H-10). ¹³C-NMR (CDCl₃) δ : 20.64, 51.60, 101.45, 113.71, 119.18, 121.32, 125.40, 126.63, 126.92, 127.62, 127.65, 127.81, 127.84, 128.83, 129.03, 129.15, 129.23, 129.81, 130.08, 137.31, 164.77, 170.01. MS: *m/z*: 359 (M⁺), 317, 285, 228. HR-MS *m/z*: Calcd for C₂₂H₁₇NO₄, 359.1158. Found: 359.1187.

11b: Yellow plates (acetone), mp 145—146 °C. IR (CHCl₃) cm⁻¹: 1764, 1718, 1700, 1605. ¹H-NMR (CDCl₃) δ : 2.22 (3H, s, COMe), 2.63 (3H, s, OCOMe), 6.95 (1H, dd, J=0.7, 7.3 Hz, H-6), 7.46—7.63 (8H, m, H-7, 8, 9, Ph), 7.80 (1H, d, J=7.3 Hz, H-5), 9.10 (1H, ddd, J=0.7, 1.4, 6.4 Hz, H-10). ¹³C-NMR (CDCl₃) δ : 20.82, 31.10, 111.82, 114.10, 119.05, 121.16, 125.44, 126.18, 126.98, 127.59, 127.88, 127.91, 128.68, 128.94, 129.11, 129.23 (C2), 130.03 (C2), 136.88, 169.43, 194.95. MS: *m/z*: 343 (M⁺), 301, 286. HR-MS *m/z*: Calcd for C₂₂H₁₇NO₄, 359.1158. Found: 359.1187.

11c: Colorless oil. IR (CHCl₃) cm⁻¹: 1718, 1655, 1604. ¹H-NMR (CDCl₃) δ : 2.33 (3H, s, COMe), 2.71 (3H, s, Me), 6.78 (1H, dd, *J*=0.8, 7.3 Hz, H-6), 7.39—7.56 (8H, m, H-7, 8, 9, Ph), 7.68 (1H, d, *J*=7.3 Hz, H-5), 8.52 (1H, dd, *J*=0.8, 8.3 Hz, H-10). ¹³C-NMR (CDCl₃) δ : 12.11, 32.39, 112.42, 119.74, 120.89, 121.77, 125.04, 125.26, 126.21, 126.90, 126.93, 127.35, 128.41, 128.69, 128.85, 129.04 (C2), 130.53, 130.94 (C2), 200.30. MS: *m/z*: 299 (M⁺), 284. HR-MS *m/z*: Calcd for C₂₁H₁₇NO, 299.1310. Found: 299.1311.

References

- Tomisawa H., Tanbara T., Kato H., Hongo H., Fujita R., *Heterocycles*, 15, 277–280 (1981).
- Iwao M., Kuraishi T., Bull. Chem. Soc. Jpn., 53, 297–298 (1980); Review of synthesis of pyrrolo[2,1-a]isoquinolines: Uchida T., Matsumoto K., Synthesis, 1976, 209–236.
- Ishibashi F., Miyazaki Y., Iwao M., *Tetrahedron*, **53**, 5951—5962 (1997); Lindquist N., Fenical W., Van Duyne G. D., Clardy J., *J. Org. Chem.*, **53**, 4570—4574 (1988); Carroll A. R., Bowden B. F., Coll J. C., *Aust. J. Chem.*, **46**, 489—501 (1993).
- Boekelheide V., Godfrey J. C., J. Am. Chem. Soc., 75, 3679—3685 (1953).
- Huisgen R., Grashey R., Steingruber E., *Tetrahedron Lett.*, **1963**, 1441—1445; Kobayashi Y., Kumadaki I., Sekine Y., Kutsuma T., *Chem. Pharm. Bull.*, **21**, 1118—1123 (1973); Basketter N. S., Plunkett A. O., *J. Chem. Soc., Chem. Comm.*, **1973**, 188—189.
- 6) Krohnke F., Zecher W., Chem. Ber., 95, 1128–1137 (1962).
- 7) Tomisawa H., Wang C. H., Chem. Pharm. Bull., 21, 2607–2612 (1973).
- Tomisawa H., Saito K., Hongo H., Fujita R., *Chem. Pharm. Bull.*, 18, 937–940 (1970); Tomisawa H., Fujita R., *ibid.*, 21, 2585–2589 (1973); Tomisawa H., Fujita R., Hongo H., Kato H., *ibid.*, 22, 2091–2096 (1974).
- Barlin G. B., Benbow J. A., J. Chem. Soc. Perkin Trans. II., 1975, 298–302.