Studies on the Constituents of *Syringa* Species. X.¹⁾ Five New Iridoid Glycosides from the Leaves of *Syringa reticulata* (BLUME) HARA

Koichi Machida, Atsuko Kaneko, Tomokazu Hosogai, Rie Kakuda, Yasunori Yaoita, and Masao Kikuchi*

Tohoku Pharmaceutical University, 4–4–1 Komatsushima, Aoba-ku, Sendai, Miyagi 981–8558, Japan. Received November 7, 2001; accepted December 18, 2001

Five new iridoid glycosides, (8Z)-ligstroside (1), (8Z)-nüzhenide (3), 6'-O- α -D-glucopyranosylsyringopicroside (4), 3'-O- β -D-glucopyranosylsyringopicroside (5) and 4'-O- β -D-glucopyranosylsyringopicroside (6) were isolated, together with a known one, (8E)-nüzhenide (2), from the leaves of *Syringa reticulata*. Their structures were established on the basis of chemical and spectral data. Compounds 1 and 3 are the first findings of a (8Z)-oleoside-type secoiridoid. Compound 4 is the first naturally occurring iridoid di-glycoside having an isomaltose.

Key words Syringa reticulata; Oleaceae; (8Z)-ligstroside; (8Z)-nüzhenide; iridoid di-glycoside; isomaltose

In previous papers, we reported on the isolation of eleven new glycosides from the leaves of *Syringa reticulata* (BLUME) HARA.²⁻⁵⁾ In the course of further studies on the constituents of the above plant, five new iridoid glycosides (1, 3-6) along with a known one (2) have been isolated. This paper deals with the structural elucidation and identification of these compounds. The isolation procedure is described in detail in the Experimental section. Compound 2 was identified as (8*E*)-nüzhenide by comparison of the spectral data with those reported in the literature.⁶

Compound 1 was obtained as an amorphous powder, $[\alpha]_D^{26}$ –81.3° (MeOH). The molecular formula of 1, $C_{25}H_{32}O_{12}$, was confirmed by high-resolution (HR)-FAB-MS and was coincident with that of (8*E*)-ligstroside^{7,8} isolated from the same plant.⁵⁾ Its ¹H-NMR spectral pattern was very similar to that of (8*E*)-ligstroside, except for the chemical shifts owing to 1-H, 5-H, 6-H₂, 8-H, 10-H₃ and 1'-H, respectively.⁹⁾ The ¹H–¹H shift correlation spectroscopy (COSY) and ¹H-detected heteronuclear multiple bond correlation (HMBC, Fig. 1) experiments of 1 made up the same plane structure as (8*E*)-ligstroside, suggesting that 1 is the 8*Z*-isomer of (8*E*)-ligstroside. The stereochemistry of 1 was defined by the

¹H–¹H COSY and nuclear Overhauser enhancement spectroscopy (NOESY) experiments. As shown in Fig. 2, the NOE correlations and homoallylic coupling of (8*E*)-ligstroside indicated that both 1-H and 6-H₂ were quasi-axial with respect to the dihydropyran ring. On the other hand, the NOE correlations (1-H/10-H₃, 5-H/8-H, 6-H₂/8-H), and homoallylic (5-H/10-H₃) and allylic (3-H/5-H) couplings of 1 indicated that the geometry of the olefinic bond at C-8 is the *Z*configuration, and both 1-H and 6-H₂ are quasi-equatorial with respect to the dihydropyran ring. Consequently, the structure of 1 was determined to be (8*Z*)-ligstroside.

Compound **3** was obtained as an amorphous powder, $[\alpha]_{D}^{20}$ -101.1° (MeOH). The molecular formula of **3**, $C_{31}H_{42}O_{17}$, was confirmed by HR-FAB-MS and was coincident with that of **2**. Its ¹H-NMR spectral pattern was similar to that of **2**, except for the chemical shifts owing to 1-H, 5-H, 6-H₂, 8-H, 10-H₃ and 1'-H, respectively. With regard to these proton signals of **3**, the chemical shifts were almost the same as those of **1**. The ¹H-¹H COSY and HMBC (Fig. 1) experiments of **3** made up the same plane structure as **2**, suggesting that **3** is the 8*Z*-isomer of **2**. As shown in Fig. 2, the NOE correlations (1-H/10-H₃, 5-H/8-H, 6-H₂/8-H), and homoallylic (5-H/10-

Chart 1

Fig. 1. The Main HMBC Correlation

Heavy lines indicate partial structures inferred from ¹H-¹H COSY.

Fig. 2. NOE Correlations and Long-Range Couplings ←→ NOE, ←→ long-range coupling.

H₃) and allylic (3-H/5-H) couplings of **3** indicated that the geometry of the olefinic bond at C-8 is the *Z*-configuration, and both 1-H and 6-H₂ are quasi-equatorial with respect to the dihydropyran ring. Consequently, the structure of **3** was determined to be (8*Z*)-nüzhenide. It is likely that the conformational changes of the dihyroropyran rings arise from steric hindrance between the β -D-glucopyranose attached C-1 and 10-CH₃.

Compound 4 was obtained as an amorphous powder, $[\alpha]_{D}^{26}$ -28.6° (MeOH). The molecular formula of 4, $C_{30}H_{40}O_{16}$, was confirmed by HR-FAB-MS. The ¹³C-NMR spectrum of 4 was similar to that of syringopicroside¹⁰ isolated from the same plant,^{3,11)} except for the presence of an additional hexosyl moiety and difference in the chemical shift at C-6' position [δ 68.0 (+5.2 ppm)]. In the ¹H-NMR spectrum of 4, the coupling constant of the anomeric proton signal of the additional hexosyl moiety was 3.7 Hz (δ 4.83). Acid hydrolysis of 4 gave only D-glucose, which was identified by gas-liquid chromatography (GLC) after conversion to the TMSi ether of thiazolidine derivative.¹²) These indicated that the additional α -D-glucopyranosyl moiety in 4 is attached to 6'-OH in syringopicroside. This finding was supported by the NOE and HMBC correlations (Fig. 3). Consequently, the structure of 4 was determined to be 6'-O- α -D-glucopyranosylsyringopicroside. Compound 4 is the first naturally occurring iridoid diglycoside having an isomaltose.

Compound **5** was obtained as an amorphous powder, $[\alpha]_{D}^{26}$ -88.9° (MeOH). The molecular formula of **5**, $C_{30}H_{40}O_{16}$, was confirmed by HR-FAB-MS and was coincident with that of **4**. The ¹³C-NMR spectrum of **5** was similar to that of syringopicroside, except for the presence of an additional hexosyl moiety and difference in the chemical shift at C-3' position [δ 87.5 (+9.4 ppm)]. In the ¹H-NMR spectrum of **5**, the coupling constant of the anomeric proton signal of the additional hexosyl moiety was 8.1 Hz (δ 4.57). Acid hydrolysis proved that both of two sugars in **5** are D-glucose in the above manner. These indicated that the additional β -D-glucopyra-

Fig. 3. Diagnostic HMBC and NOE Correlations for 4, 5 and 6 HMBC, \longrightarrow NOE.

nosyl moiety in **5** is attached to 3'-OH in syringopicroside. This finding was supported by the NOE and HMBC correlations (Fig. 3). Consequently, the structure of **5** was determined to be 3'-O- β -D-glucopyranosylsyringopicroside.

Compound **6** was obtained as an amorphous powder, $[\alpha]_{D}^{20}$ -77.2° (MeOH). The molecular formula of **6**, C₃₀H₄₀O₁₆, was confirmed by HR-FAB-MS and was coincident with that of **5**. The ¹H-NMR spectrum of **6** resembled that of **5** except for the shift of the signal assigned to the additional anomeric proton [δ 4.40 (d, *J*=7.8 Hz)]. In the ¹³C-NMR spectrum, the C-4' signal (δ 80.6) of **6** was shifted downfield by 9.0 ppm compared with that of syringopicroside. Acid hydrolysis proved that both of two sugars in **6** are D-glucose in the above manner. These indicated that the additional β -D-glucopyranosyl moiety in **6** is attached to 4'-OH in syringopicroside. This finding was supported by the NOE and HMBC correlations (Fig. 3). Consequently, the structure of **6** was determined to be 4'-O- β -D-glucopyranosylsyringopicroside.

The iridoid glycoside which comprises an oleoside moiety as a framework is called oleoside-type secoiridoid, and this

Fig. 4. Possible Biosynthetic Pathways of Oleoside-Type Secoiridoids

E = Elimination. * They are not yet identified from the leaves of *S. reticulata.* # It is not associated with the general concept of a stereoselective enzymatic reaction, but probably arises from the steric hindrance between glucopyranose attached C-1 and 10-CH₃.

type occurs only in Oleaceae plants. All of them isolated so far have *E*-configuration of the olefinic bond at C-8. Compounds **1** and **3** are the first findings of a (8*Z*)-oleoside-type secoiridoid. From a biosynthetic point of view, it is interesting to note that (8*Z*)-oleoside-type secoiridoid was isolated from a natural source. Previous biosynthetic investigations (bold lines) of (8*E*)-oleoside-type secoiridoid reported by Inouye *et al.*^{13,14} and our structural studies described above presume that these type secoiridoids are biosynthesized by the route depicted in Fig. 4.

Experimental

General Optical rotation were taken with a JASCO DIP-360 digital polarimeter. UV spectra were recorded with a Beckman DU-64 spectrometer. The ¹H- and ¹³C-NMR spectra were recorded with JEOL JNM-GSX 400 (400 MHz, 100 MHz, respectively) and JEOL JNM-LA 600 (600 MHz, 150 MHz, respectively) spectrometers. Chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. FAB-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (Merck; 70–230 mesh), Cosmosil 75C₁₈-OPN (Nacalai Tesque) and Sephadex LH-20 (Pharmacia Fine Chemicals). Preparative HPLC was carried out on a Tosoh HPLC system [pump, CCPS; detector, UV-8020; column, Cosmosil 5C₁₈-AR (10 mm i.d.×25 cm, Nacalai Tesque)]. GLC was carried out on a Shimadzu GC-7A equipped with hydrogen flame ionization detector (FID).

Material The leaves of *S. reticulata* were collected near Sendai, Miyagi prefecture, Japan, in July 1985 and identified by one of the authors (M. Kikuchi). A voucher specimen is held in the laboratory of M. Kikuchi.

Isolation Fresh leaves of *S. reticulata* (3.8 kg) were extracted with MeOH at room temperature for 10 d. The MeOH extract was concentrated under reduced pressure and the residue was suspended in water. This sus-

pension was successively extracted with CHCl₃, Et₂O, AcOEt, n-BuOH and H₂O. The CHCl₃-soluble fraction was concentrated under reduced pressure to produce a residue (88.2 g). The extract (25.0 g) was suspended in MeOH-H₂O (3:1, 60 ml), and the soluble material (18.0 g) was chromatographed on a C₁₈ open column using MeOH-H₂O (3:1) and the eluate was separated into seven fractions (frs. 1-7). Fraction 1 was rechromatographed on a silica gel column using CHCl₃-MeOH (9:1, 5:1, 1:1) and the eluate was separated into eleven fractions (frs. 1-1-1-11). Fraction 1-6 was subjected to preparative HPLC [column, Cosmosil 5C18-AR; mobile phase, MeOH-H2O (1:1); UV detector, 224 nm: column, Cosmosil 5SL; mobile phase, CHCl₃-MeOH-H₂O (30:10:1); UV detector, 230 nm; each flow rate: 1.5 ml/min] to give (8E)-ligstroside (370.5 mg), syringopicroside (25.0 mg) and compound 1 (10.0 mg). The n-BuOH-soluble fraction was concentrated under reduced pressure to produce a residue (107.0 g). The extract (25.0 g)was chromatographed on a silica gel column using CHCl3-MeOH (10:3, 5:2, 2:1, 1:1, 2:3) and the eluate was separated into three fractions (frs. 1-3). Fraction 1 was rechromatographed on a silica gel column using $CHCl_3$ -MeOH (5:1, 1:1) and the eluate was separated into seven fractions (frs. 1-1-1-7). Fraction 1-4 was chromatographed on a Sephadex LH-20 column using 50% MeOH and the eluate was separated into five fractions (frs. 1-4-1-1-4-5). Fraction 1-4-2 was subjected to preparative HPLC [column, Cosmosil 5C₁₈-AR; mobile phase, MeOH-H₂O (2:3); UV detector, 225 nm: column, Cosmosil 5SL; mobile phase, CHCl₂-MeOH-H₂O (30: 10:1); UV detector, 230 nm; each flow rate; 1.5 ml/min] to give syringopicroside (30.0 mg), compounds 2 (32.5 mg), 3 (8.0 mg), 4 (7.5 mg), 5 (13.0 mg) and 6 (28.0 mg).

(8*Z*)-Ligstroside (1) An amorphous powder, $[\alpha]_{D}^{26} - 81.3^{\circ}$ (*c*=0.2, MeOH); UV λ_{max} (MeOH) nm (log ε): 276 (3.41), 225 (4.25). FAB-MS *m/z*: 547 [M+Na]⁺. HR-FAB-MS *m/z*: 547.1825 [M+Na]⁺ (C₂₅H₃₂O₁₂Na, Calcd for 547.1791). ¹H-NMR (400 MHz, CD₃OD) δ : 7.45 (1H, d, *J*=1.2 Hz, 3-H), 7.04 (2H, d, *J*=8.5 Hz, 2", 6"-H), 6.72 (2H, d, *J*=8.5 Hz, 3", 5"-H), 6.23 (1H, br s, 1-H), 5.48 (1H, dq, *J*=7.1, 1.0 Hz, 8-H), 4.64 (1H, d, *J*=7.8 Hz, 1'-H), 4.19 (2H, m, α -H₂), 3.91 (1H, dd, *J*=12.0, 2.0 Hz, 6'-H_B), 3.68 (3H, s, 11-COOCH₃), 3.66 (2H, m, 5-H, 6'-H_A), 3.27—3.38 (3H, m, 3', 4', 5'-H),

3.19 (1H, dd, J=8.8, 7.8 Hz, 2'-H), 2.89 (1H, dd, J=15.6, 3.8 Hz, 6-H_B), 2.81 (2H, t, J=6.8 Hz, β -H₂), 2.62 (1H, dd, J=15.6, 8.1 Hz, 6-H_A), 1.71 (3H, dd, J=7.1, 1.7 Hz, 10-H₃). ¹³C-NMR (100 MHz, CD₃OD): Table 1.

(8*E*)-Nüzhenide (2) An amorphous powder, $[\alpha]_D^{2\delta} - 140.0^\circ$ (*c*=0.6, MeOH). FAB-MS *m/z*: 709 [M+Na]⁺. ¹H-NMR (400 MHz, CD₃OD) δ: 7.51 (1H, s, 3-H), 7.05 (2H, d, *J*=8.5 Hz, 2", 6"-H), 6.68 (2H, d, *J*=8.5 Hz, 3", 5"-H), 6.09 (1H, br q, *J*=7.5 Hz, 8-H), 5.92 (1H, br s, 1-H), 4.80 (1H, d, *J*=7.8 Hz, 1'-H), 4.34 (1H, dd, *J*=12.0, 2.2 Hz, 6"'-H_B), 4.30 (1H, d, *J*=8.1 Hz, 1"'-H), 4.20 (1H, br t, *J*=7.5 Hz, α-H_B), 3.88 (1H, dd, *J*=12.2, 1.5 Hz, 6'-H_B), 3.68 (3H, s, 11-COOCH₃), 3.68 (2H, m, α-H_A, 6'-H_A), 3.29—3.47 (7H, m, 2', 3', 4', 5'-H, 3"'', 4"'', 5"'-H), 3.19 (1H, dd, *J*=8.8, 8.1 Hz, 2"''-H), 2.83 (2H, br t, *J*=7.5 Hz, β-H₂), 2.75 (1H, dd, *J*=14.4, 4.9 Hz, 6-H_B), 2.49 (1H, dd, *J*=14.4, 8.8 Hz, 6-H_A), 1.72 (3H, dd, *J*=7.1, 1.5 Hz, 10-H₃). The spectral data were identified by those of reported data.⁶)

(8*Z*)-Nüzhenide (3) An amorphous powder, $[α]_{D}^{26} - 101.1^{\circ}$ (*c*=1.0, MeOH); UV λ_{max} (MeOH) nm (log ε): 276 (3.24), 225 (4.10). FAB-MS *m/z*: 709 [M+Na]⁺. HR-FAB-MS *m/z*: 709.2343 [M+Na]⁺ (C₃₁H₄₂O₁₇Na, Calcd for 709.2320). ¹H-NMR (400 MHz, CD₃OD) δ : 7.46 (1H, d, *J*=1.5 Hz, 3-H), 7.05 (2H, d, *J*=8.5 Hz, 2", 6"-H), 6.69 (2H, d, *J*=8.5 Hz, 3", 5"-H), 6.24 (1H, s, 1-H), 5.67 (1H, brq, *J*=7.1 Hz, 8-H), 4.67 (1H, d, *J*=7.8 Hz, 1'-H), 4.42 (1H, dd, *J*=12.0, 2.0 Hz, 6"'H_a), 4.29 (1H, d, *J*=7.8 Hz, 1"'-H), 4.16 (1H, dd, *J*=12.0, 5.6 Hz, 6"'-H_a), 3.70 (3H, m, 5-H, 6'-HA, α-H_a), 3.66 (3H, s, 11-COOCH₃), 3.27—3.45 (6H, m, 3', 4', 5'-H, 3", 4"'', 5"'-H), 3.20 (2H, $μ_2$, 2", 4"-H), 2.93 (1H, dd, *J*=15.7, 7.4.0 Hz, 6-H_B), 2.84 (2H, brt, *J*=7.8 Hz, *β*-H₂), 2.73 (1H, dd, *J*=15.7, 7.8 Hz, 6-H_A), 1.75 (3H, dd, *J*=7.1, 1.7 Hz, 10-H₃). ¹³C-NMR (100 MHz, CD₃OD): Table 1.

6'-**0**-**α**-**b**-**Glucopyranosylsyringopicroside (4)** An amorphous powder, $[\alpha]_{D}^{26} - 28.6^{\circ} (c=0.2, MeOH); UV <math>\lambda_{max}$ (MeOH) nm (log ε): 276 (3.30), 225 (4.10). FAB-MS *m/z*: 679 [M+Na]⁺. HR-FAB-MS *m/z*: 679.2196 [M+Na]⁺ (C₃₀H₄₀O₁₆Na, Calcd for 679.2214). ¹H-NMR (600 MHz, CD₃OD) δ : 7.44 (1H, d, *J*=1.5 Hz, 3-H), 7.04 (2H, d, *J*=8.8 Hz, 2^{*m*}, 6^{*m*}-H), 6.71 (2H, d, *J*=8.8 Hz, 3^{*m*}, 5^{*m*}-H), 5.55 (1H, d, *J*=3.7 Hz, 1-H), 4.83 (1H, d, *J*=3.7 Hz, 1^{*n*}-H), 4.70 (1H, d, *J*=8.1 Hz, 1'-H), 4.26 (4.25 (each 1H, t, *J*=7.0 Hz, α⁻H₂), 3.90 (1H, dd, *J*=11.4, 5.5 Hz, 6'-H_B), 3.80 (1H, dd, *J*=11.4, 2.0 Hz, 6'-H_A), 3.79 (1H, dd, *J*=10.0, 2.0 Hz, 6^{*m*}-H_A), 3.65 (1H, t, *J*=9.5 Hz, 3^{*m*}-H), 3.64 (1H, dd, *J*=10.0, 5.5 Hz, 6^{*m*}-H_A), 3.65 (1H, t, *J*=7.0 Hz, β⁻-H₂), 2.56 (1H, dd, *J*=19.4, 8.4 Hz, 6-Hβ), 2.43 (1H, dd, *J*=19.4, 1.5 Hz, 6-Hα), 2.31 (1H, ddd, *J*=9.5, 7.3 Hz, 10-H₃). ¹³C-NMR (150 MHz, CD₃OD): Table 2.

3'-O-β-D-Glucopyranosylsyringopicroside (5) An amorphous powder, $[\alpha]_D^{26} - 88.9^{\circ} (c=0.3, \text{ MeOH}); UV λ_{max} (MeOH) nm (log ε): 276 (3.38), 224 (4.11). FAB-MS$ *m/z*: 679 [M+Na]⁺. HR-FAB-MS*m/z*: 679.2246 [M+Na]⁺ (C₃₀H₄₀O₁₆Na, Calcd for 679.2214). ¹H-NMR (600 MHz, CD₃OD) δ: 7.43 (1H, d,*J*=1.5 Hz, 3-H), 7.04 (2H, d,*J*=8.4 Hz, 2^{*m*}, 6^{*m*}-H), 6.71 (2H, d,*J*=8.4 Hz, 3^{*m*}, 5^{*m*}-H), 5.61 (1H, d,*J*=3.3 Hz, 1-H), 4.72 (1H, d,*J*=8.1 Hz, 1'-H), 4.57 (1H, d,*J*=8.1 Hz, 1''-H), 4.26 (a.25 (each 1H, t,*J*=7.0 Hz, α'H₂), 3.91 (1H, dd,*J*=11.7, 2.0 Hz, 6'-H_B), 3.88 (1H, dd,*J*=12.1, 2.2 Hz, 6''-H_A), 3.58 (1H, dd,*J*=8.8, 8.4 Hz, 3''-H), 3.21---3.41 (8H, m, 5-H, 2', 4', 5'-H, 2", 3'', 4", 5''-H), 2.84 (2H, t,*J*=7.0 Hz, β-H₂), 2.56 (1H, dd,*J*=19.1, 8.3 Hz, 6-Hβ), 2.43 (1H, br d,*J*=10.1, R, 6-Hα), 2.32 (1H, ddd,*J*=9.9, 7.7, 3.3 Hz, 9-H), 2.11 (1H, br q,*J*=7.0 Hz, 8-H), 1.14 (3H, d,*J*=7.0 Hz, 10-H₃). ¹³C-NMR (150 MHz, CD₃OD): Table 2.

4'-O-β-D-Glucopyranosylsyringopicroside (6) An amorphous powder, $[\alpha]_D^{26} - 77.2^\circ$ (*c*=0.8, MeOH); UV λ_{max} (MeOH) nm (log ε): 276 (3.28), 225 (4.10). FAB-MS *m/z*: 679 [M+Na]⁺. HR-FAB-MS *m/z*: 679.2196 [M+Na]⁺ (C₃₀H₄₀O₁₆Na, Calcd for 679.2214). ¹H-NMR (400 MHz, CD₃OD) δ : 7.43 (1H, d, *J*=1.5 Hz, 3-H), 7.04 (2H, d, *J*=8.5 Hz, 2^{*m*}, 6^{*m*}-H), 6.71 (2H, d, *J*=8.5, Hz, 3^{*m*}, 5^{*m*}-H), 5.58 (1H, d, *J*=3.2 Hz, 1-H), 4.70 (1H, d, *J*=8.1 Hz, 1'-H), 4.40 (1H, d, *J*=7.8 Hz, 1"-H), 4.26, 4.25 (each 1H, t, *J*=6.8 Hz, α-H₂), 3.94 (1H, dd, *J*=12.0, 2.3 Hz, 6'-H_B), 3.88 (1H, dd, *J*=11.8, 2.0 Hz, 6"-H_A), 3.55 (1H, m, 4'-H), 3.53 (1H, m, 3'-H), 3.46 (1H, ddd, *J*=9.3, 4.4, 2.3 Hz, 5'-H), 3.22-3.38 (6H, m, 5-H, 2'', 3", 4", 5"-H), 2.84 (2H, t, *J*=6.8 Hz, β-H₂), 2.56 (1H, dd, *J*=10.1, 7.3, 3.2 Hz, 9-H), 2.10 (1H, dq, *J*=10.1, 7.1 Hz, 8-H), 1.14 (3H, d, *J*=7.1 Hz, 10-H₃). ¹³C-NMR (100 MHz, CD₃OD): Table 2.

Determination of Absolute Structures of Glucosyl Moieties in 1-6 Each of compounds 1-6 (*ca.* 1 mg) was refluxed with 4% HCl for 4 h. The

Vol. 50, No. 4

Table 1. ¹³C-NMR Spectral Data for **1**, **2** and **3** (100 MHz, CD₃OD)

	(8E)-Ligstroside	1 (8Z)-Ligstroside	2 (8 <i>E</i>)-Nüzhenide	3 (8 <i>Z</i>)-Nüzhenide
C-1	95.2	93.7	95.2	93.7
C-3	155.2	154.2	155.2	154.2
C-4	109.5	112.3	109.5	112.2
C-5	31.9	33.6	31.8	33.6
C-6	41.3	37.8	41.4	37.7
C-7	173.2	173.8	173.1	173.6
C-8	124.9	126.1	125.0	126.2
C-9	130.1	132.2	130.6	132.1
C-10	13.6	13.4	13.8	13.5
C-11	168.7, 51.9	168.6, 51.8	168.7, 52.0	168.6, 51.8
C-1′	100.9	100.1	100.9	100.1
C-2'	74.8	74.7	74.8	74.7
C-3′	78.0	78.1	77.98	78.0
C-4′	71.5	71.6	71.6	71.6
C-5′	78.5	78.4	78.5	78.4
C-6′	62.8	62.8	62.8	62.8
C-α	66.9	66.7	72.3	72.3
С-В	35.2	35.2	36.5	36.5
C-1″	130.6	130.1	130.8	130.8
C-2"	131.0	131.0	131.0	131.0
C-3″	116.3	116.3	116.2	116.2
C-4"	157.1	157.1	156.9	156.9
C-5″	116.3	116.3	116.2	116.2
C-6"	131.0	131.0	131.0	131.0
C-1‴	—	—	104.5	104.5
C-2‴	—	—	75.0	75.0
C-3‴	_	_	78.02	78.1
C-4‴	—	—	71.7	71.6
C-5‴	—	—	75.2	75.4
C-6‴		—	65.1	64.8

Table 2. ¹³C-NMR Spectral Data for 4, 5 and 6 (CD₃OD)

	Syringopicroside	4 (150 MHz)	5 (150 MHz)	6 (100 MHz)
C 1	05.5	06.0	05.6	05.5
C-3	153.2	153.3	153.0	153.2
C-3	111.3	111.3	11113	111.3
C 5	28.3	28.5	28.3	28.3
C-6	43.6	20.5 43 7	43.5	43.5
C-7	220.7	220.9	220.7	220.7
C-8	220.7 44 7	44.8	44 7	220.7 44 7
C-9	46.6	46.6	46.6	46.6
C-10	13.7	14.0	13.7	13.7
C-11	168.4	168.4	168.4	168.4
C-1'	100.1	100.7	100.0	100.1
C-2'	74 7	74.6	75.6	75.0
C-3'	78.1	78.1	87.5	76.4
C-4′	71.6	71.6	70.1	80.6
C-5′	78.5	76.8	78.24	77.0
C-6′	62.8	68.0	62.7	61.8
C-1″	_	100.2	105.2	104.7
C-2″	_	73.7	74.1	74.4
C-3″	_	75.3	77.9	77.9
C-4″	_	71.8	71.6	71.4
C-5″	_	73.8	78.16	78.2
C-6″	_	62.7	62.7	62.5
C-α	66.3	66.4	66.4	66.4
С-β	35.4	35.4	35.4	35.4
C-1‴	130.2 (C-1")	130.2	130.2	130.2
C-2‴	131.0 (C-2")	131.0	131.0	131.0
C-3‴	116.4 (C-3")	116.3	116.4	116.4
C-4‴	157.2 (C-4")	157.1	157.1	157.1
C-5‴	116.4 (C-5")	116.3	116.4	116.4
C-6‴	131.0 (C-6")	131.0	131.0	131.0

reaction mixture was neutralized with Ag₂O, filtered and excess Ag⁺ of the filtrate was removed with H₂S. The solution was concentrated *in vacuo* and dried to give a glycosyl residue which was subjected to preparation of the corresponding thiazolidine derivative, followed by trimethylsilylation and GLC analysis, according to the reported procedure.¹² GLC conditions: column, G-column (Kagakuhin Kensa Kyokai, 1.2 mm i.d.×40 m); column temp., 240 °C; carrier gas, N₂ (30 ml/min). D-glucose, t_R 39.4 min (ref.: L-glucose, t_R 41.2 min).

Acknowledgments The authors are grateful to Mrs. S. Sato and T. Matsuki of their university for NMR and MS measurements.

References and Notes

- Part 10 in the series "Studies on the Constituents of Syringa Species," For part 9: Kikuchi M., Yamauchi Y., Sugiyama M., Annual Report of Tohoku College of Pharmacy, 36, 97—104 (1989).
- Kikuchi M., Yamauchi Y., Annual Report of Tohoku College of Pharmacy, 33, 63–68 (1986).
- 3) Kikuchi M., Yamauchi Y., Yakugaku Zasshi, 107, 23-27 (1987).
- Kikuchi M., Yamauchi Y., Tanabe F., Yakugaku Zasshi, 107, 350—354 (1987).
- Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M., Yakugaku Zasshi, 109, 366–371 (1989).
- 6) Inouye H., Nishioka T., Tetrahedron, 28, 4231-4237 (1972).
- 7) Asaka Y., Kamikawa T., Kubota T., Sakamoto H., Chem. Lett., 1972, 141-144.
- Lalonde R. T., Wong C., Tsai A. I-M., J. Am. Chem. Soc., 98, 3007– 3013 (1976).

- 9) (8*E*)-Ligstroside; $[\alpha]_{D}^{26}$ -184.8° (*c*=3.7, MeOH) [lit.⁷⁾ -110.7° (*c*=1.0, EtOH), lit.⁸⁾ -180.0° (*c*=0.23, 95% EtOH)]. ¹H-NMR (400 MHz, CD₃OD) δ : 7.51 (1H, s, 3-H), 7.05 (2H, d, *J*=8.5 Hz, 2″, 6″-H), 6.71 (2H, d, *J*=8.5 Hz, 3″, 5″-H), 6.07 (1H, dq, *J*=7.0, 1.0 Hz, 8-H), 5.92 (1H, dd, *J*=1.5, 1.0 Hz, 1-H), 4.80 (1H, d, *J*=7.8 Hz, 1′-H), 4.22, 4.10 (each 1H, dt, *J*=10.7, 7.1 Hz, α -H₂), 3.96 (1H, dd, *J*=9.0, 4.6 Hz, 5-H), 3.89 (1H, dd, *J*=12.0, 2.0 Hz, 6′-H_B), 3.71 (3H, s, 11-COOCH₃), 3.67 (1H, dd, *J*=12.0, 5.6 Hz, 6′-H_A), 3.30—3.43 (4H, m, 2′, 3′, 4′, 5′-H), 2.82 (2H, t, *J*=7.1 Hz, β -H₂), 2.70 (1H, dd, *J*=14.1, 4.6 Hz, 6-H_B), 2.43 (1H, dd, *J*=14.1, 9.0 Hz, 6-H_A), 1.64 (3H, dd, *J*=7.1, 1.5 Hz, 10-H₃).
- Asaka Y., Kamikawa T., Tokoroyama T., Kubota T., *Tetrahedron*, 26, 2365–2370 (1970).
- 11) Syringopicroside; $[\alpha]_{0}^{26} -105.3^{\circ}$ (*c*=0.4, MeOH). ¹H-NMR (400 MHz, CD₃OD) δ : 7.44 (1H, d, *J*=1.5 Hz, 3-H), 7.04 (2H, d, *J*=8.5 Hz, 2", 6"-H), 6.71 (2H, d, *J*=8.5 Hz, 3", 5"-H), 5.61 (1H, d, *J*=3.4 Hz, 1-H), 4.67 (1H, d, *J*=8.1 Hz, 1'-H), 4.25 (2H, brt, *J*=6.8 Hz, α -H₂), 3.90 (1H, dd, *J*=12.0, 2.0 Hz, 6'-H_B), 3.65 (1H, dd, *J*=12.0, 6.1 Hz, 6'-H_A), 3.14—3.37 (5H, m, 5-H, 2', 3', 4', 5'-H), 2.84 (2H, brt, *J*=6.8 Hz, β -H₂), 2.56 (1H, dd, *J*=19.3, 8.3 Hz, 6-H β), 2.43 (1H, dd, *J*=19.3, 2.0 Hz, 6-H α), 2.32 (1H, ddd, *J*=10.2, 8.3, 3.4 Hz, 9-H), 2.10 (1H, dq, *J*=8.3, 7.1 Hz, 8-H), 1.14 (3H, d, *J*=7.1 Hz, 10-H₃).
- 12) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **35**, 501–506 (1987).
- 13) Inouye H., Ueda S., Inoue K., Takeda Y., *Chem. Pharm. Bull.*, **22**, 676–686 (1974).
- 14) Inoue K., Nishioka T., Tanahashi T., Inouye H., *Phytochemistry*, 21, 2305—2311 (1982).