Nine New Secoiridoid Glucosides from Jasminum nudiflorum

Yukiko Takenaka,^{*a*} Takao Tanahashi,^{*,*a*} Hiromi Taguchi,^{*a*} Naotaka Nagakura,^{*a*} and Toyoyuki Nishi^{*b*}

Kobe Pharmaceutical University,^a 4–19–1 Motoyamakita-machi, Higashinada-ku, Kobe 658–8558, Japan and The Nippon Shinyaku Institute for Botanical Research,^b 39 Sakanotsuji-cho, Oyake, Yamashina-ku, Kyoto 607–8182, Japan. Received November 7, 2001; accepted December 3, 2001

Phytochemical study of the leaves of *Jasminum nudiflorum* has led to the isolation of nine new secoiridoid glucosides, jasnudiflosides F-L (1-7), nudifloside D (8) and isooleoacteoside (9). The structures of these compounds were elucidated on the basis of chemical and spectroscopic evidence.

Key words Jasminum nudiflorum; Oleaceae; secoiridoid glucoside; isooleoacteoside; cyclopentanoid monoterpene

The flowers and leaves of Jasminum nudiflorum LINDL. belonging to the Oleaceae have been used as remedies for inflammatory swelling, purulent eruptions, bruises, and traumatic bleeding in China.¹⁾ Previous phytochemical investigation resulted in the isolation of caffeic glycoside esters.²⁾ We have recently investigated the leaves and stems of this plant and isolated eight new oleoside-type secoiridoid glucosides with a cyclopentanoid monoterpene unit.³⁾ In continuation of this study, we have now reexamined the constituents of the leaves of J. nudiflorum and isolated nine further new glucosides 1-9 as well as the known compounds oleoside 11methyl ester (10),⁴⁾ jasnudiflosides A (11), B, C (12), D, and E, nudiflosides B and C, syringin,⁵⁾ acteoside (13),⁶⁾ and poliumoside.⁷⁾ The structure elucidation of these new glucosides, which we have named jasnudiflosides F-L (1-7), nudifloside D (8), and isooleoacteoside (9), is reported.

Jasnudifloside F (1) was isolated as an amorphous powder. The high-resolution SI mass spectrum (HR-SI-MS) of 1 established the composition to be C₂₇H₄₂O₁₃. It exhibited IR bands at 3406 (OH), 1733 (COO), and 1712 and 1632 (C=C-COO) cm⁻¹ and ¹H-NMR (Table 1) signals common to secoiridoid glucosides with an oleoside 11-methyl ester (10) unit [H-3 at δ 7.53 (s), H-1 at δ 5.93 (br s), H-1' at δ 4.82 (d, J=8.0 Hz), H-8 at δ 6.12 (qd, J=7.0, 1.0 Hz), H₃-10 at δ 1.74 (dd, J=7.0, 1.0 Hz), OMe at δ 3.72 (s)]. The ¹H-NMR spectrum, moreover, displayed additional signals for two secondary methyl groups at δ 0.98 and 0.99 (each d), two pairs of oxymethylene protons at δ 3.92 and 4.18 and at δ 3.38 and 3.59, and a methine group bearing a hydroxyl group at δ 4.04, suggesting the presence of a triol (14) moiety as in jasnudifloside A (11).^{3*a*)} This was confirmed by the fact that compound 1 was subjected to alkaline hydrolysis and the resulting triol was esterified with (R)-2-methoxy-2trifluoromethylphenylacetic acid ((R)-MTPA) to yield 15, which was identified with an (R)-MTPA ester derived from 11.^{3a)} The downfield shift of H_2 -7" and C-7" in 1, relative to the corresponding signals in 14, showed that in 1 the C-7 carboxyl group of the oleoside 11-methyl ester moiety was linked to the C-7" hydroxyl group of the triol moiety. This was further supported by the ¹H-detected heteronuclear multiple-bond connectivity (HMBC) interactions between H₂-7" and C-7 (δ 173.3). Thus the structure of jasnudifloside F was characterized as **1**.

Jasnudifloside G (2) was isomeric with 1. It was evident from its ¹H- and ¹³C-NMR spectral features that 2 consisted of an oleoside 11-methyl ester unit and a triol (14) moiety like 1. The structural difference between 1 and 2 could be accounted for only by the point of ester linkage. The signals of H-5" and C-5" resonated in a lower field, compared with the corresponding signals of triol (14), demonstrating acylation of the hydroxyl groups at C-5" in 2. The ester linkage was further confirmed using the HMBC technique. Final confirmation was obtained by partial methanolysis of jasnudifloside A (11) to 2. Accordingly, the structure of 2 was assigned to jasnudifloside G.

The ¹H- and ¹³C-NMR spectral features of jasnudifloside H (3) resembled those of jasnudifloside A (11), the differences being the absence of signals due to a carbomethoxyl group. Methylation of 3 with CH_2N_2 -Et₂O gave 11, while methanolysis of 3 afforded oleoside dimethyl ester (16) and a carboxylic acid (17). These results led us to formulate the structure of jasnudifloside H as shown.

Jasnudifloside I (4) was also isolated as an amorphous powder, with molecular formula $C_{26}H_{38}O_{12}$. The ¹H- and ¹³C-NMR spectral features of 4 were very similar to those of jasnudifloside C (12),^{3a)} except for the absence of signals for an oleoside 11-methyl ester (10) unit and chemical shifts of the proton and carbon signals around C-7". The upfield shifts of H_2 -7" and C-7" and downfield shifts of C-2" of 4 relative to the corresponding signals of 12 demonstrated that the hydroxyl group at C-7" was intact in 4. These findings suggest that 4 is a derivative of 12 missing an oleoside 11-methyl ester (10) moiety at C-7". This was confirmed by partial methanolysis of 12 to yield 4 along with oleoside dimethyl ester (16). Accordingly, structure 4 was assigned to jasnudifloside I.

Jasnudifloside J (5) was recognized as an isomer of 4 from its HR-SI-MS measurement. Its ¹H- and ¹³C-NMR spectra demonstrated that 5 possessed an oleoside 11-methyl ester unit and a triol (14) moiety as in 4. The absolute configurations of the triol moiety were ascertained by nuclear Overhauser enhancement and exchange spectroscopy (NOESY) correlations between H-3" and H-1", H-5" and between H₃-6" and H-2". The sites of ester linkage were determined by the HMBC interactions between H₂-10" and C-11 and between H₂-7" and C-7. Thus the structure of jasnudifloside J was characterized as 5.

The NMR spectral features of jasnudiflosides K (6) and L (7) resembled those of jasnudiflosides F (1) and A (11), respectively. A significant difference in their ¹H-NMR spectra was that 6 and 7 revealed additional signals ascribable to a β -glucosyl unit [6: δ 4.24 (d, *J*=7.5 Hz); 7: δ 4.23 (d, *J*=7.5 Hz)]. The ¹³C-NMR spectra of 6 and 7 also showed a set of signals assigned to a second terminal β -glucopyranosyl unit.

Table 1. ¹H-NMR Spectral Data for 1-8 in CD₃OD

ц	1	2	3			
11	1	2 —	a part	b part		
1	5.93 br s	5.96 br s	5.95 br s	5.95 br s		
3	7.53 s	7.53 s	7.53 s	7.50 s		
5	3.99 dd (9.0, 4.5)	4.01 dd (9.0, 4.5)	4.00 dd (9.0, 4.5)	4.00 dd (9.0, 4.5)		
6	2.49 dd (14.0, 9.0)	2.50 dd (14.0, 9.0)	2.50 dd (14.0, 9.0)	2.54 dd (14.0, 9.0)		
	2.72 dd (9.0, 4.5)	2.70 dd (14.0, 4.5)	2.73 dd (14.0, 4.5)	2.73 dd (14.0, 4.5)		
8	6.12 qd (7.0, 1.0)	6.11 br q (7.0)	6.10 br q (7.0)	6.13 br q (7.0)		
10	1.74 dd (7.0, 1.0)	1.75 dd (7.5, 1.5)	1.76 dd (7.0, 1.5)	1.74 dd (7.0, 1.0)		
OMe	3.72 s	3.72 s	3.72 s			
1'	4.82 d (8.0)	4.80 d (8.0)	4.810 ^{<i>a</i>)} d (7.5)	4.805 ^{<i>a</i>)} d (8.0)		
2'	7	3.28—3.36 m	3.27—3.29 m	3.27—3.29 m		
3'	3.28—3.44 m	3.40 t (9.0)	3.40^{b} t (10.0)	3.41^{b} t (9.0)		
4',5'		3.28—3.36 m	3.27—3.29 m	3.27—3.29 m		
6'	3.67 dd (11.5, 6.0)	3.65 dd (11.5, 6.0)	3.65 ^{c)} dd (12.0, 6.0)	3.67 ^{c)} dd (12.0, 6.0)		
	3.89 dd (11.5, 1.0)	3.88 dd (11.5, 2.0)	3.89^{d} dd (12.0, 2.0)	3.91^{d} dd (12.0, 2.0)		
1″	1.78 m	2.02 m	1.95 m			
2″	1.85 m	1.66 m	1.83 m			
3″	1.68 m	1.74 m	1.78 m			
4″	1.55 m	1.60 ddd (13.5, 6.5, 4.5)	1.61—1.67 m			
	1.95 m	2.02 m	2.07 ddd (14.5, 9.5, 5.5)			
5″	4.04 g (5.0)	5.00 g (4.5)	5.02 br q (5.0)			
6″	0.99 d(8.5)	0.94 d(7.0)	0.94 d (7.0)			
7″	3.92 dd (11.5, 6.0)	3.52 dd (11.0, 5.5)	3.95 dd (11.5, 5.0)			
	4.18 m	3.60 dd (11.0, 4.0)	3.95 dd (11.5, 5.0)			
8″	1.67 m	1.66 m	1.61—1.67 m			
9″	0.98 d (8.5)	0.98 d (6.5)	0.99 d (7.0)			
10″	3.38 m	3.30 m	3.59 dd (11.0, 4.0)			
	3.59 dd (11.0, 4.0)	3.59 dd (11.0, 4.0)	4.20 dd (11.0, 4.0)			

Table 1. (Continued)

Н	4	5	6	
1	5.85 br s	5.91 br s	5.94 br s	
3	7.42 s	7.46 s	7.53 s	
5	3.99 dd (9.0, 4.0)	4.00 dd (12.0, 4.0)	4.00 dd (9.5, 5.0)	
6	2.37 dd (13.0, 4.0)	2.30 dd (12.5, 12.0)	2.51 dd (14.0, 9.5)	
	2.45 dd (13.0, 9.0)	2.49 dd (12.5, 4.0)	2.72 dd (14.0, 5.0)	
8	6.06 qd (7.0, 1.0)	6.08 br q (7.0)	6.12 br q (7.5)	
10	1.83 dd (7.0, 1.0)	1.82 dd (7.0, 1.0)	1.75 dd (7.0, 1.5)	
OMe	_	_	3.72 s	
1',1‴	4.80 d (7.5)	4.80 d (8.0)	4.81 d (8.0)	4.24 d (7.5)
2',2‴	3.26—3.29 m	3.27 m	3.26—3.34 m	3.17 dd (9.0, 7.5)
3',3‴	3.40 t (9.0)	3.40 t (9.0)	3.41 t (9.0)] 26 3 34 m
4',5',4''',5'''	3.26—3.29 m	3.28—3.36 m	3.26—3.34 m	J3.20—3.34 III
6′,6‴	3.88 dd (11.5, 2.0)	3.63 dd (12.0, 6.5)	3.66 ^{e)} dd (12.0, 5.5)	3.67 ^{e)} dd (12.0, 5.5)
	3.88 dd (11.5, 2.0)	3.90 dd (12.0, 2.0)	3.86 ^{f)} dd (12.0, 2.0)	3.90 ^f) dd (12.0, 2.0)
1″	1.85 m	1.69 m	1.71 m	
2″	1.71 m	1.85 m	1.82 m	
3″	1.82 m	2.20 m	1.73 m	
4″	1.91 m	1.35 ddd (13.5, 8.5, 2.5)	1.54 ddd (13.5, 7.5, 4.5)	
	2.06 d (4.0)	2.15 m	1.90 m	
5″	4.91 m	4.03 m	4.04 q (4.5)	
6"	1.01 d (7.0)	1.00 d (6.5)	0.91 d (7.0)	
7"	3.65 m	4.07 d (4.0)	3.95 dd (11.5, 6.0)	
	3.65 m	4.07 d (4.0)	4.20 dd (11.5, 4.5)	
8″	2.03 d (4.0)	2.15 m	1.84 m	
9″	0.98 d (7.0)	0.96 d (7.0)	1.00 d (6.0)	
10"	4.14 dd (11.5, 4.0)	4.29 dd (12.0, 10.5)	3.56 dd (9.0, 5.0)	
	4.29 dd (11.5, 9.0)	4.00 dd (12.0, 3.0)	3.76 dd (9.0, 7.0)	

	7	,		8		
н –	a part	b part				
1	5.95 br s	5.99 br s		5.94 br s		
3	7.53 s	7.54 s		7.53 s		
5	4.00 m	4.00 m		4.01 dd (9.0, 4.5)		
6	2.52 dd (14.0, 9.0)	2.54 dd (14.0, 9.0)		2.48 dd (14.5, 9.0)		
	2.71 dd (14.0, 4.5)	2.73 dd (14.0, 5.0)		2.73 dd (14.5, 4.5)		
8	6.11 br q (7.0)	6.12 br q (7.0)		6.12 br q (7.0)		
10	1.75 dd (7.0, 1.0)	1.76 dd (7.0, 1.0)		1.75 dd (7.5, 1.5)		
OMe	3.72 s	3.73 s		3.72 s		
1',1‴	4.81 d (7.5)	4.81 d (7.5)	4.23 d (7.5)	4.81 d (7.5)		
2',2‴	3.21—3.28 m	3.21—3.28 m	3.17 dd (9.0, 7.5)	3.32—3.40 m		
3',3‴	3.41 t (9.0)	3.41 t (9.0)	3 21 3 28 m	3.41 t (9.5)		
4',5',4''',5'''	3.21—3.28 m	3.21—3.28 m] ^{3.21—3.28 III}	3.32—3.40 m		
6',6‴	3.65 ^{g)} dd (12.0, 6.0)	3.66 ^{g)} dd (12.0, 6.0)	3.67 ^{g)} dd (12.0, 6.0)	3.67 dd (12.0, 5.5)		
	3.90^{h} dd (12.0, 2.0)	3.91 ^{<i>h</i>}) dd (12.0, 2.0)	3.84 ^{<i>h</i>}) dd (12.0, 2.0)	3.89 dd (12.0, 2.0)		
1″	1.94 m			2.01 m		
2″	1.91 m			1.59 m		
3″	1.91 m			1.59 m		
4″	1.65 m			4.04 m		
	2.00 m			1.44 ddd (14.5, 9.0, 5.5)		
5″	5.03 br q (4.5)			1.78 m		
6"	0.93 d (6.5)			1.03 d (6.5)		
7″	4.00 m			3.93 dd (10.5, 6.5)		
	4.21 dd (11.0, 2.0)			4.17 dd (10.5, 4.5)		
8″	1.91 m			1.72 m		
9″	1.00 d (6.5)			0.97 d (7.0)		
10"	3.51 m			3.40 dd (11.0, 7.5)		
	3.70 m			3.57 dd (11.0, 5.5)		

Values in parentheses are coupling constants in Hz. a-h) Assignments may be interchangeable.

Table 2. ¹³C-NMR Spectral Data for **1—8** in CD₃OD

С	1	2	3			5	6		7			ø
	1		a part	b part	4	5	0	-	a part	b part		0
1	94.9	95.3	94.7	95.0	95.2	95.0	94.9		94.8 ^{c)}	95.3 ^{c)}		95.0
3	155.1	155.2	154.7 ^{a)}	155.2 ^{a)}	153.3	153.5	155.2		155.2 ^c)	155.3 ^c)		155.2
4	109.3	109.4	109.4	109.4	111.4	110.6	109.4		109.4	109.4		109.4
5	32.0	31.9	32.1 ^{a)}	32.2 ^{<i>a</i>)}	31.7	32.5	32.1		32.0 ^{c)}	32.2 ^{c)}		32.0
6	41.2	41.5	41.2	41.6	44.1	44.1	41.3		41.3 ^{c)}	41.7 ^{c)}		41.3
7	173.3	173.0	173.1	173.4	173.9	173.9	173.5		173.1	173.5		173.3
8	124.7	124.8	124.4	124.0	123.5	123.6	124.7		124.0 ^{c)}	124.8 ^{c)}		124.8
9	130.6	130.8	130.7	131.2	132.5	132.0	130.7		130.8	130.8		130.7
10	13.7	13.8	13.4 ^{<i>a</i>})	13.9 ^{a)}	13.2	13.1	13.9		13.7 ^{c)}	13.9 ^{c)}		13.7
11	168.5	168.7	168.6	168.6	168.8	168.7	168.6		168.6	168.6		168.7
OMe	51.9	51.2	52.0	_		_	52.0		52.0	52.0		51.9
1',1‴	100.6	100.9	100.5^{a}	100.8 ^a)	100.9	100.8	100.6	104.4	100.5^{c}	100.9 ^c)	104.6	100.7
2',2‴	74.7	74.8	74.8 ^{<i>a</i>)}	74.9 ^{a)}	74.8	74.8	74.8	75.2	74.8	74.8	75.1	74.8
3',3‴	77.8	78.0	78.0	78.0	78.0	78.0	77.9	77.9	77.9^{c}	77.9 ^{c)}	78.0^{c}	78.0
4′,4‴	71.5	71.6	71.6 ^{a)}	71.7 ^{a)}	71.6	71.6	71.7^{b}	71.6^{b}	71.7	71.7	71.7	71.5
5',5‴	78.4	78.5	$78.5^{a)}$	$78.7^{a)}$	78.5	78.6	78.5^{b}	78.2^{b}	78.5^{c}	78.6^{c}	78.2^{c}	78.5
6′,6‴	62.8	62.9	62.9 ^{<i>a</i>})	63.0 ^{<i>a</i>)}	62.8	62.8	62.9 ^{b)}	62.8 ^{b)}	63.0 ^c)	63.0 ^{c)}	62.8 ^c)	62.8
1″	43.2	41.1	41.7		41.7	43.9	43.3		41.8			36.5
2″	47.8	51.9	48.2		53.9	43.7	47.5		47.8			48.9
3″	43.0	41.9	42.6		45.6	41.0	43.3		43.2			54.8
4″	36.9	35.2	35.4		32.2	39.3	37.1		35.0			76.4
5″	75.7	80.0	80.0		82.6	74.1	75.5		80.2			43.9
6″	14.0	14.5	14.2		13.3	12.4	13.7		14.0			20.6
7″	68.1	64.8	67.2		63.4	66.3	67.9		67.0			69.1
8″	40.7	41.3	41.1		37.6	36.0	38.1		38.1			39.4
9″	16.6	16.2	16.3		19.2	13.3	16.9		16.9			15.2
10"	66.4	66.6	66.5		68.1	68.0	74.2		74.2			67.0

a—*c*) Assignments may be reversed horizontally.

This unit could be determined to be attached at C-10" of the triol moiety in each case by the glycosylation shift observed for C-10" [6: $\Delta\delta$ +7.8 ppm; 7: $\Delta\delta$ +7.7 ppm] and C-8" [6: $\Delta\delta$ -2.6 ppm; 7: $\Delta\delta$ -3.0 ppm] and by HMBC interaction between H-1" and C-10". Thus jasnudiflosides K (6) and L (7) were formulated as shown.

Nudifloside D (8) was recognized as another isomer of jasnudifloside F (1) from its HR-SI-MS measurement. Its ¹Hand ¹³C-NMR spectra showed signals due to a monoterpene unit in addition to a set of signals corresponding to oleoside 11-methyl ester, implying a structural similarity of 8 to 1. However, detailed two-dimensional NMR experiments with 8 demonstrated that the cyclopentanoid monoterpene unit in 8 differed from 14 but was the same triol 18 as in nudifloside A (19).^{3b} HMBC experiments with 8, where ³J interactions were observed from the H₂-7" to C-7 carbon, as well as comparison of ¹³C-NMR spectral data of 8 with those of 18 and 19, showed that the hydroxyl group at C-7" was esterified with the C-7 carboxyl group of the oleoside 11-methyl ester (10) unit. Therefore the structure of nudifloside D was determined to be 8.

Compound **9** was analyzed for $C_{46}H_{58}O_{25}$ from its HR-SI-MS measurement. Its ¹H-NMR spectrum displayed, in addition to the signals of an oleoside 11-methyl ester (**10**) unit, signals assigned to α -rhamnose [H-1''' at δ 5.19 (br s), H₃-6''' at δ 1.09 (d, J=6.5 Hz)], β -glucose [H-1' at δ 4.34 (d, J= 8.0 Hz)], *trans*-caffeoyl [an aromatic AMX spin system at δ 6.78, 6.96, 7.05, a pair of *trans*-olefinic protons at δ 6.26 and 7.60 (each d, J=16.0 Hz)], and 3,4-dihydroxyphenethyl [an aromatic AMX spin system at δ 6.56, 6.67, and 6.68, and an ABX₂ system of a OCH₂CH₂Ar moiety at δ 3.75, 3.90, and 2.79] groups. These findings, together with UV maxima at 222, 234, 291, and 333 nm, implied that compound **9** was an ester of oleoside 11-methyl ester (10) with acteoside (13), which was also isolated from this plant material. Comparison of the ¹³C-NMR spectral data of **9** with those of **13** and oleoacteoside (**20**)⁸⁾ demonstrated that the hydroxyl group at C-6' in the glucose moiety of acteoside was acylated in the structure of **9**. The HMBC spectrum of **9** revealed a correlation of C-7"" with H-6' (δ 4.05), suggesting that the C-7"" carboxyl group of the oleoside 11-methyl ester unit was esterified with the 6'-hydroxyl group of the acteoside unit. Base on these data, compound **9** was characaterized as illustrated in the figure and designated as isooleoacteoside.

Experimental

The UV spectra were recorded on a Shimadzu UV-240 spectrophotometer and the IR spectra on a Shimadzu FTIR-8200 infrared spectrophotometer. The optical rotations were measured on a Jasco DIP-370 digital polarimeter. SI-MS and HR-SI-MS were obtained with a Hitachi M-4100 mass spectrometer. For SI-MS, glycerol was used as the matrix. The NMR experiments were performed with Varian VXR-500 and Varian Gemini-300 spectrometers, with tetramethylsilane (TMS) as internal standard. HPLC separations were run on a Waters system (600E Multisolvent Delivery System, 486 Tunable Absorbance Detector). TLC was performed on Kieselgel 60F₂₅₄ plates (Merck) and spots were visualized under UV light.

Isolation of Glucosides The source of plant material was described in a previous publication.³⁾ Dried leaves of *J. nudiflorum* (350 g) were extracted with hot MeOH. After concentration, the extract (61.4 g) was suspended in H₂O and filtered through a Celite layer. The filtrate and washings were combined and extracted successively with CHCl₃ and *n*-BuOH to give three fractions weighing 0.9 g (CHCl₃), 20.5 g (*n*-BuOH) and 24.4 g (H₂O). The *n*-BuOH–soluble fraction was chromatographed on a Wakogel LP-40C₁₈ (Wako Pure Chemical Industries, Osaka, Japan) column. Elution with MeOH–H₂O mixtures of the increasing MeOH content gave 10 fractions. Fraction I (H₂O effluent, 1.02 g) was further purified by a combination of preparative TLC (CHCl₃–MeOH, 7:3 or *n*-BuOH–AcOH–H₂O, 3:2) to give syringin (35.2 mg), oleoside 11-methyl ester (10) (14.5 mg), acteoside (13) (91 mg), and poliumoside (106 mg). Fractions II—X were also purified by preparative TLC (CHCl₃–MeOH, 3:2 or *n*-BuOH–AcOH–H₂O, H₂O, H₂

4:1:0.5) and preparative HPLC (µBondasphere 5µC18-100 Å, MeOH-H₂O, 3:2 or 1:1 or 2:3 or MeCN-H₂O, 1:4 or 2:3). Fraction II (0-1% MeOH effluent, 1.05 g): syringin (11.1 mg), 13 (113 mg), poliumoside (193 mg), jasnudifloside F (1) (31.5 mg), jasnudifloside I (4) (23.6 mg), jasnudifloside D (26.0 mg); fraction III (1-4% MeOH effluent, 0.64 g): poliumoside (201 mg), jasnudifloside K (6) (4.2 mg), 1 (112 mg), jasnudifloside J (5) (4.2 mg), 4 (7.2 mg), nudifloside C (10.9 mg), jasnudifloside D (10.5 mg); fraction IV (4-7% MeOH effluent, 0.50 g): poliumoside (5.7 mg), 6 (3.7 mg), 1 (54.3 mg), jasnudifloside G (2) (20.7 mg), 5 (1.0 mg), 4 (5.3 mg), nudifloside D (8) (6.1 mg), nudifloside C (12.4 mg), jasnudifloside D (13.4 mg); fraction V (7-10% MeOH effluent, 0.58 g): poliumoside (12.1 mg), 6 (3.8 mg), 2 (2.7 mg), 1 (54.5 mg), 4 (37.2 mg), 8 (3.8 mg), nudifloside C (8.9 mg), jasnudifloside A (11) (13.7 mg); fraction VI (15% MeOH effluent, 0.67 g): poliumoside (14.4 mg), 6 (3.5 mg), 2 (13.9 mg), 1 (58.5 mg), jasnudifloside H (3) (35.6 mg), isooleoacteoside (9) (3.0 mg), jasnudifloside L (7) (13.2 mg), 8 (14.0 mg), 11 (60.6 mg); fraction VII (20% MeOH effluent, 0.79 g): 3 (21.7 mg), 9 (8.6 mg), 1 (4.8 mg), 7 (33.3 mg), 8 (4.9 mg), 11 (53.6 mg), jasnudifloside C (12) (8.5 mg); fraction VIII (30% MeOH effluent, 1.73 g): an aliquot (701 mg) of the fraction was purified to give 7 (2.1 mg), 11 (255 mg), 12 (26.0 mg); fraction IX (30-40% MeOH effluent, 2.45 g): an aliquot (971 mg) of the fraction was purified to give 7 (1.7 mg), 11 (437 mg), 12 (215 mg), nudifloside B (11.0 mg); fraction X (40-50% MeOH effluent, 1.21 g): 3 (13.8 mg), 11 (525 mg), 12 (32.2 mg), jasnudifloside B (157 mg).

Jasnudifloside F (1): Colorless amorphous powder, $[\alpha]_{2^8}^{2^8} - 145^{\circ}$ (c=0.52, MeOH). UV λ_{max}^{MeOH} nm (log ε): 235 (4.07). IR v_{max}^{RBr} cm⁻¹: 3406, 1733, 1712, 1632, 1078. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H₃-6" \rightarrow C-5", H₃-9" \rightarrow C-10", H₂-7" \rightarrow C-7, H₂-6 \rightarrow C-7, OMe \rightarrow C-11; SI-MS m/z 573 [M–H]⁻, 411, 341; HR-SI-MS m/z 573.2557 [M–H]⁻ (Calcd for C₂₇H₄₁O₁₃, 573.2549).

Jasnudifloside G (2): Colorless amorphous powder, $[\alpha]_{23}^{23} - 161^{\circ}$ (c=0.89, MeOH). UV λ_{max}^{MeOH} nm (log ε): 236 (4.08). IR v_{max}^{KBr} cm⁻¹: 3400, 1731, 1709, 1632, 1078, 818. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H₃-6" \rightarrow C-5", H₃-9" \rightarrow C-8", H₂-10" \rightarrow C-8", H-5" \rightarrow C-7, H₂-6 \rightarrow C-7, OMe \rightarrow C-11; SI-MS m/z 573 [M–H]⁻, 411, 341; HR-SI-MS m/z 573.2567 [M–H]⁻ (Calcd for C₂₇H₄₁O₁₃, 573.2549).

Jasnudifloside H (3): Colorless amorphous powder, $[\alpha]_{2}^{24} - 183^{\circ}$ (*c*=1.02, MeOH). UV λ_{max}^{MeOH} nm (log ε): 235 (4.35). IR v_{max}^{KBr} cm⁻¹: 3400, 1731, 1707, 1636, 1078, 818. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H-1" \rightarrow C-7", H₃-6" \rightarrow C-1", 2", 5", H-7" (δ 3.92) \rightarrow C-7a, H₃-9" \rightarrow C-3", 8", H₂-10" \rightarrow C-8", H₂-6a \rightarrow C-7a, H₂-6b \rightarrow C-7b; SI-MS *m*/*z* 945 [M-H]⁻, 783, 421; HR-SI-MS *m*/*z* 945.3573 [M-H]⁻ (Calcd for C₄₃H₆₁O₂₃, 945.3606).

Jasudifloside I (4): Colorless amorphous powder, $[\alpha]_{0}^{26} - 186^{\circ}$ (c=0.39, MeOH). UV λ_{max}^{MeOH} nm (log ε): 236 (4.00). IR v_{max}^{KBr} cm⁻¹: 3397, 1725, 1705, 1622, 1074. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H₃-6" \rightarrow C-2", 5", H-5" \rightarrow C-7, H₂-10" \rightarrow C-11, H₂-6 \rightarrow C-7; SI-MS m/z 541 [M–H]⁻, 421, 379; HR-SI-MS m/z 541.2283 [M–H]⁻ (Calcd for C₂₆H₃₇O₁₂, 541.2286).

Jasnudifloside J (5): Colorless amorphous powder, $[\alpha]_D^{23} - 189^\circ$ (c=0.17, MeOH). UV λ_{max}^{MeOH} nm (log ε): 237 (4.04). IR v_{max}^{KBr} cm⁻¹: 3406, 1732, 1713, 1624, 1074, 822. ¹H- and ¹³C-NMR, see Tables I and 2. Significant HMBC correlations: H₃-6" \rightarrow C-5", H-7" (δ 4.07) \rightarrow C-7, H-10" (δ 4.29) \rightarrow C-11, H₂-6 \rightarrow C-7; SI-MS m/z 541 [M–H]⁻, 421, 379; HR-SI-MS m/z 541.2305 [M–H]⁻ (Calcd for C₂₆H₃₇O₁₂, 541.2286).

Jasnudifloside K (6): Colorless amorphous powder, $[\alpha]_D^{24} - 135^{\circ}$ (c=0.55, MeOH). UV λ_{max}^{MeOH} nm (log ε): 236 (4.09). IR v_{max}^{KBr} cm⁻¹: 3394, 1730, 1707, 1636, 1078, 818. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H₃-6" \rightarrow C-1", 2", 5", H₂-7" \rightarrow C-7, H-10" (δ 3.56) \rightarrow C-8", 1", H-1"" \rightarrow C-10", H₂-6 \rightarrow C-7; SI-MS m/z 735 [M–H]⁻, 573, 503, 471; HR-SI-MS m/z 735.3091 [M–H]⁻ (Calcd for C₃₃H₅₁O₁₈, 735.3077).

Jasnudifloside L (7): Colorless amorphous powder, $[\alpha]_{2}^{24} - 173^{\circ}$ (c=0.73, MeOH). UV λ_{max}^{MeOH} nm (log ε): 237 (4.39). IR v_{max}^{KBr} cm⁻¹: 3419, 1734, 1717, 1636, 1076, 818. ¹H- and ¹³C-NMR, see Tables 1 and 2. Significant HMBC correlations: H-1" \rightarrow C-7", H-5" \rightarrow C-7b, H₃-6" \rightarrow C-1", 2", 5", H₂-7" \rightarrow C-7a, H₃-9" \rightarrow C-3", 8", H₂-10" \rightarrow C-8", 1", H-1" \rightarrow C-10", H₂-6a \rightarrow C-7a, H₂-6b \rightarrow C-7b; SI-MS m/z 1121 [M-H]⁻, 959, 889; HR-SI-MS m/z 1121.4304 [M-H]⁻ (Calcd for C₅₀H₇₃O₂₈, 1121.4291).

Nudifloside D (8): Colorless amorphous powder, $[\alpha]_D^{24} - 161^\circ$ (c=0.41, MeOH). UV λ_{max}^{MeOH} nm (log ε): 237 (4.08). IR v_{max}^{KBr} cm⁻¹: 3397, 1731, 1709, 1632, 1078, 818. ¹H- and ¹³C-NMR, see Tables 1 and 2. ¹H–¹H shift correlation spectrscopy (COSY) correlations: H-1" \leftrightarrow H-2", H-1" \leftrightarrow H₂-5", H-1" \leftrightarrow H₃-6", H-2" \leftrightarrow H-3", H-2" \leftrightarrow H-7", H-3" \leftrightarrow H-4", H-4" \leftrightarrow H₂-5", H-8" \leftrightarrow H₃-9", H-8" \leftrightarrow H₂-10"; Significant HMBC correlations: H-1" \rightarrow C-7", H-4" \rightarrow C-8",

H₃-6"→C-1", 2", 5", H₂-7"→C-7, H₃-9"→C-3", 8", H₂-6→C-7, OMe→C-11; SI-MS m/z 573 [M−H]⁻, 411, 341; HR-SI-MS m/z 573.2570 [M−H]⁻ (Calcd for C₂₇H₄₁O₁₃, 573.2549).

Isooleoacteoside (9): Colorless amorphous powder, $[\alpha]_D^{23} - 124^\circ$ (c=0.28, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 222 (3.98), 234 (4.29), 291 (4.28), 333 (4.60). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3406, 1731, 1705, 1634, 1609, 1520, 1285, 1074, 814. ¹H-NMR δ (CD₃OD): 1.09 (3H, d, J=6.5 Hz, H₃-6'''), 1.67 (3H, dd, J=7.0, 1.5 Hz, H₃-10""), 2.45 (1H, dd, J=14.5, 8.5 Hz, H-6""), 2.71 (1H, dd, J=14.5, 4.0 Hz, H-6""), 2.79 (2H, brt, J=7.5 Hz, H₂- β), 3.60—3.70 (1H, m, H-6""), 3.67 (3H, s, OMe), 3.74-3.80 (1H, m, H-α), 3.80-3.90 (1H, m, H-6""), 3.90 (1H, m, H- α), 3.98 (1H, dd, J=8.5, 4.0 Hz, H-5""), 4.05 (1H, dd, J=12.0, 3.0 Hz, H-6'), 4.18 (1H, dd, J=12.0, 5.0 Hz, H-6'), 4.34 (1H, d, J=8.0 Hz, H-1'), 4.82 (1H, d, J=7.5 Hz, H-1""), 5.19 (1H, br s, H-1"), 5.90 (1H, br s, H-1'''), 6.05 (1H, br q, J=7.0 Hz, H-8'''), 6.26 (1H, d, J=16.0 Hz)H-8"), 6.56 (1H, dd, J=8.0, 2.0 Hz, H-6), 6.67 (1H, d, J=8.0 Hz, H-5), 6.68 (1H, d, J=2.0 Hz, H-2), 6.78 (1H, d, J=8.5 Hz, H-5"), 6.96 (1H, dd, J=8.5, 2.0 Hz, H-6"), 7.05 (1H, d, J=2.0 Hz, H-2"), 7.48 (1H, s, H-3""), 7.60 (1H, d, J=16.0 Hz, H-7"). ¹³C-NMR δ (CD₃OD): 13.7 (C-10""), 18.5 (C-6""), 31.4 (C-5'''), 36.7 $(C-\beta)$, 41.2 (C-6'''), 52.0 (OMe), 62.8 (C-6'''), 64.3 (C-6'), 70.5×2 (C-4', C-5"'), 71.5 (C-4""), 72.1 (C-2"'), 72.4 (C- α), 72.5 (C-3"'), 73.1 (C-5'), 73.9 (C-4"'), 74.8 (C-2""), 76.2 (C-2'), 78.0 (C-3""), 78.3 (C-5"""), 81.3 (C-3'), 95.3 (C-1""), 100.9 (C-1"""), 103.1 (C-1""), 104.7 (C-1'), 109.4 (C-4""), 114.6 (C-2"), 115.2 (C-8"), 116.4 (C-5"), 116.6 (C-2), 117.2 (C-5), 121.3 (C-6), 123.3 (C-6"), 125.0 (C-8""), 127.6 (C-1"), 130.6 (C-9""), 131.4 (C-1), 144.2 (C-3), 146.2 (C-4), 146.9 (C-4"), 148.3 (C-7"), 150.0 (C-3"), 155.1 (C-3""), 168.2 (C-9"), 168.7 (C-11""), 173.4 (C-7""). Significant HMBC correlations: H- α (δ 3.75) \rightarrow C-1', H₂-6' \rightarrow C-7"", H₂-6"" \rightarrow C-7"", H-1^{""}→C-3', OMe→C-11^{""}; SI-MS m/z 1009 [M-H]⁻, 959, 421; HR-SI-MS m/z 1009.3139 [M-H]⁻ (Calcd for C₄₆H₅₇O₂₅, 1009.3191).

Alkaline Hydrolysis of 1 Followed by Esterification with (*R*)-MTPA A solution of 1 (5.5 mg) in 0.5 \times NaOH (0.7 ml) was stirred for 4 h at room temperature. The reaction mixture was neutralized with Amberlite IR-120 (H⁺ form) and concentrated *in vacuo*. The resulting residue was purified by preparative TLC (CHCl₃-MeOH, 9:1) to give triol 8 (2.6 mg). To a solution of 8 in dry CH₂Cl₂ (1 ml) were added (*R*)-MTPA (3.0 mg), DMAP (1 mg), and DCC (4 mg), and the mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with H₂O and extracted with CHCl₃, and then washed and dried. The organic layers were concentrated *in vacuo*, and the resulting residue was purified by successive preparative TLC (*n*hexane–Et₂O, 1:1), to give an ester (6.5 mg) identified as 15 (¹H-NMR).

Partial Methanolysis of 11 A solution of **11** (56.6 mg) in 0.1 M NaOMe (4 ml) was stirred for 26.5 h at room temperature. The reaction mixture was neutralized with Amberlite IR-120 (H⁺ form) and concentrated *in vacuo*. The resulting residue was separated by preparative TLC (CHCl₃–MeOH, 9:1) to give a mixture (26.4 mg) of oleoside dimethyl ester and triol, and a glucosidic fraction (30.8 mg). The latter was further purified by preparative HPLC (μ Bondasphere 5 μ Cl8-100 Å, MeCN–H₂O, 3:7) to afford **2** (19.0 mg) ([α]_D²² – 162°, ¹H-NMR).

Methylation of 3 To a solution of 3 (6.2 mg) in MeOH (1 ml) was added CH₂N₂-Et₂O until the solution showed a persistent yellow color. The reaction mixture was concentrated and dried *in vacuo* to give **11** (1.5 mg) ($[\alpha]_{D}^{22} - 194^{\circ}$, ¹H-NMR).

Partial Methanolysis of 3 A solution of **3** (7.3 mg) in 0.1 M NaOMe (1 ml) was stirred for 20 h at room temperature. The reaction mixture was neutralized with Amberlite IR-120 (H⁺ form) and concentrated *in vacuo*. The resulting residue was purified by preparative TLC (CHCl₃–MeOH–AcOH, 6:4:0.01) to give **16** (1.8 mg) and **17** (2.4 mg). **17**: ¹H-NMR δ (CD₃OD): 0.93 (3H, d, *J*=7.0 Hz, H₃-6"), 0.98 (3H, d, *J*=6.5 Hz, H₃-9"), 1.75 (3H, dd, *J*=7.0, 1.0 Hz, H₃-10), 1.94–2.60 (2H, m, H-1", H-2"), 2.45 (1H, dd, *J*=14.0, 9.0 Hz, H-6), 2.81 (1H, dd, *J*=14.0, 4.0 Hz, H-6), 3.50–3.62 (4H, m, H₂-7", H₂-10"), 3.65 (1H, dd, *J*=12.0, 4.0 Hz, H-6'), 3.88 (1H, dd, *J*=7.5 Hz, H-1'), 4.98 (1H, brq, *J*=5.0 Hz, H-5"), 5.89 (1H, br s, H-1), 6.07 (1H, brq, *J*=7.0 Hz, H-8), 7.40 (1H, s, H-3). HR-SI-MS *m*/z 559.2403 [M−H][−] (Calcd for C₂₆H₃₉O₁₃, 559.2392).

Partial Methanolysis of 12 A solution of **12** (20.8 mg) in 0.1 M NaOH (1 ml) was stirred for 24 h at room temperature. The reaction mixture was neutralized with Amberlite IR-120 (H⁺ form) and concentrated *in vacuo*. The resulting residue was purified by preparative TLC (CHCl₃–MeOH, 9:1) and preparative HPLC (μ Bondasphere 5 μ C18-100 Å, MeOH–H₂O, 1:1). to give **16** (4.6 mg) and **4** (8.3 mg).

Acknowledgment Thanks are due to Dr. M. Sugiura (Kobe Pharmaceutical University) for ¹H- and ¹³C-NMR spectra, and to Dr. K. Saiki (Kobe

March 2002

References

- Chiang Su New Medical College (eds.), "Zhong-Yao-Dai-Ci-Dian (Dictionary of Chinese Crude Drugs)," Shanghai Scientific Technologic Publisher, Shanghai, 1978, p. 1156.
- Andary C., Tahrouch S., Marion C., Wylde R., Heitz A., *Phytochemistry*, **31**, 885–886 (1992).
- a) Tanahashi T., Takenaka Y., Nagakura N., Nishi T., J. Nat. Prod., 62, 1311–1315 (1998); b) Idem, Chem. Pharm. Bull., 48, 1200–1204 (2000).
- Damtoft S., Franzyk H., Jensen S. R., *Phytochemistry*, **31**, 4197–4201 (1992).
- 5) Karasawa H., Kobayashi H., Takizawa N., Miyase T., Fukushima S., Yakugaku Zasshi, **106**, 721–724 (1986).
- Miyase T., Koizumi A., Ueno A., Noro T., Kuroyanagi M., Fukushima S., Akiyama Y., Takemoto T., *Chem. Pharm. Bull.*, **30**, 2732–2737 (1982).
- Andary C., Wylde R., Heitz A., Rascol J. P., Roussel J. L., Laffite C., *Phytochemistry*, 24, 362–364 (1985).
- Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M., Yakugaku Zasshi, 109, 366—371 (1989).