Five New Chromones Possessing Monoamine Oxidase Inhibitory Activity from an Ascomycete, *Chaetomium quadrangulatum*

Haruhiro FUJIMOTO,* Masato NOZAWA, Emi OKUYAMA, and Masami ISHIBASHI

Graduate School of Pharmaceutical Sciences, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba 263–8522, Japan. Received September 19, 2001; accepted December 1, 2001

Five novel chromones (1,4-benzopyran-4-ones), among which three are tetracyclic and one contains a sulfonyl group, have been isolated from an Ascomycete, *Chaetomium quadrangulatum***, as monoamine oxidase inhibitory features, and named chaetoquadrins A (1)—E (5).**

Key words *Chaetomium quadrangulatum*; chromone; monoamine oxidase (MAO) inhibitory activity; chaetoquadrin; fungal metabolite; Ascomycete

In our screening project for monoamine oxidase (MAO) inhibitory constituents from fungi, several metabolites have been isolated from *Talaromyces luteus*, ¹*a*) *Talaromyces helicus*, ¹*b*) Mycelia Sterilia from *Gelasinospora pseudoreticulata*, ¹*c*) *Monascus anka*, ¹*d*) *Coniochaeta tetraspora*, ¹*e*) and *Anixiella* (*Gelasinospora*) *micropertusa.*^{1*f*}) We have found that the AcOEt extract of an Ascomycete, *Chaetomium quadrangulatum* CHIVERS strain 71-NG-22,²⁾ appreciably inhibited mouse liver MAO on the modified Kraml assay.³⁾ Fractionation guided by the MAO inhibitory activity afforded five new chromones (1,4-benzopyran-4-ones). This paper deals with the isolation, structure elucidation, and MAO inhibitory activity of these five constituents recently isolated from *C. quadrangulatum.*

Results and Discussion

The AcOEt extract of *C. quadrangulatum* strain 71-NG- $22²$ cultivated on sterilized rice medium inhibited mouse liver MAO by 30.8% at 1.0×10^{-4} g/ml. The AcOEt extract was partitioned between *n*-hexane and water. The aqueous suspension was further partitioned with AcOEt into an AcOEt layer and an aqueous layer (yields [%] of the *n*hexane, AcOEt, and aqueous layers after evaporation of the solvents from the AcOEt extract: 38.3, 38.7, and 18.3, respectively). The *n*-hexane, AcOEt, and aqueous layers inhibited 10.3, 29.6, and 21.9% at 1.0×10^{-4} g/ml, respectively. Repeated chromatographic fractionation of the *n*-hexane layer guided by the MAO inhibitory activity afforded five constituents tentatively named CQ-1 (**1**)—5 (**5**) as the MAO inhibitory features of this fungus (yields [%] of **1**—**5** from the AcOEt extract: 0.14, 0.033, 0.025, 0.076, and 0.22, respectively).

CQ-1 (1), $C_{20}H_{24}O_6$, was obtained as an optically active, colorless, amorphous, circular dichroism (CD) (1.11 mM, MeOH) $\Delta \varepsilon$ (nm): -2.8 (324), +3.3 (298), +0.38 (267), +3.8 (254), -4.0 (228), +2.8 (206), IR (KBr) v_{max} cm⁻¹: 3448 (OH), 1654 (C=O), 1612 (C=C), 1456, 1344, 1247 (C–O). The UV spectrum of **1** (in MeOH), λ_{max} nm (log ε): 209 (4.34), 233 (4.21), 249 (4.12), 255 (4.12), 285 (3.87), was similar to that of a chromone (1,4-benzopyran-4-one), 6 hydroxymethyleugenitin (5-hydroxy-6-hydroxymethyl-7 methoxy-2-methylchromone) (**6**) isolated from the lichen *Roccella fuciformis*4) and the Ascomycete *Chaetomium minutum*⁵⁾ (see Chart 1). The ¹H- and ¹³C-NMR data showed the presence of four methyls (CH₃–CH \ltimes 2, CH₃–C(=C)– \times 1, $C\underline{H}_3$ –O– \times 1), three methylenes (C– $C\underline{H}_3$ –C \times 3), five methines $(\geq C_{\text{H}-} \times 1, \geq C_{\text{H}-} \times 2, -C_{\text{H}} = C \times 2)$, eight quaternary carbons ($\geq C(-0)-0\times1$, $\geq C=C\times2$, $-C(-0)=C\times4$, $\geq C=0$ \times 1) in **1** (see Table 1). The ¹H- and ¹³C-NMR data including spin-decoupling ¹H-NMR, two-dimensional ¹H-¹H shift correlation (COSY), and ¹H-detected single-bond heteronuclear correlation through multiple quantum coherence (HSQC) data indicated that **1** might be composed of four partial structures *a*—*d*, among which *a* was created with the ¹H-detected heteronuclear multiple-bond correlation (HMBC) NMR data. Construction of the entire molecular structure of CQ-1 from *a—d* was achieved with the aid of the HMBC data to afford a tetracyclic structure containing a 6-substituted 5-oxy-7 methoxy-2-methylchromone skeleton (**1**) as the plane structure (see Chart 1). On acetylation with acetic anhydride and pyridine, 1 gave a monoacetate (7), ¹H- and ¹³C-NMR (in CDCl₃) $\delta_{\rm H}$: 2.01 (3H, s), $\delta_{\rm C}$: 21.3 (q), 170.0 ppm (s) ($CH₃CO$). Comparison of the ¹³C-NMR spectrum of **7** with that of 1 showed that C-4', C-5', and C-6' were shifted to δ 35.5 (-3.9), 68.3 (+3.8), and 38.7 (-3.7) ppm, respectively, in accordance with the acetylation shift rule, 6 indicating that the hydroxyl group at position 5' (OH-5') in 1 was acetylated to provide **7** (see Table 1).

In the ¹H-NMR spectrum of **1**, H-5' (δ 4.67) was coupled to H_a-4' (δ 2.43), H_b-4' (δ 1.32), and H_b-6' (δ 1.25) with $J=4.8$, 11.2, 12.0 Hz, respectively, and H-7' (δ 4.00) was coupled to H_a-6' (δ 2.04) and H_b-6' with *J*=3.0, 12.0 Hz, respectively, indicating that the dihedral angles between H_h-4' and H-5' $[\phi(H_h-4'/H-5')]$, $\phi(H-5'/H_h-6')$, and $\phi(H_h-6'/H-7')$ were about 180° (quasi-*trans* 1,2-diaxial), while $\phi(H, -4)/H$ -5') and $\phi(H_a - 6'/H - 7')$ were 50—70° (quasi-*gauche* 1,2-axialequatorial). Furthermore, a long-range coupling with $J=$ 1.7 Hz was present between H_a -4' and H_a -6' (a co-planar Wtype long-range coupling) (see Chart 2). In the differential nuclear Overhauser effect (NOEDF) NMR experiment on **1**, an NOE between H_b-1' (δ 2.91) and H-2' (δ 2.11) [NOE(H_b- $1'$ (δ 2.91)/H-2' (δ 2.11))] was observed of 8%, and seven other NOEs (H-2'/H_b-4'), (H_a-1' (δ 2.39)/CH₃-2' (δ 1.00)), $(CH_3$ -2'/ H_a -4'), $(H_a$ -4'/ H -5'), $(H_5'/H_a$ -6'), $(H_a$ -6'/ $H_7')$, and (H-5'/H-7') were observed of 5%, 4%, 5%, 3%, 3%, 1%, and 6%, respectively, suggesting that the relative configuration of the moiety of rings C and D in **1** was expressed as shown in Chart 2.

To apply the modified Mosher's method⁷⁾ to **1**, the (R) -(+)- α -methoxy- α -(trifluoromethyl)phenylacetate ((*R*)-

Chart 1. Construction of the Plane Structure of Chaetoquadrin A (**1**) from the Four Partial Structures *a—d*, and the Structure of a Chromone, 6-Hydroxymethyleugenitin (**6**)

Position	$\mathbf{1}$		$\overline{7}$		
	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	
$\overline{2}$		162.9(s)		162.7(s)	
2 -CH ₂	2.28 (3H, s)	19.8 (q)	2.27(3H, s)	19.8(q)	
3	5.94 (s)	111.8 _(d)	5.94(s)	111.9(d)	
4		177.4(s)		177.0(s)	
4a		108.3(s)		108.5(s)	
5		151.3(s)		151.2(s)	
6		107.3(s)		107.0(s)	
		161.4(s)		161.1(s)	
$7-OCH3$	3.89(3H, s)	55.7 (q)	3.89(3H, s)	55.7 (q)	
8	6.42(s)	91.2 (d)	6.40(s)	91.3(d)	
8a		158.0(s)		158.0(s)	
1'	2.91 (dd, 16.9, 6.6), 2.39 (dd, 16.9, 3.2)	24.2(t)	2.91 (dd, 16.8, 6.5), 2.38 (dd, 16.8, 4.0)	24.3(t)	
2'	2.11 (qdd, 7.1, 6.6, 3.2)	32.5(d)	2.11 (qdd, 7.0, 6.5, 4.0)	32.6 (d)	
$2'$ -CH ₂	1.00 (3H, d, 7.1)	15.6(q)	1.00 (3H, d, 7.0)	15.6(q)	
3'		101.4(s)		101.3(s)	
4'	2.43 (ddd, 12.7, 4.8, 1.7), 1.32 (dd, 12.7, 11.2)	39.4(t)	2.43 (ddd, 12.4, 4.6, 1.7), 1.38 (dd, 12.4, 11.3)	35.5(t)	
5'	4.67 (ddd, 12.0, 11.2, 4.8)	64.5 (d)	5.63 (ddd, 11.4, 11.3, 4.6)	68.3 (d)	
6'	2.04 (ddd, 12.0, 3.0, 1.7)	42.4(t)	2.18 (ddd, 11.4, 2.1, 1.7)	38.7(t)	
	1.25 (ddd, 12.0, 12.0, 12.0)		1.25 (ddd, 11.4, 11.4, 11.4)		
7'	4.00 (dqd, 12.0, 6.8, 3.0)	66.6 (d)	4.13 (dqd, 11.4, 6.4, 2.1)	66.3 (d)	
8'	1.08 (3H, d, 6.8)	21.4(q)	1.07 (3H, d, 6.4)	21.3(q)	
$5'$ -OCOCH ₃			2.01 (3H, s)	21.3(q)	
$5'$ -OCOCH ₃				170.0(s)	

Table 1. ¹H- and ¹³C-NMR Data for Chaetoquadrin A (1), and Chaetoquadrin A Acetate (7), δ (ppm) from TMS as an Internal Standard in CDCl₃ [Coupling Constants (Hz) in Parentheses]

MTPA ester) (**8**) and (*S*)-MTPA ester (**9**) were prepared from **1**. Comparison of the ¹ H-NMR spectra of **8** and **9** with that of **1** showed that OH-5' in **1** was (R) - and (S) -MTPA-esterified to give **8** and **9**, respectively. The $\Delta\delta$ values ($\delta_{\bf q} - \delta_{\bf g}$) were calculated as shown in Chart 2, indicating that the absolute configuration at position 5' in 1 was (R). Accordingly, CQ-1 was deduced to be $(2^7R,3^7R,5^7R,7^7S)$ -6- $(5,3^7,3^7,7^7)$ -diepoxy-

5'-hydroxy-2'-methyl)octyl]-7-methoxy-2-methylchromone (**1**) (see Chart 2). To our knowledge, this is the first time that **1** has been isolated as a MAO inhibitory constituent from a natural source. Thus we propose the name CQ-1 chaetoquadrin A (**1**).

CQ-2 (2), $C_{20}H_{24}O_6$, was obtained as an optically active, colorless, amorphous substance, of which the UV and IR

Chart 2. Relative Configuration of the Moiety of Rings C and D in Chaetoquadrin A (**1**) and Absolute Configurations of Chaetoquadrin A (**1**) and Its Derivatives, **7**—**9**

Fig. 1. CD Spectra of Chaetoquadrins A (**1**), B (**2**), and C (**3**) (in MeOH)

spectra were similar to those of **1**. The CD spectrum of **2** $(1.11 \text{ mm}, \text{MeOH}), \Delta \varepsilon \text{ (nm)}$: -2.1 (322), +3.5 (296), -0.32 (259) , -0.18 (255) , -3.1 (228) , $+1.1$ (215) , $+0.63$ (211) , 13.9 (202), was similar to that of **1** except for the peaks at around 254 and 215 nm (see Fig. 1). These data suggested that **2** might be a stereoisomer of **1**. The CD behavior of **2** and the fact that **2** was obtained from the fungus together with 1 suggested that the absolute configurations of the majority of asymmetric carbons in **2** might be the same as those in 1. Comparison of the ${}^{1}H\text{-NMR}$ spectrum of 2 (in CDCl₃) with that of 1 indicated that the signals of H_b-4 , H_5 , and H_b -6' were largely shifted to δ 1.65 (+0.33), 4.17 (-0.50), and 1.49 (+0.24) ppm, respectively (see Table 2). In the ${}^{1}H$ -NMR spectrum of **2**, H-5' was coupled to H_a-4' (δ 2.35), H_h-4', H_a-6' (δ 1.92), and H_h-6' with *J*=2.0, 4.1, 4.5, 3.0 Hz, respectively, and H_b-6' was also coupled to H-7' with $J=11.9$ Hz, suggesting that $\phi(H_a-4'/H_0-5')$, $\phi(H_b-4'/H_0-5')$, $\phi(H_0-4'/H_0-5')$ $5'/H_a-6'$), and $\phi(H-5'/H_b-6')$ were $50—70°$ (quasi-*gauche*

1,2-equatorial-equatorial and 1,2-axial-equatorial), and $\phi(H_h)$ -69/H-79) was about 180° (quasi-*trans* 1,2-diaxial), as shown in Chart 3. In the NOEDF NMR experiment on **2**, the three NOEs (H_a-4'/H_5') , (H_5'/H_a-6') , and (H_5'/H_5') which were observed on 1 disappeared, but two NOEs $(H_h-4'/H-5')$ and $(H-5'/H_b-6')$ newly appeared of 7% and 10%, respectively, indicating that the configuration of OH-5' was changed from β quasi-equatorial in **1** to α quasi-axial in **2** (see Chart 3). This was also supported by the fact that although the ¹H-NMR signal of OH-5' of 1 was not observed due to rapid change into $OD-5'$ in $CDCl₃$ solution, that of 2 was clearly observed at δ 6.32 ppm in CDCl₃ solution (see Table 2). Accordingly, CQ-2 was deduced to be the stereoisomer of **1** at position 5', namely, $(2'R,3'R,5'S,7'S)$ -6- $[(5,3^{\prime}:3^{\prime},7^{\prime}-diepoxy-5^{\prime}-hydroxy-2^{\prime}-methody00000)]$ -7methoxy-2-methylchromone (**2**), as shown in Chart 3. To our knowledge, this is the first time that **2** has been isolated from a natural source as a MAO inhibitory constituent. Thus we propose the name CQ-2 chaetoquadrin B (**2**).

CQ-3 (3), $C_{20}H_{24}O_6$, was obtained as an optically active, colorless, amorphous substance, of which the UV and IR spectra were similar to those of **1**. The CD spectrum of **3** $(1.11 \text{ mm}, \text{MeOH}), \Delta \varepsilon \text{ (nm)}$: -2.9 (322), +4.6 (296), +0.28 (264) , $+1.9$ (255) , -2.6 (228) , $+2.0$ (215) , $+1.6$ (212) , $+6.0$ (204), was similar to that of 1 except for the peaks at around 254 and 215 nm (see Fig. 1). These data suggested that **3** might be a stereoisomer of **1**. The CD behavior of **3** and the fact that **3** was obtained from the fungus together with **1** suggested that the absolute configurations of the majority of asymmetric carbons in **3** might be the same as those in 1. In the 1 H-NMR spectrum of 3 (in CDCl₃), the signal of OH-5' was clearly observed at δ 6.44 ppm like that in the spectrum of 2, suggesting that the configuration of OH-5['] in **3** was considered to be also α quasi-axial. In the spectrum, H-5' (δ 4.12) was coupled to H_a-6' (δ 1.84) and H_h-6' (δ 1.38) with $J=2.2$, 3.2 Hz, respectively, implying that ϕ (H- $5'/H_a$ -6[']) and $\phi(H - 5'/H_b - 6')$ were $50—70^\circ$ (quasi-*gauche* 1,2-equatorial-equatorial, and 1,2-axial-equatorial), but H-5['] was not coupled to H_a-4' (δ 1.98) and H_h-4' (δ 2.03), suggesting that $\phi(H_a-4'/H-5')$ and $\phi(H_b-4'/H-5')$ were about 90°. In the NOEDF NMR experiment on **3**, the three NOEs (CH_3-2'/H_3-4') , $(H-2'/H_6-4')$, and $(H_6-1'/H-2')$ which were

Position	$\overline{2}$		3		
	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	
2		163.4(s)		163.4(s)	
2 -CH ₃	2.29 (3H, s)	19.9(q)	2.21 (3H, s)	19.9(q)	
3	6.00(s)	111.5(d)	5.92(s)	111.5(d)	
4		177.6(s)		177.6(s)	
4a		107.9(s)		108.0(s)	
5		150.3(s)		150.8(s)	
6		107.2(s)		109.2(s)	
$\overline{7}$		161.7(s)		160.8(s)	
$7-OCH2$	3.90(3H, s)	55.8 (q)	3.82 (3H, s)	55.8 (q)	
8	6.46(s)	91.5(d)	6.36(s)	91.3 (d)	
8a		157.9(s)		157.9(s)	
1'	2.92 (dd, 16.7, 6.5), 2.40 (dd, 16.7, 1.6)	23.3(t)	2.55 (dd, 16.8, 6.0), 2.30 (dd, 16.8, 12.4)	23.5(t)	
2'	2.05 (qdd, 7.0, 6.5, 1.6)	32.3 (d)	1.89 (qdd, 6.6, 12.4, 6.0)	33.3(d)	
$2'$ -CH ₃	0.95 (3H, d, 7.0)	15.3(q)	1.03 (3H, d, 6.6)	16.0(q)	
3'		100.5(s)		101.1(s)	
4'	2.35 (dd, 14.3, 2.0), 1.65 (dd, 14.3, 4.1)	36.7(t)	2.03 (d, 16.4), 1.98 (d, 16.4)	35.9(t)	
5'	4.17(m)	63.5(d)	4.12 (ddd, 11.9, 3.2, 2.2)	63.8 (d)	
$5'$ -OH	6.32 (d, 11.7)		6.44 (d, 11.9)		
6'	1.92 (ddd, 13.8, 4.5, 2.2), 1.49 (ddd, 13.8, 11.9, 3.0)	39.9(t)	1.84 (ddd, 14.0, 2.2, 2.2), 1.38 (ddd, 14.0, 12.0, 3.2)	40.1(t)	
7'	4.14 (m)	62.5 (d)	4.03 (dqd, 12.0, 6.1, 2.2)	62.4 (d)	
8'	1.04 (3H, d, 6.1)	21.4(q)	0.94 (3H, d, 6.1)	21.4(q)	

Table 2. ¹H- and ¹³C-NMR Data for Chaetoquadrins B (2) and C (3), δ (ppm) from TMS as an Internal Standard in CDCl₃ [Coupling Constants (Hz) in Parentheses]

Chart 3. Relative Configuration of the Moiety of Rings C and D in Chaetoquadrin B (**2**) and Proposed Absolute Configuration of Chaetoquadrin B (**2**)

observed on both 1 and 2 disappeared, but three NOEs $(H_h$ -4'/H-5'), $(CH_3-2'(\delta \ 1.03)/H_b-4')$, and $(H_b-1'(\delta \ 2.30)/CH_3 2'$) newly appeared of 2% , 5% , and 5% , respectively, suggesting that the configuration of CH₃-2' was changed from α quasi-equatorial in both **1** and **2** to β quasi-axial in **3**, as shown in Chart 4. This was also supported by the fact that, on **1** and **2**, H-2' (δ 2.11, 2.05) were coupled to H_a-1' (δ 2.91, 2.92) with $J=6.6$, 6.5 Hz, and H_b-1' (δ 2.39, 2.40) with $J=3.2$, 1.6 Hz, respectively, but on **3**, H-2' (δ 1.89) was coupled to H_a-1' (δ 2.55) and H_b-1' (δ 2.30) with *J*=6.0, 12.4 Hz, respectively (see Table 2 and Chart 4). Accordingly, CQ-3 was deduced to be a stereoisomer of **1** at both positions 2' and 5', namely, $(2'S,3'R,5'S,7'S)$ -6-[(5,3':3',7'-diepoxy-5'-hydroxy-2'-methyl)octyl]-7-methoxy-2-methylchromone (**3**), as shown in Chart 4. To our knowledge, this is the first time that CQ-3 has been isolated from a natural source as a MAO inhibitory constituent. Thus we propose the name CQ-3 chaetoquadrin C (**3**).

CQ-4 (4), $C_{16}H_{19}NO_7S$, was obtained as an optically inactive white powder, IR (KBr) v_{max} cm⁻¹: 3300 (OH), 1660 $(C=O)$, 1626 $(C=C)$, 1448, 1344, 1182, 1126 $(C-O, S=O)$. The UV spectrum of 4 (in MeOH), λ_{max} nm (log ε): 205 (4.23), 234 (4.21), 250 (4.19), 258 (4.19), 289 (3.69), also suggested the presence of a 6-substituted 5-hydroxy-7 methoxy-2-methylchromone skeleton in 4. The ¹H- and ¹³C-NMR data (in CDCl₃ and in DMSO- d_6) including spin-decoupling ¹H-NMR, COSY, HSQC, and HMBC data showed the presence of two partial structures *e* (C_1,H_1,O_4) and *f* (C_4H_8NO) in **4** (Table 4). Considering the molecular formula, the molecule of **4** should be constructed with *e*, *f*, and a sulfonyl group, SO_2 (partial structure *g*). Construction of the entire molecule of CQ-4 from *e—g* was achieved to link both carbons at δ_c 48.6 (t) in *e* and at δ_c 52.7 (t) in *f* (in CDCl₃) to the sulfur in *g*, because the methylene carbon at the α -position to a sulfonyl group resonates at $46-55$ ppm in the 13 C-NMR spectrum,⁸⁾ providing the entire molecular structure of

Chart 4. Relative Configuration of the Moiety of Rings C and D in Chaetoquadrin C (**3**) and Proposed Absolute Configuration of Chaetoquadrin C (**3**)

Table 3. ¹H- and ¹³C-NMR Data for Chaetoquadrins D (4) and E (5), and Chaetoquadrin E Acetonide (10), δ (ppm) from TMS as an Internal Standard [Coupling Constants (Hz) in Parentheses]

Position $\delta_{\rm H}$	in $CDCl3$ $\delta_{\rm C}$	in DMSO- d_6					
				in $CDCl3$		in $CDCl3$	
		$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\scriptscriptstyle\rm H}$	$\delta_{\rm C}$
2	167.3(s)		168.5(s)		166.7(s)		166.3(s)
2 -CH ₃ 2.36(3H, s)	20.5(q)	2.40 (3H, s)	19.9(q)	2.33 (3H, s)	20.4(q)	2.32 (3H, s)	20.4(q)
6.08(s) 3	109.2 (d)	6.31(s)	108.4 (d)	6.03(s)	108.8 (d)	6.01(s)	108.9 (d)
$\overline{\mathcal{A}}$	182.2(s)		181.9(s)		182.4(s)		182.5(s)
4a	105.1(s)		104.1(s)		104.9(s)		105.1(s)
5	160.0(s)		159.4(s)		158.3(s)		158.7(s)
$5-OH$ 13.40(s)		13.42(s)		13.09(s)		12.76(s)	
6	100.2(s)		100.4(s)		112.2(s)		113.1(s)
τ	163.6(s)		163.3(s)		163.2(s)		163.2(s)
$7-OCH3$ 3.93 (3H, s)	56.5 (q)	3.91(3H, s)	56.8 (q)	3.86(3H, s)	56.0 (q)	3.85(3H, s)	55.8 (q)
8 6.43(s)	90.4 (d)	6.78(s)	90.9 (d)	6.37(s)	89.8 _(d)	6.33(s)	89.3 _(d)
8a	158.5(s)		157.8(s)		156.6(s)		156.6(s)
1' 4.43 (2H, s)	48.6 (t)	4.36 (2H, s)	48.1 (t)	2.74 (2H, m)	17.8(t)	2.69 (m), 2.64 (m)	18.2(t)
2^{\prime}				1.71 (m), 1.63 (m)	35.9(t)	1.63 (m), 1.60 (m)	34.8(t)
3' 3.20(2H, m)	52.7(t)	3.19 (2H, dd, 7.6, 6.6)	52.4(t)	3.74 (m)	67.7(d)	3.80 (m)	66.7 (d)
4' 3.78 (2H, m)	32.8(t)	3.45 (2H, m)	32.4(t)	1.55 (2H, m)	43.9(t)	1.60 (2H m)	39.9(t)
5^{\prime} 6.31 (br s)		8.06 (t, 5.5)		4.10(m)	65.3 (d)	3.95 (m)	62.8 (d)
6^{\prime}	170.2(s)		169.5(s)	1.15 (3H, d, 6.4)	23.4(q)	1.17(3H, d, 6.1)	21.8(q)
7' 1.94(3H, s)	23.2 (q)	1.80 (3H, s)	22.5(q)				
$-O(-O)C(CH_3)CH_3$						1.35 (3H, s)	25.2 (q)
						1.34 (3H, s)	25.1(q)
$-O(-O)C(CH_3)CH_3$							100.0(s)

CQ-4, namely, 5-hydroxy-7-methoxy-6-(2-thia-2,2,6-trioxo-5-azaheptyl)-2-methylchromone (**4**), as shown in Chart 5. To our knowledge, this is the first time that CQ-4 has been isolated from a natural source as a MAO inhibitory constituent. Thus we propose the name CQ-4 chaetoquadrin D (**4**).

CQ-5 (5), $C_{17}H_{22}O_6$, was obtained as an optically active white powder, IR (KBr) v_{max} cm⁻¹: 3392 (OH), 1656 (C=O), 1619 (C=C), 1452, 1344, 1203 (C–O). The UV spectrum of **5** (in MeOH), λ_{max} nm (log ε): 210 (4.42), 232 (4.27), 254 (4.21), 258 (4.21), 292 (3.93), also suggested the presence of a 5-hydroxy-7-methoxy-2-methylchromone skeleton in **5**. The 1 H- and 13 C-NMR data (in CDCl₃) including spin-decoupling ¹H-NMR, COSY, HSQC, and HMBC data afforded the molecular structure without stereochemistry of CQ-5 (**5**), which contained a 1,3-diol system at positions $3'$ and $5'$ (see Chart 5). On the reaction with acetone in the presence of *p*toluenesulfonic acid, **5** gave an acetonide (**10**), as a white

powder. The ${}^{1}H$ - and ${}^{13}C$ -NMR spectra of **10** (in CDCl₃) showed that the signals of two acetal methyls, $\delta_{\rm H}$ 1.35, 1.34 (each 3H, s), δ_C 25.2, 25.1 (each, q), and one tertiary acetal carbon δ_c 100.0 (s) newly appeared, and the signals of H-3', H-5', and C-3', C-5' were shifted to $\delta_{\rm H}$ 3.80 (+0.06), 3.95 (-0.15) , and δ_c 66.7 (-1.0), 62.8 (-2.5) ppm, respectively, indicating that the two hydroxyl groups at positions $3'$ and $5'$ in **5** were involved in acetonide formation to furnish **10**. It has been known that *anti*-1,3-diol acetonide gives its two acetal methyls at 25, and its acetal carbon at 100.5 ppm. On the other hand, *syn*-1,3-diol acetonide gives its two acetal methyls at 19 and 30, and its acetal carbon at 98.5 ppm in the $13C-NMR$ spectrum,⁹⁾ indicating that 10 is not *syn*-1,3-diol acetonide, but *anti*-1,3-diol acetonide. To determine the absolute configuration of **5**, (*R*)-MTPA ester (**11**) and (*S*)- MTPA ester (**12**) were prepared from **5**. Comparison of the 1 H-NMR spectra of **11** and **12** with that of **5** showed that the

Table 4. Mouse Liver MAO Inhibitory Activities of Chaetoquadrins A (**1**)—E (**5**)

a) n.t.: not tested.

signals of H-3' and H-5' were shifted to δ 3.37 (-0.37) and 5.39 (+1.29) in 11, and shifted to δ 3.48 (-0.26) and 5.39 $(+1.29)$ in 12, respectively, indicating that the hydroxyl group at position 5' in 5 was (R) - and (S) -MTPA-esterified to afford **11** and **12**, respectively. The $\Delta\delta$ values ($\delta_{12} - \delta_{11}$) were calculated as shown in Chart 5, showing that the absolute configuration at position $5'$ in 5 was (S) . Therefore the absolute configuration at position $3'$ in 5 was determined to be (S) . Accordingly, CQ-5 was deduced to be $(3'S,5'S)$ -6-(39,59-dihydroxyhexyl)-5-hydroxy-7-methoxy-2-methylchromone (**5**), as shown in Chart 5. To our knowledge, this is the first time that CQ-5 has been isolated from a natural source as a MAO inhibitory constituent, and we propose the name CQ-5 chaetoquadrin E (**5**).

The mouse liver MAO inhibitory activities of chaetoquadrin A (**1**)—E (**5**) were calculated as shown in Table 5. Among these five compounds, **4** displayed the highest MAO inhibitory activity (IC₅₀: 3.8×10^{-5} M). Comparison of the activity of **4** with those of other MAO inhibitory components, luteusin A (IC₅₀: 6.6×10^{-6} M),^{1*a*)} GP-A (IC₅₀: 2.7×10^{-6} M),^{1*c*)}

monankarin A $(IC_{50}$: 1.6×10^{-5} M),^{1*d*)} and coniochaetone A $(IC_{50}: 2.9 \times 10^{-5} \text{ m})$,^{1*e*)} which we have previously isolated from fungi, suggested that **4** displays moderate activity.

Experimental

The general procedures for chemical experiments were the same as described in our previous report.^{1*f*)} Optical rotations and CD spectra were measured with a JASCO DIP-140 digital polarimeter and a JASCO J-500 spectropolarimeter, respectively. UV and IR spectra were recorded on Hitachi U-3200 and JASCO FT/IR-230 spectrophotometers, respectively. Electron impact (EI)-MS and high-resolution (HR)-FAB-MS spectra were measured with Hitachi M-60 and JEOL JMX-HX-110A spectrometers, respectively. ¹H- and ¹³C-NMR spectra were measured with JEOL JNM-A400 (1 H, 399.65; ¹³C, 100.40 MHz) and -A500 (¹H, 500.00; ¹³C: 125.65 MHz) spectrometers. The procedure for the evaluation of inhibitory activity of samples against mouse liver MAO was also the same as described in our previous report.^{1*a*)} Chemical shifts are expressed in δ (ppm) values from tetramethylsilane (TMS) as an internal standard.

Isolation of Chaetoquadrins A (1)—E (5) *C. quadrangulatum* strain 71-NG-22²⁾ was cultivated on sterilized rice (200 g/flask \times 100) at 25 °C for 33 d. The moldy rice was extracted with AcOEt (30 l) with shaking at room temperature for 6 h two times to give an AcOEt extract $(61.2 g)$, which inhibited MAO by 30.8% at 1.0×10^{-4} g/ml. The AcOEt extract (41.5 g) was dissolved in MeOH (100 ml) to give a solution, which was then diluted with H₂O (11) to give a suspension. The suspension was partitioned with *n*hexane (600 ml) three times into an *n*-hexane layer (after evaporation *in vacuo*, 15.89 g) and aqueous suspension. The aqueous suspension was further partitioned with AcOEt (600 ml) three times into an AcOEt layer (after evaporation *in vacuo*, 16.07 g) and aqueous layer (after evaporation *in vacuo*, 7.60 g). The AcOEt layer (14.80 g), which inhibited MAO by 29.6% at 1.0×10^{-4} g/ml, was subjected to chromatography on a silica gel column with *n*-hexane–acetone (10:1, v/v), (3:1), (1:1), (1:1-0:1), and MeOH to give fractions I—V, respectively. Fraction IV (6.38 g), which inhibited MAO by 36% at 1.0×10^{-4} g/ml, was further chromatographed on a silica gel column with CHCl₃–MeOH (50 : 1), (30 : 1), (20 : 1), (20 : 1), (10 : 1), and MeOH to give the six fractions IVa—f, respectively. Fraction IVb (667 mg), which inhibited MAO by 31% at 2.5×10^{-5} g/ml, was chromatographed on a silica gel column with *n*-hexane–acetone $(2:1)$, and successively on a highperformance liquid chromatographic (HPLC) octadecyl silica gel (ODS) column with CH_3CN-H_2O (55:45) at a flow rate of 8 ml/min to afford 2 (10 mg) and 3 (7 mg). Fraction IVc (1.76 g), which inhibited MAO by 19%

at 2.5×10^{-5} g/ml, was further chromatographed on a silica gel column with *n*-hexane–acetone $(3:1)$, $(2:1)$, $(2:1)$, $(1:1)$, and MeOH to give fractions IVc1—5, respectively. Fraction IVc3 (406 mg) and IVc4 (402 mg) were then chromatographed on HPLC ODS columns with $CH₃CN-H₂O$ (45:55) and (35 : 65) at a flow rate of 4—8 ml/min to afford **1** (55 mg) and **4** (29 mg), respectively. Fraction IVc2 (374 mg) was chromatographed on a silica gel column with CHCl₃–MeOH (50:1), (50:1), (30:1), (10:1), and MeOH to give the five fractions IVc2a—e. Fraction IVc2b (110 mg) was then chromatographed on an HPLC ODS column with CH_3CN-H_2O (70:30) to afford **5** (45 mg), **3** (2.4 mg), and **2** (2.5 mg). Fraction IVc2c (119 mg) was chromatographed on an HPLC ODS column with CH_3CN-H_2O (50:50) to afford **5** (38 mg).

Chaetoquadrin A (**1**): Colorless amorphous. HR-FAB-MS *m*/*z*: 361.1657 $(C_{20}H_{25}O_6$ requires 361.1651 $[(M+H)^+]$).

Chaetoquadrin B (**2**): Colorless amorphous. HR-FAB-MS *m*/*z*: 361.1660 $(C_{20}H_{25}O_6$ requires 361.1651 [(M+H)⁺]). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3423 (OH), 1654 (C=O), 1606 (C=C), 1452, 1346, 1205 (C–O). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 207 (4.30), 234 (4.19), 248 (4.10), 254 (4.09), 285 (3.88).

Chaetoquadrin C (**3**): Colorless amorphous. HR-FAB-MS *m*/*z*: 361.1672 $(C_{20}H_{25}O_6$ requires 361.1651 [(M+H)⁺]). IR v_{max}^{KBr} cm⁻¹: 3421 (OH), 1654 (C=O), 1606 (C=C), 1452, 1346, 1205 (C–O). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 208 (4.31), 233 (4.20), 248 (4.10), 254 (4.09), 286 (3.87).

Chaetoquadrin D (4): White powder from aqueous CH₃CN, mp 216— 219 °C. HR-FAB-MS m/z : 370.0968 (C₁₆H₂₀NO₇S requires 370.0960 $[(M+H)^+]$.

Chaetoquadrin E (5): White powder from aqueous CH₃CN, mp 100— 102 °C. $[\alpha]_D^{20}$ +11.5° (*c*=0.20, MeOH). HR-FAB-MS *m/z*: 323.1503 $(C_{17}H_{23}O_6$ requires 323.1495 $[(M+H)⁺]$).

Chaetoquadrin A Acetate (7) A solution of **1** (5.0 mg) in acetic anhydride (125 μ l) and pyridine (250 μ l) was allowed to stand at room temperature for 8 h, and treated as usual to give a crude product, which was then purified on a preparative thin-layer chromatographic (TLC) silica gel plate with CHCl₃–MeOH (10:1) to afford 7 (3.5 mg) as a colorless amorphous substance. EI-MS m/z (%): 402 (6, M⁺), 342 (14), 245 (43), 219 (100).

(*R***)- and (***S***)-MTPA Esters of Chaetoquadrin A (8 and 9)** A solution of **1** (4.0 mg), (*R*)-MTPA acid (12 mg), and dicyclohexylcarbodiimide (DCC) (10 mg) in pyridine (20 μ l) and CH₂Cl₂ (1.0 ml) was allowed to stand at 40 °C for 7 h. The reaction mixture was evaporated *in vacuo* to give a resinous residue, which was purified on a preparative TLC silica gel plate with $CHCl₃-MeOH$ (10 : 1) to afford **8** (2.9 mg), as a colorless amorphous substance, ¹H-NMR δ (ppm, CDCl₃): 1.00 (3H, d, 6.8, CH₃-2'), 1.07 (3H, d, 6.2, CH₃-8'), 1.33 (ddd, 11.6, 11.6, 11.6, H_b-6'), 1.52 (dd, 12.0, 11.6, H_b-4'), 2.12 (qdd, 6.8, 6.4, 3.6, H-2'), 2.20 (ddd, 11.6, 2.4, 2.0, H_a-6'), 2.27 (3H, s, CH₃-2), 2.38 (dd, 16.8, 3.6, H_b-1'), 2.54 (ddd, 12.0, 4.8, 2.0, H_a-4'), 2.91 (dd, 16.8, 6.4, H_a-1'), 3.55 (3H, s, OCOC(OCH₃)(CF₃)C₆H₅-5'), 3.88 (3H, s, CH₃O-7), 4.12 (dqd, 11.6, 6.2, 2.4, H-7'), 5.95 (ddd, 11.6, 11.6, 4.8, H-59), 5.97 (s, H-3), 6.43 (s, H-8), 7.39 (3H, m) and 7.55 (2H, m) $(OCOC(OCH₃)(CF₃)C₆H₅-5')$. A solution of 1 (4.0 mg), (S)-MTPA acid (12 mg), and DCC (10 mg) in pyridine (20 μ l) and CH₂Cl₂ (1.0 ml) was allowed to stand at 40 °C for 5 h. The reaction mixture was treated in the same way as described for the preparation of **8** from **1** to afford **9** (1.7 mg), as a colorless amorphous substance, ¹H-NMR δ (ppm, CDCl₃): 0.97 (3H, d, 7.1, CH₃-2'), 1.09 (3H, d, 6.3, CH₃-8'), 1.41 (dd, 12.4, 8.0, H_b-4'), 1.43 (ddd, 11.6, 11.6, 11.6, H_b -6'), 2.10 (qdd, 7.1, 7.6, 3.6, H-2'), 2.25 (ddd, 11.6, 4.0, 1.6, H_a -6'), 2.27 (3H, s, CH₃-2), 2.37 (dd, 17.0, 3.6, H_b -1'), 2.50 (ddd, 12.4, 4.8, 1.6, H_a-4'), 2.90 (dd, 17.0, 7.6, H_a-1'), 3.56 (3H, s, $OCOC(OCH₃)(CF₃)C₆H₅-5')$, 3.88 (3H, s, CH₃O-7), 4.14 (dqd, 11.6, 6.3, 4.0, H-7'), 5.95 (ddd, 11.6, 8.0, 4.8, H-5'), 5.97 (s, H-3), 6.42 (s, H-8), 7.39 (3H, m) and 7.55 (2H, m) (OCOC(OCH₃)(CF₃)C₆H₅-5').

Acetonide of Chaetoquadrin E (10) A suspension of **5** (5 mg), *p*-toluenesulfonic acid monohydrate (1 mg), and K_2CO_3 (10 mg) in dry acetone (1.0 ml) was allowed to stand with stirring at room temperature for 12 h. The reaction mixture was purified on a preparative TLC silica gel plate with $CHCl₃–MeOH (10:1)$ to afford 10 (2 mg), white powder.

(*R***)- and (***S***)-MTPA Esters of Chaetoquadrin E (11 and 12)** A solution of **5** (6.3 mg), (*R*)-MTPA acid (31.5 mg), and DCC (16 mg) in pyridine $(25 \mu l)$ and CH₂Cl₂ (1.0 ml) was allowed to stand at room temperature for 1 h and at 40 °C for 4 h. The reaction mixture was evaporated *in vacuo* to give a resinous residue, which was purified on a preparative TLC silica gel plate with $CHCl₃–MeOH (10:1)$ to afford 11 (1.7 mg), as a colorless amorphous substance, ¹H-NMR δ (ppm, CDCl₃): 1.36 (3H, d, 6.4, CH₃-6'), 1.60 (2H, m, CH₂-4'), 1.61 (m) and 1.65 (m) (CH₂-2'), 2.37 (3H, s, CH₃-2), 2.73 (2H, m, CH₂-1'), 3.37 (m, H-3'), 3.45 (3H, s, OCOC(OCH₃)(CF₃)C₆H₅-5'), 3.87 $(3H, s, CH₃O-7), 5.39$ (m, H-5'), 6.06 (s, H-3), 6.37 (s, H-8), 7.33 (3H, m), and 7.47 (2H, m) (OCOC(OCH₃)(CF₃)C₆H₅-5'), 13.08 (s, OH-5). A solution of **5** (5.0 mg), (*S*)-MTPA acid (26.5 mg), and DCC (15 mg) in pyridine $(25 \mu l)$ and CH₂Cl₂ (1.0 ml) was allowed to stand at room temperature for 3 h and at 40 °C for 1 h. The reaction mixture was treated in the same way as described for the preparation of **11** from **5** to afford **12** (1.3 mg), colorless amorphous, ¹H-NMR δ (ppm, CDCl₃): 1.25 (3H, d, 6.4, CH₃-6'), 1.63 (2H, m, CH₂-4'), 1.67 (m) and 1.70 (m) (CH₂-2'), 2.37 (3H, s, CH₃-2), 2.77 (2H, m, CH₂-1'), 3.36 (3H, s, OCOC(OCH₃)(CF₃)C₆H₅-5'), 3.48 (m, H-3'), 3.87 $(3H, s, CH₃O-7), 5.39$ (m, H-5'), 6.06 (s, H-3), 6.38 (s, H-8), 7.34 (3H, m) and 7.45 (2H, m), (OCOC(OCH₃)(CF₃)C₆H₅-5'), 13.11 (s, OH-5).

Acknowledgements We are grateful to Miss R. Hara of Analysis Center, Chiba University, for HR-FAB-MS measurements.

References and Notes

- 1) *a*) Satoh Y., Yamazaki M., *Chem. Pharm. Bull*., **37**, 206—207 (1989); Fujimoto H., Matsudo T., Yamaguchi A., Yamazaki M., *Heterocycles*, **30**, 607—616 (1990); Yoshida E., Fujimoto H., Yamazaki M., *Chem. Pharm. Bull*., **44**, 284—287 (1996); *Idem*, *Natural Med*., **50**, 54—57 (1996); *Idem*, *Chem. Pharm. Bull*., **44**, 1775 (1996); *b*) Yoshida E., Fujimoto H., Baba M., Yamazaki M., *ibid*., **43**, 1307—1310 (1995); *c*) Fujimoto H., Okuyama H., Motohashi Y., Yoshida E., Yamazaki M., *Mycotoxins*, **41**, 61—66 (1995); *d*) Hossain C. F., Okuyama E., Yamazaki M., *Chem. Pharm. Bull*., **44**, 1535—1539 (1996); *e*) Fujimoto H., Inagaki M., Satoh Y., Yoshida E., Yamazaki M., *ibid*., **44**, 1090— 1092 (1996); *f*) Fujimoto H., Satoh Y., Yamaguchi K., Yamazaki M., *ibid*., **46**, 1506—1510 (1998).
- 2) This strain was deposited earlier at Research Institute for Chemobiodynamics, Chiba University (present name: Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University). The voucher specimen is also on deposit in our laboratory.
- 3) Kraml M., *Biochem. Pharmacol*., **14**, 1683—1685 (1965).
- 4) Huneck S., *Phytochemistry*, **11**, 1489—1490 (1972).
- 5) Hauser D., Zardin T., *Experientia*, **28**, 1114 (1972).
- 6) Ishii H., Seo S., Tori K., Tozyo T., Yoshimura Y., *Tetrahedron Lett*., **1977**, 1227—1230; Tori K., "Kagaku No Ryoiki Zokan," Vol. 125, Nankodo, Tokyo, 1980, pp. 221—245.
- 7) Ohtani I., Kusumi T., Kashman Y., Kakisawa H., *J. Am. Chem. Soc*., **113**, 4092—4096 (1991).
- 8) Nakamura H., Wu H., Kobayashi J., Kobayashi M., Ohizumi Y., Hirata Y., *J. Org. Chem*., **50**, 2494—2497 (1985).
- 9) Rychnovsky S. D., Rogers B., Yang G., *J. Org. Chem*., **58**, 3511—3515 (1993).