A New Isoflavone Glycoside from Ceiba pentandra (L.) GAERTNER

Hidenori UEDA,^{*a*} Norito KANEDA,^{*a*} Kazuko KAWANISHI,^{*,*a*} Sergio Mello ALVES,^{*b*} and Masataka MORIYASU^{*a*}

Pharmacognosy, Kobe Pharmaceutical University,^a 4–19–1 Motoyamakitamachi, Higashinada-ku, Kobe 658–8558, Japan and EMBRAPA-CPATU,^b Belém, Pará, Brazil. Received August 22, 2001; accepted December 11, 2001

From the 80% EtOH extract of the bark of *Ceiba pentandra* (L.) GAERTNER, a new isoflavone glycoside was isolated along with known isoflavones, vavain and vavain glucoside. The structure was elucidated by spectroscopic analysis as 5-hydroxy-7,4',5'-trimethoxyisoflavone $3'-O-\alpha$ -L-arabinofuranosyl(1 \rightarrow 6)- β -D-glucopyranoside.

Key words Ceiba pentandra; Bombacaceae; vavain; vavain glycoside

Ceiba pentandra (L.) GAERTNER (Bombacaceae) is a tropical tree and the capsules are known as kapok. It is widely used in traditional medicines as a diuretic, an antidiarrheic and an emollient.¹⁾ From the root bark of *Ceiba pentandra*, naphtoquinones have been reported with antimicrobial activities.²⁾ From the bark, vavain (1) and its glucoside (2) have been isolated with their inhibitory effects on cyclooxygenase-catalyzed prostaglandin biosynthesis.³⁾ On our studies of finding inhibitory active compounds against α -glucosidase from medicinal plants, the bark of Ceiba pentandra which was called Samauma-verdadeira in Bélem, Brazil and used for the treatment of diabetes, exhibited some inhibitory activities (data not shown). A new vavain glycoside (3) was isolated in addition to 1 and 2 in the EtOAc-soluble fraction and *n*-BuOH-soluble fraction although these compounds showed no activities against this enzyme.

Compound 3 showed a blue color under UV light (2537 Å), and a brown color when heated with 10% H₂SO₄ on TLC plate. The presence of phenolic hydroxyl group and carbonyl group was apparent from the absorption bands at 3566 (OH), 1655 (C=O), 1508 and 1474 (aromatic) cm^{-1} in the IR spectrum. These observations on TLC and IR were quite similar to those of 1 and 2. The negative secondary ion (SI)-MS of 3 revealed $[M-H]^-$ at m/z 637.1782, which corresponded to the molecular formula $\mathrm{C}_{29}\mathrm{H}_{34}\mathrm{O}_{16}.$ This suggested that compound 3 had an additional pentose sugar to vavain glucoside (2: $C_{24}H_{26}O_{12}$). Since ¹H- and ¹³C-NMR data of 3 were similar to those of 2, it was speculated that a pentose sugar was attached to the glucose moiety of 2. This was proved by a correlation between the anomeric proton (δ 4.94, J=7.5 Hz) and C-3' carbon (δ 150.7), as well as a correlation between the anomeric proton (δ 4.70, J=2.0 Hz) and a primary alcohol carbon (δ 66.9), in the heteronuclear multiple bond connectivity (HMBC) spectrum. Since the anomeric carbons attached to the anomeric protons at δ 4.94 and δ 4.70 were assigned at δ 101.3 and δ 108.3 by the heteronuclear multiple quantum coherence (HMQC), respectively, the terminal pentose sugar was connected to the 6-hydroxyl group of the glucosyl moiety. This was also supported by HMBC connectivities between a hydroxyl proton (δ 5.36, J=5.0 Hz) and sugar carbons (δ 101.3, δ 76.6, δ 73.3) and between a hydroxyl proton (δ 5.12, J=5.0 Hz) and sugar carbons (δ 75.3, δ 66.9), and by the comparison with ¹³C-NMR chemical shifts of 2, that is, a signal due to C-6 of the glucosyl moiety was displaced downfield by 6.2 ppm and a signal due to C-5 of the glucosyl moiety was shielded by 1.7 ppm, while the other glucosyl carbon remained almost unshifted.4) Based on HMBC connectivities between a hydroxyl proton (δ 5.17, J=5.5 Hz) and sugar carbons (δ 108.3, δ 81.9, δ 76.9) and between a hydroxyl proton (δ 4.95, J=5.5 Hz) and sugar carbons (δ 81.9, δ 76.9, δ 83.7), the terminal pentose sugar was determined as α -arabinofuranoside, whose ¹³C-NMR chemical shifts demonstrated the characteristic pattern.⁵⁾ To confirm the configuration of sugars, **3** was hydrolyzed to afford **1** and D-glucose and L-arabinose detected by the chromatography. Thus, the structure of **3** was elucidated as 5-hydroxy-7,4',5'-trimethoxyisoflavone 3'-O- α -L-arabinofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside.

Experimental

General Procedures Melting points were determined on a Yanaco micro melting point apparatus and uncorrected. UV and IR spectra were recorded using a Hitachi U-3010 spectrometer in MeOH and on a Shimadzu FTIR-8200 spectrometer in KBr, respectively. Optical rotation were measured on JASCO DIP-370 digital polarimeter in EtOH or pyridine. ¹H- and ¹³C-NMR spectra were taken on a Varian VXR-500 instrument at 500 MHz, and 125 MHz, respectively with TMS as an internal standard. HMQC and HMBC spectra were obtained on a Varian VXR-500 instrument at 500 MHz. High resolution electron impact (HR-EI)-MS and HR-SI-MS (glycerol for a matrix) were recorded with a Hitachi M-4100 instrument. Column chromatography was carried out on silica gel (Kieselgel 60, 70-230 mesh, Merck Co.). TLC was performed on Silica gel 60 F₂₅₄ plates (0.25 mm, Merck Co.), and spots were detected under UV light and colored by spraying with 10% H₂SO₄ solution followed by heating. HPLC was carried out on LiChrospher 100 NH₂ (4×125 mm, Merck Co.) eluted with CH₃CN-H₂O (9:1), using refractive index (RI) detector (RID-10A, Shimadzu).

Plant Materials The dry bark of *Ceiba pentandra* (L.) GAERTNER was purchased in Belém, Brazil in June 1996, and was identified by Dr. Joaquim Gomes and Dr. Irenice Alves (EMBRAPA-CPATU, Belém, Brazil). A voucher specimen (No. Belém 1996-5), representing the collection has been deposited at Kobe Pharmaceutical University, Japan.

Extraction and Isolation The dry bark of *Ceiba pentandra* (560 g) were powdered and extracted with 80% EtOH ($1000 \text{ ml} \times 3$). Each filtrate

Fig. 1. Structures of Compounds 1—3

Table 1. ¹H-NMR Spectral Data of Compounds 1—3

Proton No	. 1 ^{<i>a</i>)}	2 ^{b)}	3 ^{b)}
2	7.88 (1H, s)	8.50 (1H, s)	8.46 (1H, s)
6	6.39 (1H, d, 2.0)	6.44 (1H, d, 2.0)	6.43 (1H, d, 2.0)
8	6.41 (1H, d, 2.0)	6.69 (1H, d, 2.5)	6.67 (1H, d, 2.5)
2'	6.70 (1H, d, 2.5)	6.99 (1H, d, 2.0)	6.96 (1H, d, 2.0)
6'	6.74 (1H, d, 2.0)	6.98 (1H, d, 2.0)	6.97 (1H, d, 2.0)
5-OH	12.82 (1H, s)	12.92 (1H, s)	12.92 (1H, s)
3'-OH	5.83 (1H, s)		
7-OMe	3.88 (3H, s)	3.88 (3H, s)	3.87 (3H, s)
4'-OMe	3.93 (3H, s)	3.75 (3H, s)	3.75 (3H, s)
5'-OMe	3.91 (3H, s)	3.81 (3H, s)	3.81 (3H, s)
Glc 1		4.91 (1H, d, 7.0)	4.94 (1H, d, 7.5)
2		3.25—3.32 ^{c)} (1H)	3.26—3.30 ^{c)} (1H)
3		3.25—3.32 ^{c)} (1H)	3.26—3.30 ^{c)} (1H)
4		3.13—3.18 (1H, m)	3.12—3.18 (1H, m)
5		3.25—3.32 ^{c)} (1H)	3.45—3.50 (1H, m)
6		3.42-3.47	3.38—3.44 ^{c)} (1H)
		(1H, td, 12.0, 6.0)	
		3.68-3.71	3.84—3.88 ^{c)} (1H)
		(1H, ddd, 12.0, 5.5, 2	2.0)
Glc 2-OH	[5.32 (1H, d, 5.0)	5.36 (1H, d, 5.0)
3-OH	I	5.09 (1H, d, 4.5)	5.16 (1H, d, 4.0)
4-OH	I	5.01 (1H, d, 5.5)	5.12 (1H, d, 5.0)
6-OH	I	4.55 (1H, t, 5.5)	
Ara 1			4.70 (1H, d, 2.0)
2			3.69—3.72 (1H, m)
3			3.55—3.59 (1H, m)
4			3.62—3.67 (1H, m)
5			3.31—3.38 ^{c)} (1H)
			3.48—3.52 ^{c)} (1H)
Ara 2-OH	I		5.17 (1H, d, 5.5)
3-OH	I		4.95 (1H, d, 5.5)
5-OH	I		4.67 (1H, t, 5.0)

	1 (<i>q</i>)	a b)	$3^{b)}$	
Carbon No.	. I ^u	237		HMBC
2	153.2	155.2	155.3	
3	123.7	122.2	122.3	H-2, H-2', H-6'
4	180.6	180.0	180.1	H-2, H-8
5	162.8	161.7	161.7	Н-6, 5-ОН
6	98.3	98.1	98.2	Н-8, 5-ОН
7	165.6	165.3	165.3	H-6, H-8, 5-OH, 7-OMe
8	92.5	92.5	92.6	H-6
9	157.9	157.3	157.5	H-2, H-8
10	106.3	105.3	105.4	Н-6, Н-8, 5-ОН
1'	126.7	125.7	126.0	H-2, H-2', H-6'
2'	108.5	109.9	110.4	H-6′
3'	149.4	150.6	150.7	H-2', Glc H-1
4'	135.8	138.3	138.7	H-2', H-6', 4'-OMe
5'	152.3	152.6	152.8	H-6', 5'-OMe
6'	105.5	107.4	107.8	H-2'
7-OMe	55.8	55.9	56.1	
4'-OMe	61.0	60.2	60.4	
5'-OMe	56.0	56.1	56.0	
Glc 1		100.8	101.3	Glc H-3, Glc H-5, Glc 2-OH
2		73.2	73.3	Glc H-3, Glc 2-OH, Glc 3-OH
3		76.8	76.6	Glc H-2, Glc H-4, Glc 2-OH
4		69.8	69.9	Glc H-3, Glc H-5, Glc 4-OH
5		77.0	75.3	Glc H-6, Glc 4-OH
6		60.7	66.9	Glc H-4, Glc H-5, Ara H-1
Ara 1			108.3	Ara H-2, Ara H-6, Ara 2-OH
2			81.9	Ara H-1, Ara H-3, Ara 2-OH, Ara 3-OH
3			76.9	Ara H-1, Ara H-2, Ara H-4, Ara 2-OH, Ara 3-OH
4			83.7	Ara H-1, Ara H-3, Ara H-5, Ara 3-OH
5			61.1	Ara 5-OH

a) Measured in CDCl₃. b) Measured in DMSO- d_6 . c) Overlapped with other proton peaks. Glc: β -D-glucopyranosyl, Ara: α -L-arabinofuranosyl.

was combined and evaporated to obtain an extract (25.7 g). The EtOH extract was dissolved in CHCl₃ (500 ml×3, 2.4 g), EtOAc (500 ml×3, 0.8 g) and *n*-BuOH (500 ml×3, 14.5 g), successively, and further obtained residue (7.1 g). At first the EtOAc-soluble fraction (0.78 g) was chromatographed on a column of silica gel (80 g) using CHCl₃–MeOH (10:1) to give 4 fractions (frs. 1—4). Repeated column chromatography of fr. 2 on silica gel (20 g) using EtOAc–MeOH (10:1) and CHCl₃ gave 1 (15.5 mg). Similarly repeated column chromatography of fr. 3 on silica gel (80 g) using EtOAc–MeOH–H₂O (40:5:0.1) gave 2 (32.6 mg) and column chromatography of fr. 4 on silica gel (20 g) using EtOAc–MeOH–H₂O (40:5:0.1) gave 3 (10.7 mg). Next the *n*-BuOH-soluble fraction (2.0 g) was chromatography of give 6 fractions (frs. A—F). Repeated column chromatography of fr. C on silica gel using EtOAc–MeOH–H₂O (40:5:0.1) gave 3 (19.5 mg).

Vavain (Pentandrin⁶⁾) (1): Pale yellow amorphous powder (MeOH); mp 162—163 °C; HR-EI-MS (positive ion mode): m/z [M]⁺ 344.0092 (Calcd for C₁₈H₁₆O₇: 344.0994); IR (KBr) $v_{\rm max}$ cm⁻¹: 3425 (OH), 1661 (C=O), 1508 (aromatic); UV (MeOH) $\lambda_{\rm max}$ (log ε): 213 (4.34), 262 (4.55); ¹H- and ¹³C-NMR: see Tables 1 and 2.

Vavain 3'-O- β -D-glucopyranoside (Pentandrin glucoside⁶⁾) (2): White amorphous powder (MeOH); mp 127—128 °C; $[\alpha]_D^{20} - 14.5^\circ$ (c=0.2, pyridine), -4.0° (c=0.1, EtOH); HR-SI-MS (negative ion mode): m/z [M-H]⁻ 505.1335 (Calcd for C₂₄H₂₅O₁₂: 505.1344); IR (KBr) ν_{max} cm⁻¹: 3425 (OH), 1663 (C=O), 1510 (aromatic); UV (MeOH) λ_{max} (log ε): 215 (4.39), 263 (4.53); ¹H- and ¹³C-NMR: see Tables 1 and 2. a) Measured in CDCl_3 . b) Measured in $\text{DMSO-}d_6$. Glc: β -D-glucopyranosyl, Ara: α -L-arabinofuranosyl.

Compound 3: White amorphous powder (MeOH); mp 213—214 °C; $[\alpha]_D^{20}$ -71.6° (*c*=0.1, pyridine); HR-SI-MS (negative ion mode): *m/z* [M-H]⁻ 637.1782 (Calcd for C₂₉H₃₃O₁₆: 637.1766); IR (KBr) ν_{max} cm⁻¹: 3566 (OH), 1655 (C=O), 1508, 1474 (aromatic); UV (MeOH) λ_{max} (log ε): 216 (4.31), 263 (4.49); ¹H- and ¹³C-NMR: see Tables 1 and 2.

Acid Hydrolysis of 3 Compound 3 (3 mg) was refluxed with 5% HCl in MeOH (5 ml) for 2 h. After cooling and evaporating MeOH off *in vacuo*, the reaction mixture was partitioned between chloroform and water. The chloroform layer was applied for co-TLC with 1. The water layer was lyophilized, and then the residue was compared with authentic sugars detected by RI on HPLC.

References

- Andersson Dunstan C., Noreen Y., Serrano G., Cox P. A., Perera P., Bohlin L., J. Ethnopharmacol., 57, 35–56 (1997).
- Rao K. V., Sreeramulu K., Gunasekar D., Ramesh D., J. Nat. Prod., 56, 2041–2045 (1993).
- Noreen Y., El-Seedi H., Perera P., Bohlin L., J. Nat. Prod., 61, 8–12 (1998).
- Tori K., Seo S., Yoshimura Y., Arita H., Tomita Y., *Tetrahedron Lett.*, 2, 179–182 (1977).
- 5) Beier C. R., Mundy P. B., J. Carbohydr. Chem., 3, 253-266 (1984).
- Ngounou F. N., Meli A. L., Lontsi D., Sondengam B. L., Atta-Ur-Rahman, Choudhary M. I., Malik S., Akhtar F., *Phytochemistry*, 54, 107– 110 (2000).