
D- and L-Allothreonine [D- and L-aThr; (2R,3R)- and
(2S,3S)-2-amino-3-hydroxybutanoic acid] are useful as chiral
reagents in asymmetric syntheses.1) However, D- and L-aThr,
non-proteinogenic a-amino acids, are difficult to produce
commercially in large quantities. Therefore, synthetic DL-
aThr2—4) has been subjected to optical resolution by separat-
ing the diastereoisomeric salts of DL-aThr derivatives to ob-
tain the enantiomers.5,6) In our previous paper,7)

DL-aThr was
found to exist as a conglomerate and to be optically resolved
by preferential crystallization and replacing crystallization of
DL-aThr. The optical resolution by replacing crystallization is
a procedure for obtaining an enantiomer from a conglomer-
ate, and is achieved by allowing an optically active co-solute
to coexist in a racemic supersaturated solution.8)

DL-aThr was
optically resolved using 4-hydroxy-L-proline (L-Hyp) as the
optically active cosolute, and D-aThr was allowed to prefer-
entially crystallize from a supersaturated solution of DL-

aThr.7) Although L-aThr will be preferentially crystallized
from the racemic solution in the presence of D-Hyp, L-Hyp is
expensive and D-Hyp is not commercially available. There-
fore, we selected D- and L-Ala, which are commercially avail-
able and are the most inexpensive optically active a-amino
acids, as the optically active cosolutes in optical resolution
by replacing crystallization of DL-aThr (Chart 1).

Optical resolution by replacing crystallization is based on
different interactions between enantiomers and the optically
active co-solute. Therefore, the solubilities (mole fractions)
of D-, L-, and DL-aThr were first measured in the presence of
L-Ala (16.0 mmol) in 100 cm3 of water at 10 °C; these values
are summarized in Table 1, together with the solubilities7) in
the absence of L-Ala.

When L-Ala was present in aqueous solutions of D-, L-, and
DL-aThr, D-aThr was less soluble than L-aThr. In addition, D-,
L-, and DL-aThr were each less soluble in the presence of L-

February 2002 Notes Chem. Pharm. Bull. 50(2) 287—291 (2002) 287

∗ To whom correspondence should be addressed. e-mail: shiraiwa@ipcku.kansai-u.ac.jp © 2002 Pharmaceutical Society of Japan

Preparation of Optically Active Allothreonine via Optical Resolution by
Replacing Crystallization

Tadashi SHIRAIWA,* Keiji FUKUDA, and Motoki KUBO

Unit of Chemistry, Faculty of Engineering, Kansai University, Yamate-cho, Suita, Osaka 564–8680, Japan.
Received September 10, 2001; accepted October 16, 2001

An attempt was made to use a simple procedure to obtain D- and L-allothreonine (D- and L-aThr), which are
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Chart 1. Preparation of Optically Active Allothreonine (aThr)

Reagents: (a) i) N-Bromosuccinimide, H2O, ii) concentrated aqueous ammonia; (b) L-Ala as an optically active co-solute; (c) D-Ala as an optically active co-solute; (d) salicyl-
aldehyde, acetic acid, 80 °C.



Ala than in its absence. Therefore, a repulsive interaction is
thought to occur between D-aThr and L-Ala, and between L-
aThr and L-Ala, and the interaction between D-aThr and L-
Ala may be stronger than that between L-aThr and L-Ala.11)

These findings suggested that when L-Ala was present in the
supersaturated aqueous solution of DL-aThr, D-aThr was pref-
erentially crystallized from the solution.

Based on the above findings, the optical resolution of 
DL-aThr was attempted by stirring a mixture containing
36.8 mmol (4.384 g) of DL-aThr and 1.00—6.00 mmol of L-
Ala, as the optically active co-solute, in 25 cm3 of water for
80 min at 10 °C. The yields of enantiomers [YEL(g) and
YED(g)] of L- and D-aThr were calculated from

YEL(g)5(1/2)[Yield (g)3(1002OP(%))/100] (1)

and

YED(g)5Yield(g)2YEL(g) , (2)

where OP (%) is the optical purity of obtained D-aThr, calcu-
lated based on the specific rotation of authentic D-aThr: [a]D

20

232.8° (c51.00, 1 mol dm23 HCl).7) The results are shown
in Fig. 1. The purity of the crystallized aThr was confirmed
by its 1H-NMR spectrum to be free of L-Ala.

When L-Ala was present as an optically active co-solute,
D-aThr was preferentially crystallized from the racemic solu-
tion. The yield of D-aThr slightly decreased with increasing
amounts of L-Ala. On the other hand, in the presence of

1.00—4.00 mmol of L-Ala, the yield of L-aThr rapidly de-
creased with increasing amounts of L-Ala. When a larger
amount (4.00—6.00 mmol) of L-Ala was present in the
racemic solution, the yield of L-aThr was approximately con-
stant, and D-aThr of optical purity of 80—85% was obtained
in yields of 0.54—0.58 g. Therefore, to optimize the condi-
tions, the optical resolution was conducted by stirring mix-
tures containing 4.00 mmol of L-Ala with varying degrees of
supersaturation from 174—214% for 80 min.

When 176—200% supersaturated solutions were used, L-
aThr seemed to be hardly crystallized because the optical
resolution afforded D-aThr of optical purities of 80—86% in
yields of 0.37—0.59 g; the yield tended to increase with in-
creasing supersaturation. When a 204% supersaturated solu-
tion was used, L-aThr began to rapidly crystallize, hence D-
aThr of optical purity of 71% was obtained. In addition, the
optical resolution for the 196% supersaturated solution was
carried out by stirring for 70—180 min. Although almost no
aThr was crystallized by stirring for 70 min, D-aThr of an op-
tical purity of 81% was obtained in a yield of 0.580 g by stir-
ring for 80 min. However, D-aThr, obtained by stirring for
90 min, showed a low optical purity (44%), because of the
onset of rapid crystallization of L-aThr.

On the other hand, when D-Ala was used as the co-solute,
L-aThr of an optical purity of 85% was obtained in a yield of
0.574 g from the solution containing DL-aThr (4.384 g) and D-
Ala (4.00 mmol) in 25 cm3 of water by stirring for 80 min.

The obtained D- and L-aThr were recrystallized from water
to give optically pure D- and L-aThr. For example, optically
pure D-aThr (3.90 g) was obtained from 5.00 g of D-aThr of
an optical purity of 85%, and optically pure L-aThr (3.05 g)
was obtained from 4.00 g of L-aThr of an optical purity of
81%, as described in the Experimental section.

Based on the above results, successive optical resolution
was attempted by stirring the 196% supersaturated solution
of DL-aThr with 4.00 mmol of L-Ala for 80 min. As described
above for solubility, repulsive interactions are estimated to
occur not only between D-aThr and L-Ala, but also between
L-aThr and L-Ala. These interactions promote the crystalliza-
tion of D- or L-aThr during the preferential crystallization of
their enantiomers. Therefore, after optical resolution of the
initial solution, a small amount of D- or L-aThr was added as
seed crystals to the solution in subsequent optical resolu-
tions. These results are summarized in Table 2. The degrees
of resolution of D- and L-aThr [DR(%)] in Table 2 were cal-
culated:

DR(%)5[(Yield(g)3OP(%)/1002SC)/

(operation amount of D- or L-aTh2SD or SL)]3100 (3)

where SL (1.232 g) is the solubility of L-aThr in DL-aThr in
25 cm3 of water at 10 °C, and SC (0.050 g) is the amount of
seed crystals. The operation amounts (g) are the amounts of
D- and L-aThr in the solution, and the values in runs 2—6 are
calculated based on the results from runs 1—5, respectively.

A successive optical resolution was achieved to afford D-
aThr of optical purities of 81—90%, and L-aThr with purities
of 96 and 100% at 48—60% degrees of resolution. The par-
tially resolved D-aThr was recrystallized from water to give
optically pure D-aThr.

Next, we attempted to more simply obtain optically active
aThr, based on the above result. In general, optically active
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Fig. 1. Relationship between Yield of Enantiomer and L-Alanine in Opti-
cal Resolution of DL-Allothreonine

Conditions: DL-aThr, 4.384 g (36.8 mmol); solvent, 25 cm3 of water; L-Ala, 0.0891—
0.535 g (1.00—6.00 mmol); temperature, 10 °C; resolution time, 80 min. Yield of enan-
tiomer: s, D-aThr; d, L-aThr.

Table 1. Solubilities of DL-, D-, and L-Allothreoninea)

L-Ala as an optically Solubility
Allothreonine active co-solute (g (100 cm3 of water)21)

(mmol) [mole fraction]

DL-aThrb) —c) 10.30
D-aThr 5.15 [0.0077]
L-aThr 5.15 [0.0077]

L-aThrb) —c) 5.28 [0.0079]

DL-aThr 16.0 9.32
D-aThr 4.51 [0.0067]
L-aThr 4.81 [0.0072]

D-aThr 16.0 4.93 [0.0074]
L-aThr 16.0 5.06 [0.0076]

a) Conditions: Water, 100 cm3; temperature, 10 °C. b) See ref. 7. c) None.

{

{



a-amino acids undergo racemization with carbonyl com-
pounds, such as salicylaldehyde, which acts as a catalyst in
acetic acid.9) Therefore, epimerization at the C-2 position of
threonine (Thr) will yield a diastereoisomeric mixture of Thr
and aThr. However, Thr and aThr are difficult to separate
from the mixture without transformation into their deriva-
tives, such as O-methyl-N-acyl derivatives.10) In our previous
paper,11)

L-Thr was prevented from crystallizing from an
aqueous solution of DL-Thr in the presence of L-Ala. There-
fore, we attempted to separate D- and L-aThr from mixtures
of Thr and aThr (Chart 1).

L-Thr was subjected to epimerization using salicylalde-
hyde as the catalyst, and was then stirred for 1—5 h in acetic
acid at 80 °C. The epimerization gave a mixture of L-Thr and
D-aThr in a molar ratio of 1 : 0.7, regardless of the reaction
time after 1 h; the mixture was L-Thr with a diastereoiso-
meric excess (de) of about 17%. The molar ratio of L-Thr and
D-aThr in the mixture was determined by the intensity ratios
of the methine proton signals at the C-2 positions in the 1H-
NMR spectrum of the mixture. The yield of the diastereoiso-
meric mixture was approximately constant (1.1 g) during the
first 1—3 h, then rapidly decreased with increasing reaction
time, due to decomposition of L-Thr and D-aThr. Separation
of D-aThr from the diastereoisomeric mixture was attempted
by stirring 5.965 g (50.0 mmol) of the mixture (L-Thr of

17.5%de) in 25 cm3 of water for 3 h at 10 °C in the presence
of 2.00—9.00 mmol of L-Ala, as shown in Fig. 2.

The yield of D-aThr tended to gradually increase with in-
creasing amounts of L-Ala. On the other hand, when L-Ala
(2.00—6.00 mmol) was present, the yield of L-Thr rapidly
decreased with increasing amounts of L-Ala. However, in the
presence of 6.00—9.00 mmol of L-Ala, the yield of L-Thr
was approximately constant. Therefore, D-aThr was crystal-
lized in 74—78%de from a solution containing 6.00—
9.00 mmol of L-Ala. When the solution of the mixture was
stirred for 1—5 h in the presence of 6.00 mmol of L-Ala, the
yield of D-aThr was approximately constant, as shown in Fig.
3. On the other hand, L-Thr was hardly crystallized during
the first 1—2 h, and then rapidly crystallized with prolonged
stirring. Therefore, D-aThr was obtained in 98%de and in a
yield of more than 1 g by stirring for 1 and 2 h. In addition,
the aqueous solution of the diastereoisomeric mixture pre-
pared from D-Thr was stirred for 1 h in the presence of
6.00 mmol of D-Ala to give L-aThr in 97%de. D- and L-aThr
obtained in low de were recrystallized from water to give D-
and L-aThr as single diastereoisomers. For example, D-aThr
(1.54 g) with 100%de and L-aThr (1.65 g) with 100%de were
obtained from 2.00 g of D-aThr of 78%de and L-aThr of
84.5%de, respectively.

We reported optical resolution by preferential crystalliza-
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Table 2. Successive Optical Resolution by Replacing Crystallization of DL-Allothreoninea)

Operation amounts of aThr obtained

Run
Added amount of D- and LaThrb) (g) Resolution time

DL-aThr (g) (min) Yieldc) Optical purityd) Degree of resolution 
D-aThr L-aThr (g) (%) (%)

1 4.384 2.192 2.192 80 D 0.580 81.4 47.7
2e) 0 1.666 2.138 90 L 0.552 100 55.4
3f) 0.500 1.916 1.886 60 D 0.507 89.6 56.6
4e) 0 1.485 1.860 80 L 0.428 100 60.2
5f) 0.380 1.675 1.672 70 D 0.315 88.2 48.2
6e) 0 1.429 1.653 90 L 0.296 96.1 55.7

a) Conditions: optically active co-solute, 0.356 g (4.00 mmol) of L-Ala; solvent, 25 cm3 of water; temperature, 10 °C. b) The operation amounts in runs 2—6 were calcu-
lated from the results in 1—5, respectively. c) The Yield is the sum of the amounts of the crystallized aThr and seed crystals. d) The optical purities of D- and L-aThr obtained
were calculated on the basis of the specific rotation of authentic D-aThr; lit.7) [a]D

26 232.8° (c51.00, 1 mol dm23 HCl). e) Seed crystals, 0.050 g of L-aThr. f) Seed crystals,
0.050 g of D-aThr.

Fig. 2. Relationship between Yield of Diastereoisomer and L-Alanine in
Separation of D-Allothreonine and L-Threonine

Conditions: Diastereoisomeric mixture (L-Thr in 18%de), 5.965 g (50.0 mmol); sol-
vent, 25 cm3 of water; L-Ala, 0.178—0.802 g (2.00—9.00 mmol); temperature, 10 °C;
stirring time, 3 h. Yield of diastereoisomer: s, D-aThr; d, L-Thr.

Fig. 3. Relationship between Yield of Diastereoisomer and Stirring Time
in Separation of D-Allothreonine and L-Threonine

Conditions: Diastereoisomeric mixture (L-Thr in 18%de), 5.965 g (50.0 mmol); sol-
vent, 25 cm3 of water; L-Ala, 0.535 g (6.00 mmol); temperature, 10 °C; stirring time,
1—5 h. Yield of diastereoisomer: s, D-aThr; d, L-Thr.



tion of DL-aThr, which is another procedure for obtaining
enantiomers from a conglomerate, and D- and L-aThr were
obtained in yields of about 10% based on the amounts of D-
and L-aThr in the supersaturated solution.7) On the other
hand, optical rersolution by replacing crystallization gave D-
and L-aThr in yields of more than 20%. However, successive
optical resolution required a small amount of L-aThr as seed
crystals to promote the preferential crystallization of L-aThr.
Separation of optically active aThr from the diastereoiso-
meric mixture was more simply achieved using D- and L-Ala
as the co-solutes, and afforded D- amd L-aThr in high de and
yields of more than 40%, based on the amounts of D- and L-
aThr in the mixtues.

Experimental
General Specific rotation values were measured at 589 nm with a

Horiba Seisakusho SEPA-300 auto-polarimeter equipped with a quartz cell
with a 5.00 cm path length. 1H-NMR spectra were recorded with a JNM-
FX270 FT NMR system using sodium 3-(trimethylsilyl)propane-1-sulfonate
(DSS) as an internal standard. Chemical shift values were reported in d units
downfield from DSS. Melting points were measured with a Yanaco MP-500
D micro melting point apparatus.

D- and L-Thr and D- and L-Ala were purchased from Wako Pure Chemical
Ind. DL-aThr was synthesized starting from (E)-2-butenoic acid,7) purchased
from Wako Pure Chemical Ind.; mp 241—243 °C (decomp) (lit, mp 242—
243 °C (decomp);2) mp 260 °C (decomp);3) mp 240—242 °C (decomp)).7)

1H-NMR (270 MHz, D2O, DSS) d : 4.36 (1H, qd, J56.8, 4.1 Hz, 3-CH), 3.83
(1H, d, J54.1 Hz, 2-CH), 1.20 (3H, d, J56.8 Hz, 4-CH3).

Optical Resolution by Replacing Crystallization DL-aThr (4.384 g,
36.8 mmol) and L-Ala (0.0891—0.535 g, 1.00—6.00 mmol) were dissolved
in 25 cm3 of water at 50 °C. After cooling the solution to 10 °C over 30 min,
followed by stirring for 80 min with a blade (0.80 cm width; 2.5 cm length)
at 100 rpm and 10 °C, the precipitated D-aThr was collected by filtration,
washed with a small amount of methanol, and dried.

D-aThr obtained using 1.00 mmol of L-Ala: yield, 0.909 g; [a]D
20 27.83°

(c51.00, 1 mol dm23 HCl). D-aThr obtained using 2.50 mmol of L-Ala: yield,
0.671 g; [a]D

20 220.1° (c51.00, 1 mol dm23 HCl). D-aThr obtained using
3.00 mmol of L-Ala: yield, 0.636 g; [a]D

20 222.0° (c51.00, 1 mol dm23 HCl).
D-aThr obtained using 4.00 mmol of L-Ala: yield, 0.580 g; [a]D

20 226.7° (c5
1.00, 1 mol dm23 HCl). D-aThr obtained using 5.00 mmol of L-Ala: yield,
0.544 g; [a]D

20 226.4° (c51.00, 1 mol dm23 HCl). D-aThr obtained using
6.00 mmol of L-Ala: yield, 0.542 g; [a]D

20 227.7° (c51.00, 1 mol dm23 HCl).
Optical resolution was carried out for the 176—214% supersaturated so-

lutions of DL-aThr (3.931—4.765 g, 33.0—40.0 mmol) in the presence of L-
Ala (0.356 g, 4.00 mmol) by stirring for 80 min at 10 °C in a manner similar
to that described above.

D-aThr obtained from 176% supersaturated solution: yield, 0.371 g; [a]D
20

226.4° (c51.00, 1 mol dm23 HCl). D-aThr obtained from 182% supersatu-
rated solution: yield, 0.449 g; [a]D

20 226.7° (c51.00, 1 mol dm23 HCl). D-
aThr obtained from 187% supersaturated solution: yield, 0.516 g; [a]D

20

228.3° (c51.00, 1 mol dm23 HCl). D-aThr obtained from 192% supersatu-
rated solution: yield, 0.552 g; [a]D

20 226.9° (c51.00, 1 mol dm23 HCl). D-
aThr obtained from 200% supersaturated solution: yield, 0.588 g; [a]D

20

226.1° (c51.00, 1 mol dm23 HCl). D-aThr obtained from 204% supersatu-
rated solution: yield, 0.631 g; [a]D

20 223.3° (c51.00, 1 mol dm23 HCl). D-
aThr obtained from 209% supersaturated solution: yield, 0.654 g; [a]D

20

222.5° (c51.00, 1 mol dm23 HCl). D-aThr obtained from 214% supersatu-
rated solution: yield, 0.728 g; [a]D

20 218.6° (c51.00, 1 mol dm23 HCl).
Optical resolution was carried out for a solution of DL-aThr (4.384 g,

36.8 mmol) in the presence of L-Ala (0.356 g, 4.00 mmol) by stirring for
90—180 min at 10 °C in a manner similar to that described above.

D-aThr obtained at 90 min: yield, 0.830 g; [a]D
20 214.5° (c51.00,

1 mol dm23 HCl). D-aThr obtained at 120 min: yield, 1.079 g; [a]D
20 26.41°

(c51.00, 1 mol dm23 HCl). D-aThr obtained at 150 min: yield, 1.215 g; [a]D
20

23.32° (c51.00, 1 mol dm23 HCl). D-aThr obtained at 180 min: yield,
1.279 g; [a]D

20 23.10° (c51.00, 1 mol dm23 HCl).
Optical resolution was carried out for a solution of DL-aThr (4.384 g,

36.8 mmol) in the presence of D-Ala (0.356 g, 4.00 mmol) by stirring for
80 min at 10 °C in a manner similar to that described above.

L-aThr: yield, 0.574 g; [a]D
20 127.9° (c51.00, 1 mol dm23 HCl).

The partially resolved D- and L-aThr were recrystallized from water in the

following manner: D-aThr (5.00 g) ([a]D
20 227.9° (c51.00, 1 mol dm23

HCl)) or L-aThr (4.00 g) ([a]D
20 126.6° (c51.00, 1 mol dm23 HCl)) was

added to water (7.5 cm3). The mixture was vigorously stirred for 3 h at 10 °C
before the purified D- or L-aThr was collected by filtration and dried.

D-aThr: yield, 3.90 g; [a]D
20 232.8° (c51.00, 1 mol dm23 HCl). L-aThr:

yield, 3.05 g; [a]D
20 132.8° (c51.00, 1 mol dm23 HCl). The 1H-NMR spectra

of D- and L-aThr were virtually identical to that of DL-aThr.
Successive Optical Resolution DL-aThr (4.384 g, 36.8 mmol) and L-Ala

(0.356 g, 4.00 mmol) were dissolved in 25 cm3 of water at 50 °C. After cool-
ing the solution to 10 °C, followed by stirring for 80 min at 10 °C, precipi-
tated D-aThr (0.580 g) was collected by filtration and dried (run 1 in Table
2). After adding 0.050 g of L-aThr to the filtrate at 10 °C, followed by stirring
for 90 min, precipitated L-aThr (0.552 g) was collected by filtration (run 2 in
Table 2). DL-aThr (0.500 g) was dissolved in the filtrate at 50 °C. After
adding 0.050 g of D-aThr to the filtrate at 10 °C, followed by stirring for
60 min, precipitated D-Thr (0.507 g) was collected by filtration (run 3 in
Table 2). Optical resolution was carried out at 10 °C in a manner similar to
that just described; the detailed conditions are given for runs 4—6 in Table
2.

Epimerization of Optically Active Threonine L-Thr (2.38 g, 20.0
mmol) was dissolved in 100 cm3 of acetic acid at 80 °C. After adding salicy-
laldehyde (0.244 g, 2.00 mmol) to the solution, the mixture was stirred for
1—5 h at 80 °C. The mixture was concentrated in vacuo at 60 °C to give a
mixture of L-Thr and D-aThr as the diastereoisomeric residue. After adding
50 cm3 of methanol to the residue, followed by stirring for 0.5 h at 40 °C, the
mixture was collected by filtration, washed thoroughly with methanol, and
dried. The molar ratio of L-Thr and D-aThr in the mixture was determined by
the intensity ratios of the methine proton signals at the C-2 positions in the
1H-NMR spectrum of the mixture.

The mixture obtained at 1 h: yield, 1.13 g; [a]D
20 221.9° (c51.00,

1 mol dm23 HCl); the mixture was composed of L-Thr and D-aThr in the
molar ratio of 1 : 0.69. The mixture obtained at 1.5 h: yield, 1.12 g; [a]D

20

222.0° (c51.00, 1 mol dm23 HCl); the mixture was composed of L-Thr and
D-aThr at a molar ratio of 1 : 0.70. The mixture obtained at 2 h: yield, 1.11 g;
[a]D

20 222.1° (c51.00, 1 mol dm23 HCl); the mixture was composed of L-
Thr and D-aThr in the molar ratio of 1 : 0.71. The mixture obtained at 2.5 h:
yield, 1.11 g; [a]D

20 222.2° (c51.00, 1 mol dm23 HCl); the mixture was com-
posed of L-Thr and D-aThr in the molar ratio of 1 : 0.72. The mixture ob-
tained at 3 h: yield, 1.10 g; [a]D

20 222.2° (c51.00, 1 mol dm23 HCl); the
mixture was composed of L-Thr and D-aThr in the molar ratio of 1 : 0.72.
The mixture obtained at 4 h: yield, 0.884 g; [a]D

20 222.0° (c51.00,
1 mol dm23 HCl); the mixture was composed of L-Thr and D-aThr in the
molar ratio of 1 : 0.70. The mixture obtained at 5 h: yield, 0.515 g; [a]D

20

221.9° (c51.00, 1 mol dm23 HCl); the mixture was composed of L-Thr and
D-aThr in the molar ratio of 1 : 0.69. 1H-NMR of the mixture obtained at
1.5 h (270 MHz, D2O, DSS) d : 4.36 (0.7H, qd, J56.8, 4.1 Hz, 3-CH (D-
aThr)), 4.25 (1H, qd, J56.5, 4.9 Hz, 3-CH (L-Thr)), 3.83 (0.7H, d, J54.1 Hz,
2-CH (D-aTr)), 3.58 (1H, d, J54.9 Hz, 2-CH (L-Thr)), 1.32 (3H, d,
J56.6 Hz, 4-CH3 (L-Thr)), 1.20 (2.1H, d, J56.8 Hz, 4-CH3 (D-aThr)). The
1H-NMR spectra of the other mixtures were similar to that obtained at 1.5 h.

Epimerization of D-Thr (2.38 g, 20.0 mmol) was carried out at a reaction
time of 1.5 h in a manner similar to L-Thr.

The mixture of D-The and L-aThr: yield, 1.14 g; [a]D
20 120.1° (c51.00,

1 mol dm23 HCl); the mixture was composed of D-Thr and L-aThr at a molar
ratio of 1 : 0.70. The 1H-NMR spectrum was virtually identical to that of the
mixture of L-Thr and D-aThr.

Separation of Optically Active Allothreonine from the Diastereoiso-
meric Mixture The diastereoisomeric mixture, composed of L-Thr and D-
aThr at a molar ratio of 1 : 0.7, (5.955 g, 50.0 mmol) and L-Ala (0.178—
0.802 g, 2.00—9.00 mmol) were dissolved in 25 cm3 of water at 50 °C. After
cooling the solution to 10 °C over 30 min, followed by stirring for 3 h with a
blade (0.80 cm width; 2.5 cm length) at 100 rpm and 10 °C, the precipitated
D-aThr was collected by filtration, washed with a small amount of methanol,
and dried. The diastereoisomeric excess (%de) of the obtained D-aThr was
determined based on the intensity ratios of the methine proton signals at the
C-2 positions of L-Thr and D-aThr in the 1H-NMR spectrum.

D-aThr obtained in 7.3%de using 2.00 mmol of L-Ala: yield, 1.86 g; [a]D
20

224.3° (c51.00, 1 mol dm23 HCl). D-aThr obtained in 23.3%de using
3.00 mmol of L-Ala: yield, 1.62 g; [a]D

20 225.8° (c51.00, 1 mol dm23 HCl).
D-aThr obtained in 44.3%de using 4.00 mmol of L-Ala: yield, 1.45 g; [a]D

20

227.7° (c51.00, 1 mol dm23 HCl). D-aThr obtained in 66.2%de using 5.00
mmol of L-Ala: yield, 1.35 g; [a]D

20 229.7° (c51.00, 1 mol dm23 HCl). D-
aThr obtained in 74.4%de using 6.00 mmol of L-Ala: yield, 1.23 g; [a]D

20

230.5° (c51.00, 1 mol dm23 HCl). D-aThr obtained in 77.3%de using
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7.00 mmol of L-Ala: yield, 1.24 g; [a]D
20 230.7° (c51.00, 1 mol dm23 HCl).

D-aThr obtained in 78.2%de using 9.00 mmol of L-Ala: yield, 1.29 g; [a]D
20

230.8° (c51.00, 1 mol dm23 HCl).
Separation of D-aThr from the diastereoisomeric mixture was carried out

in a solution of the mixture (4.384 g, 36.8 mmol) in the presence of L-Ala
(0.535 g, 6.00 mmol) by stirring for 1—5 h in a manner similar to that de-
scribed above.

D-aThr obtained in 98.2%de at 1 h: yield, 1.03 g; [a]D
20 232.6° (c51.00,

1 mol dm23 HCl). D-aThr obtained in 97.3%de at 2 h: yield, 1.06 g; [a]D
20

232.6° (c51.00, 1 mol dm23 HCl). D-aThr obtained in 48.7%de at 4 h: yield,
1.43 g; [a]D

20 228.1° (c51.00, 1 mol dm23 HCl). D-aThr obtained in
36.2%de at 5 h: yield, 1.59 g; [a]D

20 227.0° (c51.00, 1 mol dm23 HCl).
Separation of L-aThr from the mixture composed of D-Thr and L-aThr at a

molar ratio of 1 : 0.7 was carried out in a solution of the mixture (4.384 g,
36.8 mmol) in the presence of D-Ala (0.535 g, 6.00 mmol) by stirring for 1 h
in a manner similar to that described above.

L-aThr was obtained in 97.2%de at 1 h: yield, 1.07 g; [a]D
20 132.5°

(c51.00, 1 mol dm23 HCl).
The partially separated D- and L-aThr were recrystallized from water in

the following manner: mixture of D-aThr (2.00 g) of 78%de or L-aThr
(2.00 g) of 85%de in 10 cm3 of water was vigorously stirred for 4 h at 10 °C,
then the purified D- or L-aThr was collected by filtration and dried.

D-aThr: yield, 1.52 g; mp 270—272 °C (decomp); [a]D
20 232.8° (c51.00,

1 mol dm23 HCl). L-aThr: yield, 1.65 g; mp 269—272 °C (decomp) (lit,7) mp
269—270 °C (decomp)); [a]D

20 132.8° (c51.00, 1 mol dm23 HCl). The 1H-
NMR spectra of D- and L-aThr were virtually identical to that of DL-aThr.

Solubility DL-, D-, or L-aThr (4.765 g, 40.0 mmol) was dissolved in a so-

lution containing 0.356 g (4.00 mmol) of L-Ala in 25 cm3 of water at 60 °C.
After vigorously stirring the solution for 10 h at 10 °C, the precipitated aThr
was rapidly collected by filtration and thoroughly dried. The solubility at
10 °C was calculated on the basis of the weight of aThr. For the dissolution
of DL-aThr, the solubility of D- and L-aThr was estimated based on the opti-
cal purity of aThr obtained by filtration, and by its weight.
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