Seven-Membered Vibsane-Type Diterpenes with a 5,10-*cis* Relationship from *Viburnum awabuki*

Yoshiyasu Fukuyama,* Hiroyuki Minami, Asami Matsuo, Kanako Kitamura, Mie Akizuki, Miwa Kubo, and Mitsuaki Kodama

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770–8514, Japan. Received October 24, 2001; accepted November 20, 2001

New five seven-membered vibsane-type diterpenes named 5-*epi*-vibsanin C, 5-*epi*-vibsanin H, 5-*epi*-vibsanin K, 18-O-methyl-5-*epi*-vibsanin K and 5-*epi*-vibsanin E have been isolated from the leaves of *Viburnum awabuki* (Caplifoliaceae). Their structures have been elucidated by analyses of spectroscopic data and comparison of their spectral data with those of the previously known seven-membered vibsane-type diterpenes. The occurrence of these seven-membered vibsane-type diterpenes with a *cis* relationship on the C-5 and C-10 positions in nature have been predicted by conformational analysis of vibsanin B, an eleven-membered vibsane-type diterpene. Vibsanin C, 5-*epi*-vibsanin C and 5-*epi*-vibsanin H exhibited moderate cytotoxic activities on KB cells.

Key words Viburnum awabuki; Caplifoliaceae; 5-epi-vibsanin; seven-membered vibsane-type diterpene; cytotoxicity

Viburnum awabuki (Caplifoliaceae) has elaborated a number of rarely occurring vibsane-type diterpenes, which can be subdivided into three types of eleven-membered, seven-membered and rearranged ones.^{1,2)} In the preceding paper,³⁾ we demonstrated that an eleven-membered vibsane-type diterpene, vibsanin B (11), exists in solution as two conformational isomers, CT and BC, which can transform to sevenmembered derivatives, vibsanin C (6) and its 5-epimer (6a) by thermal Cope rearrangement, respectively, as shown in Fig. 1. This result suggests the occurrence of natural 5epimers corresponding to the previously reported sevenmembered vibsanins C (6), H (7), K (8), and 18-Omethylvibsanin K (9) and vibanin E (10) with a trans relationship on the C-5 and C-10 positions.^{4,5)} Herein, we report the isolation and structure of five anticipated isomers, 5-epivibsanin C (1), 5-epi-vibsanin H (2), 5-epi-vibsanin K (3) and 18-O-methyl-5-epi-vibsanin K (4) and 5-epi-vibsanin E (5) from the methanol extract of the leaves of Viburnum awabuki.

Compound **1** had the molecular formula $C_{25}H_{36}O_5$ established by high resolution (HR)-FAB-MS (m/z 439.2436 [M+Na]⁺). Its IR spectrum showed absorptions attributable to a hydroxy group (3501 cm⁻¹) and three carbonyl groups (1728, 1707, 1668 cm⁻¹). The ¹H- and ¹³C-NMR data (Tables 1, 2) of **1** showed the presence of six tertiary methyl groups

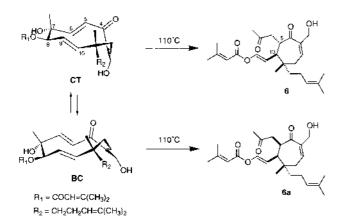


Fig. 1. Two Conformers, CT and BC, of Vibsanin B (11) Transformed to Vibsanin C (6) and Its Epimer 6a

 $[\delta_{\rm H} 0.67, 1.36, 1.63, 1.70, 1.74 \text{ and } 2.01 \text{ (each s)]}, an oxymethylene <math>[\delta_{\rm H} 4.21 \text{ (d, } J=13.2 \text{ Hz}), 4.30 \text{ (d, } J=13.2 \text{ Hz}); \delta_{\rm C} 64.2]$, three trisubstituted olefins $(\delta_{\rm H} 5.17, \delta_{\rm C} 124.9, 131.4; \delta_{\rm H} 5.62, \delta_{\rm C} 115.0, 160.1; \delta_{\rm H} 6.13, \delta_{\rm C} 138.6, 143.9)$ and a disubstituted olefin $[\delta_{\rm H} 5.33 \text{ (dd, } J=12.5, 11.7 \text{ Hz}), 7.38 \text{ (d, } J=12.5 \text{ Hz}); \delta_{\rm C} 111.7, 137.7]$. These spectral data were very similar to those of vibsanin C (6), which was a typical seven-membered vibsane-type diterpene isolated from the title plant. In fact, analyses of two-dimensional (2D) NMR spectra such as quantum filtered-correlated spectroscopy (DQF-COSY), heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond correla-

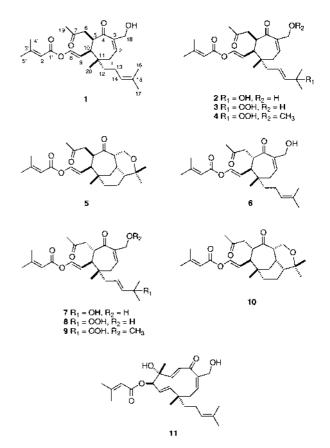
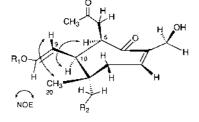



Chart 1. Vibsane-Type Diterpenes from the Leaves of Viburnum awabuki

tion (HMBC) for 1 gave the same planar structure as 6. In a comparison of ¹H-NMR spectra between 1 and 6, however, the H-5 signal of 1 shifted up to $\delta_{\rm H}$ 3.52 lower than the H-5 $(\delta_{\rm H} 2.90)$ of **6** and also had a vicinal H-5/H-10 coupling constant (4.4 Hz) smaller that that (12.2 Hz) of 6, suggesting that 1 was an epimer of 6 with regard to the C-5 position. This was substantiated by 2D-nuclear Overhauser enhancement and exchange spectroscopy (NOESY) as shown in Fig. 2. Thus, the cross-peaks between H-10 ($\delta_{\rm H}$ 2.01) and H-5 ($\delta_{\rm H}$ 3.52) enabled the substituents on C-5 and C-10 to take a cis relationship. The circular dichroism (CD) spectrum of 1 showed a positive Cotton [$\Delta \varepsilon$ (249 nm) +3.7] effect, thereby indicating 5R, 10R and 11S configurations.⁴⁾ Additionally, 1 was identical in all respects with 6a generated from vibsanin B (11) by the thermal Cope-rearrangement (Fig. 1).³⁾ Thus the structure of 1 was determined to be 5-epi-vibsanin C.

The molecular formula of compound **2** was determined to be $C_{25}H_{36}O_6$ on the basis of HR-FAB-MS (m/z 455.2417 [M+Na]⁺). The presence of hydroxy groups and carbonyl groups were again indicated by an IR spectrum (3492, 1726, 1715, 1660 cm⁻¹). The ¹H- and ¹³C-NMR (Tables 1, 2) of **2**

 $\mathsf{R}_1 = \mathsf{COCH} = \mathsf{C}(\mathsf{CH}_3)_2 \quad \mathsf{R}_2 = \mathsf{CH}_2\mathsf{CH} = \mathsf{C}(\mathsf{CH}_3)_2$

Fig. 2. 2D NOESY of 1

Table 1. ¹ H-NMR Data (δ /ppm) of 1	$1-5^{a}$
--	-----------

were very similar to those of 1, except for the C-12-C-17 side chain containing a disubstituted olefin [$\delta_{\rm H}$ 5.60 (ddd, J=15.1, 7.5, 7.2 Hz), 5.68 (d, J=15.1 Hz); δ_{C} 121.7, 142.8]. These spectral data suggested that the structure of 2 was closely related to those of vibsanin H $(7)^{4}$ with a *trans* relationship on the C-5 and C-10 positions. Extensive analysis of 2D-NMR indicated the presence of a 4-hydroxy-4-methyl-2heptenyl unit as a C-12-C-17 side chain which was the same as that of 7. In the HMBC of 2 (Fig. 3), the observation of a cross peak between the CH₃-20 ($\delta_{\rm H}$ 0.64) and C-12 ($\delta_{\rm C}$ 45.8) signals indicated that the side chain was linked to the C-11 position on the 7-membered ring. Further analyses of HMBC resulted in the formation of the same planar structure as 7, which was previously isolated from V. awabuki.⁴⁾ A NOESY experiment and a small $J_{5.10}$ value (4.0 Hz) of 2 indicated that the units on C-5 and C-10 had cis arranged in the same manner as that of 1. In addition, the CD spectrum of 2 $[\Delta \varepsilon (245 \text{ nm}) + 3.9]$ showed a positive Cotton effect, indicating the same absolute configuration as 1. Thus, 2 was named 5-epi-vibsanin H.

The ¹H- and ¹³C-NMR data (Tables 1, 2) of compound **3** were also very similar to those of **2** except for the presence

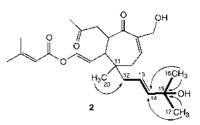


Fig. 3. HMBC Correlation of **2** between Protons (Tail) and Carbons (Head) Denoted by Arrows

Proton	1 ^{b)}	2 ^{<i>c</i>)}	3 ^{<i>c</i>)}	4 ^{<i>c</i>)}	$5^{b)}$
1	1.92 (dd, 16.1, 7.6)	1.78 (dd, 15.8, 7.5)	1.78 (dd, 16.6, 8.1)	1.87 (dd, 16.8, 7.7)	0.99 (dd, 14.6, 4.3)
	2.01 (dd, 16.1, 5.4)	2.19 (dd, 15.8, 4.8)	2.12 (dd, 16.6, 4.6)	2.21 (dd, 16.8, 5.2)	1.52 (dd, 14.6, 2.5)
2	6.13 (dd, 7.6, 5.4)	6.16 (dd, 7.5, 4.8)	6.13 (dd, 8.1, 4.6)	6.48 (dd, 7.7, 5.2)	1.97 (ddd, 7.1, 4.3, 2.5)
3					2.21 (ddd, 7.1, 4.3, 2.5)
5	3.52 (ddd, 9.3, 4.6, 4.4)	3.50 (ddd, 8.8, 4.4, 4.0)	3.49 (ddd, 8.2, 5.1, 3.9)	3.57 (ddd, 9.1, 5.2, 3.8)	4.16 (ddd, 7.4, 5.8, 3.6)
6	1.83 (dd, 17.8, 4.6)	1.89 (dd, 17.6, 4.4)	1.97 (dd, 17.8, 5.1)	2.03 (dd, 17.8, 5.2)	1.95 (dd, 18.1, 5.2)
	3.05 (dd, 17.8, 9.3)	2.98 (dd, 17.6, 8.8)	2.93 (dd, 17.8, 8.2)	2.96 (dd, 17.8, 9.1)	2.99 (dd, 18.1, 7.4)
8	7.38 (d, 12.5)	7.35 (d, 12.5)	7.38 (d, 12.1)	7.39 (d, 12.4)	7.31 (d, 12.4)
9	5.33 (dd, 12.5, 11.7)	5.31 (dd, 12.5, 12.5)	5.28 (dd, 12.1, 12.1)	5.32 (dd, 12.4, 11.8)	5.25 (dd, 12.4, 11.8)
10	2.01 (dd, 11.7, 4.4)	2.12 (dd, 12.5, 4.0)	2.20 (dd, 12.1, 3.9)	2.24 (dd, 11.8, 3.8)	1.78 (dd, 11.8, 3.6)
12	1.31 (m)	1.93 (dd, 13.2, 7.2)	1.90 (dd, 13.5, 5.6)	1.92 (dd, 13.7, 6.9)	1.28 (m)
	1.46 (m)	1.99 (dd, 13.2, 7.5)	1.99 (dd, 13.5, 7.6)	2.08 (dd, 13.7, 8.0)	1.81 (m)
13	1.92 (2H, m)	5.60 (ddd, 15.1, 7.5, 7.2)	5.59 (ddd, 15.9, 7.6, 5.6)	5.61 (ddd, 15.7, 8.0, 6.9)	1.48 (ddd, 14.6, 6.6, 6.6
					2.04 (m)
14	5.17 (t, 7.2)	5.68 (d, 15.1)	5.68 (d, 15.9)	5.69 (d, 15.7)	0.90 (m)
16	1.63 (3H, s)	1.28 (3H, s)	1.30 (3H, s)	1.30 (3H, s)	1.03 (3H, s)
17	1.70 (3H, s)	1.26 (3H, s)	1.32 (3H, s)	1.33 (3H, s)	1.06 (3H, s)
18	4.21 (d, 13.2)	4.20 (d, 13.4)	4.18 (d, 12.1)	4.15 (d, 13.7)	3.71 (dd, 12.1, 5.8)
	4.30 (d, 13.2)	4.29 (d, 13.4)	4.27 (d, 12.1)	4.20 (d, 13.7)	4.73 (dd, 12.1, 3.0)
19	1.74 (3H, s)	1.75 (3H, s)	1.74 (3H, s)	1.76 (3H, s)	1.70 (3H, s)
20	0.67 (3H, s)	0.64 (3H, s)	0.68 (3H, s)	0.70 (3H, s)	0.80 (3H, s)
2'	5.62 (qq, 1.2, 1.2)	5.62 (br s)	5.60 (br s)	5.59 (qq, 1.4, 1.4)	5.67 (qq, 1.1, 1.1)
4′	2.01 (3H, d, 1.2)	2.03 (3H, s)	2.00 (3H, s)	2.01 (3H, d, 1.4)	2.06 (3H, d, 1.1)
5'	1.36 (3H, d, 1.2)	1.34 (3H, s)	1.33 (3H, s)	1.34 (3H, d, 1.4)	1.36 (3H, d, 1.1)
15-OOH			7.92 (s)	7.97 (s)	
OCH ₃				3.13 (3H, s)	

a) Figures in parentheses denote J values (Hz). b) 600 MHz in C_6D_6 . c) 400 MHz in C_6D_6 .

Table 2. ¹³C-NMR Data (δ /ppm) of **1**,^{*a*} **2**,^{*b*} **3**,^{*b*} **4**,^{*b*} and **5**^{*a*}

С	1	2	3	4	5
1	38.7	39.1	39.1	39.0	38.3
2	138.6	141.2	139.3	138.9	29.1
3	143.9	142.9	143.5	141.4	53.6
4	203.7	203.9	203.3	202.1	212.6
5	48.3	48.5	48.7	48.2	48.5
6	44.3	44.1	43.9	43.9	45.3
7	205.7	207.7	207.1	206.2	205.6
8	137.7	137.5	138.1	137.0	137.7
9	111.7	111.1	111.7	111.9	111.8
10	47.7	46.9	46.6	46.1	50.7
11	42.7	41.2	41.1	41.0	33.9
12	40.5	45.8	45.9	45.1	38.9
13	22.7	121.7	125.3	126.0	25.2
14	124.9	142.8	139.2	139.7	40.8
15	131.4	70.7	81.4	81.6	73.6
16	17.7	29.9	24.5	25.8	24.8
17	25.8	29.8	24.7	24.5	26.6
18	64.2	64.9	64.2	72.2	64.0
19	29.7	30.5	30.3	29.1	29.8
20	24.6	25.1	25.2	25.0	34.0
1'	163.2	163.3	163.3	163.3	163.3
2'	115.0	114.6	114.9	114.9	115.1
3'	160.1	160.6	160.3	160.1	160.0
4′	20.2	20.6	20.3	20.2	20.3
5'	27.0	27.7	27.0	27.0	27.0
OCH ₃				56.3	

a) 150 MHz in C_6D_6 . b) 100 MHz in C_6D_6 .

of a hydroperoxy proton signal (δ 7.92, s) and a low-field shifted quaternary carbon ($\delta_{\rm C}$ 81.4). Analysis of 2D-NMR of 3 showed the same planar structure as vibsanin K (8). The molecular formula of $C_{25}H_{36}O_7 (m/z \, 471.2388 \, [M+Na]^+)$ for 3, however, suggested the presence of one oxygen atom more than that of 2. Moreover, a KI-starch test of 3 showed a positive result.⁶⁾ These data implied the presence of a hydroperoxy group on C-15 or C18 in the molecule of 3. The hydroperoxy group was verified to be located on the C-15 position on the basis of the C-15 quaternary carbon signal appearing abnormally downfield at $\delta_{\rm C}$ 81.4 (2; $\delta_{\rm C}$ 70.6).⁷⁾ The stereochemistry of 3, including the absolute configuration, was established to be the same as 2 on the basis of the 2D-NOESY and the CD spectrum [$\Delta \varepsilon$ (248 nm) +3.1]. Accordingly, the structure of 3 was determined to be 5-epi-vibsanin K.

Compound 4 had the molecular formula $C_{26}H_{38}O_7$ (*m*/z 485.2537 [M+Na]⁺), and its spectral data indicated the presence of a hydroperoxy group (δ_H 7.98, δ_C 81.6) at the C-15 position. The NMR data (Tables 1, 2) of 4 were very similar to those of 3 except for the presence of a methoxy group (δ_H 3.13; δ_C 56.3) and a δ_C value difference of C-18 (4; δ_C 72.2, 3; δ_C 64.2). These spectral data disclosed that the hydroxyl group on the C-18 position in 5-*epi*-vibsanin K (3) was replaced by a methoxy group in 4. The relative configuration of 4 was elucidated on the basis of 2D-NOESY, and the absolute configuration of 4 was represented as the same as that of 3 due to the same positive Cotton effect observed at 251 nm. Accordingly, 4 was represented as 18-*O*-methyl-5-*epi*-vibsanin K.

The IR spectrum of compound **5** displayed absorptions (1730, 1715, 1695 cm^{-1}) due to three carbonyl groups but the absence of a hydroxy group. The NMR data (Tables 1, 2)

of 5 indicated the presence of a β , β -dimethylacryl enol ester, but were not similar to the other parts of seven membered vibsanins 1-4 discussed above, in particular, lacking two double bonds existing on the C-2 position and the C-12 prenly unit of the former. This type of structure is usually observed in a tricyclic vibsanin E (10) previously reported.^{4,8} In fact, the molecular formula C₂₅H₃₆O₅ determined by HR-FAB-MS revealed seven degrees of unsaturation, indicating that 5 was a tricyclic seven-membered vibsanin. Moreover, the ¹H-NMR data of 5 was found to be similar to those of vibsanin E (10) except for the H-5 (5: $\delta_{\rm H}$ 4.16, $J_{5,10}$ =3.6 Hz; **10**: $\delta_{\rm H}$ 3.06, $J_{5,10}$ =11.5 Hz), thereby suggesting that **5** was a C-5 epimer of 10. Additionally, a cis relationship on the C-5 and C-10 substituents was confirmed by the observation of NOE between H-5 and H-10 in the NOESY. Thus, 5 was named 5-epi-vibsanin E.

5-*epi*-Vibsanin C (1) and 5-*epi*-vibsanin H (2) exhibited moderate cytotoxic activities on KB cells (IC₅₀ 10.7, 45.5 μ M), whereas vibsanin C (6) showed a similar degree of cytotoxic activity (IC₅₀ 11.3 μ M), assuming that the stereochemistry with regard to the C-5 position did not play an important role in these activities.

In conclusion, we were able to isolate the five seven-membered vibsane-type diterpenes with a *cis* relationship on the C-5 and C-10 positions for the first time, and thereby supported our proposed biogenesis of seven-membered vibsane derived from eleven-membered vibsanins *via* a Cope-type rearrangement.⁹⁾

Experimental

Optical rotations were measured on a Jasco DIP-1000. UV spectra were recorded on a Hitachi 340 spectrophotometer. IR spectra were measured on a Jasco FT-IR 5300. ¹H- and ¹³C-NMR spectra were obtained at 400 or 600 MHz (¹H-NMR) and 100.16 or 150 MHz (¹³C-NMR) using JEOL GX-400 or Varian Unity 600 instruments. Chemical shift values were expressed in δ (ppm) downfield from tetramethylsilane as an internal standard. The MS were recorded on a JEOL AX-500 instrument. CD spectra were recorded in EtOH on a JASCO-J-500. Silica gel (Merck, 70—230 mesh and Wakogel C-300) and octadecylsilica gel (Cosmosil ⁷⁵C18-OPN) were used for column chromatography. Precoated silica gel 60 F₂₅₄ and RP-8 F254 plates were used for analytical thin-layer chromatographies, and spots were visualized by UV (254 nm) light and 2% CeSO₄ in H₂SO₄ after heating.

Extraction and Purification Leaves of V. awabuki were collected in Tokushima, Japan, and a voucher specimen has been deposited in the herbarium of our institute. The dried and powdered leaves of V. awabuki (1.5 kg) were immersed in MeOH at room temperature for 1 month. The MeOH extract was evaporated in vacuo to give a gummy extract (500 g). This extract (95 g), mixed with silica gel (Merck, 70-230 mesh, 100 g) in MeOH, was dried under reduced pressure. The obtained solids were pulverized, packed into a glass column, and eluted in order with n-hexane (21), n-hexane-EtOAc (7:3, 21), n-hexane-EtOAc (1:1, 21), EtOAc (21), EtOAc-MeOH (8:2, 21), and MeOH (41) to give 6 fractions (1-6). Fraction 4 (13 g) was purified by repeated silica gel column chromatography (C-300, 1. CHCl₃: MeOH=30:1; 2. n-hexane: EtOAc=7:3) to give fractions 12-15. Fraction 15 (300 mg) was subjected to reverse-phase chromatography using Cosmosil 75 C18-OPN, then eluted with MeOH-H₂O (7:3) to give fractions 16-18. Fraction 18 (40 mg) was rechromatographed on silica gel (Merck, 230-400 mesh, 5 g) with n-hexane-acetone (3:1) to give 5-epivibsanin C (1) (2.1 mg) and 18-O-methyl-5-epi-vibsanin K (4) (1.3 mg). Fraction 17 (123 mg) was purified by HPLC [Cosmosil 5C18-AR, i.d. 10×250 mm; MeOH-H₂O (13:7; 2 ml/min)] to afford 5-epi-vibsanin H (2) (15.6 mg). Fraction 3 (12 g) was rechromatographed on silica gel (C-300, 120 g) with n-hexane-EtOAc (1:1) to give fractions 19-21. Fraction 19 (63 mg) was purified by HPLC [Cosmosil ⁵C18-AR, i.d. 10×280 mm; MeOH-H₂O (2.5:1.2; 2 ml/min)] to give 5-epi-vibsanin K (3) (4.1 mg) and

5-epi-vibsanin C (1): $[\alpha]_D^{24}$ +38.6° (c=0.59, CHCl₃); CD $\Delta \varepsilon$ (249 nm) +3.7; FAB-MS m/z (rel. int. %): 439 [M+Na]⁺, 154 (100); HR-FAB-MS: Found 439.2436, Calcd 439.2461 for $C_{25}H_{36}O_5Na$; UV λ_{max} (EtOH) nm (ε): 233 (21400); IR (film) cm⁻¹: 3501 (OH), 1728, 1707, 1668 (C=O), 1645 (C=C); ¹H- and ¹³C-NMR: Tables 1 and 2.

5-*epi*-Vibsanin H (**2**): $[\alpha]_{21}^{21}$ +49.2° (*c*=0.41, CHCl₃); CD Δε (245 nm) +3.9; FAB-MS *m/z* (rel. int. %): 455 [M+Na]⁺, 115 (100); HR-FAB-MS: Found 455.2417, Calcd 455.2409 for C₂₅H₃₆O₆Na; UV λ_{max} (EtOH) nm (ε): 220 (30300); IR (film) cm⁻¹: 3492 (OH), 1726, 1715, 1660 (C=O), 1645 (C=C); ¹H- and ¹³C-NMR: Tables 1 and 2.

5-*epi*-Vibsanin K (**3**): $[\alpha]_{D^1}^{21}$ +52.4° (*c*=0.20, CHCl₃); CD Δε (248 nm) +3.1; FAB-MS *m/z* (rel. int.%): 471 [M+Na]⁺, 154 (100); HR-FAB-MS: Found 471.2388, Calcd 471.2359 for C₂₅H₃₆O₇Na; UV λ_{max} (EtOH) nm (ε): 225 (21400); IR (film) cm⁻¹: 3414 (OOH), 1730, 1712, 1657 (C=O), 1647 (C=C); ¹H- and ¹³C-NMR: Tables 1 and 2.

18-*O*-Methyl-5-*epi*-vibsanin K (**4**): $[α]_D^{21}$ +11.9° (*c*=0.12, CHCl₃); CD Δε (251 nm) +2.5; FAB-MS *m/z* (rel. int. %): 485 [M+Na]⁺, 154 (100); HR-FAB-MS: Found 485.2537, Calcd 485.2516 for C₂₆H₃₈O₇Na; UV λ_{max} (EtOH) nm (ε): 230 (26100); IR (film) cm⁻¹: 3412 (OOH), 1715, 1710, 1660 (C=O), 1651 (C=C); ¹H- and ¹³C-NMR: Tables 1 and 2.

5-*epi*-Vibsanin E (5): $[\alpha]_D^{21}$ -34.7° (*c*=0.21, CHCl₃); CD Δε (288 nm) -5.2; HR-FAB-MS: Found 439.2482 [M+Na]⁺, Calcd 439.2461 for C₂₅H₃₆O₅Na; UV λ_{max} (EtOH) nm (ε): 238 (11400); IR (film) cm⁻¹: 1730, 1715, 1695 (C=O), 1645 (C=C); ¹H- and ¹³C-NMR: Tables 1 and 2.

Acknowledgment We are indebted to Dr. Masami Tanaka and Miss Yasuko Okamoto (TBU) for NMR measurements and MS measurements. This work was partially supported by a Grant-in Aid for Scientific Research (No. 12480175) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and Notes

- 1) Kawazu K., Agiric. Biol. Chem., 44, 1367-1372 (1980).
- Fukuyama Y., Minami H., Takeuchi K., Kodama M., Kawazu K., Tetrahedron Lett., 37, 6767–6770 (1996).
- Fukuyama Y., Minami H., Takaoka S., Kodama M., Kawazu K., Nemoto H., *Tetrahedron Lett.*, 38, 1435–1438 (1997).
- Minami H., Anzaki S., Kubo M., Kodama M., Kawazu K., Fukuyama Y., Chem. Pharm. Bull., 46, 1194—1198 (1998).
- Fukuyama Y., Minami H., Kagawa M., Kodama M., Kawazu K., J. Nat. Prod., 62, 337–339, (1999).
- a) Krebs K. G., Heuser D., Wimmer H., "Thin Layer Chromatgraphy: A Laboratory Handbook," 2nd Ed., Springer, Berlin, 1969, p. 881; b) Hashidoko Y., Tahara S., Mizutani J., *Phytochemistry*, 28, 425–430 (1989).
- a) Kitagawa I., Cui Z., Son B. W., Kobayashi M., Kyogoku Y., *Chem. Pharm. Bull.*, **35**, 124–135 (1987); *b*) Casteel D. A., *Natural Product Reports*, **9**, 289–312 (1992); *c*) Casteel D. A., *ibid.*, **16**, 55–73 (1999).
- Fukuyama K., Katsube Y., Kawazu K., J. Chem. Soc. Perkin 2, 1980, 1701–1703.
- 9) It should be noted that compound **1** could not be converted from its *trans* one **6** by exposure to silica gel overnight.