New Pregnane Glycosides from *Cynanchum ascyrifolium*

Hosup YEO, Young Hae CHOI, and Jinwoong KIM*

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Seoul 151–742, Korea. Received December 17, 2001; accepted February 1, 2002

Two new pregnane glycosides, cynascyrosides D and E, were isolated from the roots of *Cynanchum ascyrifolium*. The structures of these compounds were determined on the basis of spectroscopic and chemical evidence as cynajapogenin A $3-O-\alpha$ -L-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-digitoxopyranosyl- $(1\rightarrow 4)$ - β -L-cymaropyranoside and cynajapogenin A $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-diginopyranosyl- $(1\rightarrow 4)$ - β -L-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-digitoxopyranosyl- $(1\rightarrow 4)$ - β -D-digitoxopyranosy

Key words pregnane glycoside; Cynanchum ascyrifolium; cynascyroside D; cynascyroside E

Cynanchum ascyrifolium MATSUMURA (Asclepiadaceae) is a widely distributed species in eastern Asia, the roots of which have been used as an antitussive and expectorant in Korea.¹⁾ Previously, we isolated three steroidal glycosides with a 14,15-*seco*-18-*nor*-pregnane skeleton, cynascyrosides A—C, from the roots of this plant.²⁾ As a continuation of the phytochemical investigation of this plant, we now describe the isolation and structural elucidation of two additional pregnane glycosides, cynascyrosides D and E.

Experimental

General Experimental Procedures Melting points: uncorr. FAB-MS was measured on a Finnigan MAT 90 mass spectrometer. IR spectra were recorded on a Perkin-Elmer 1710 spectrometer. NMR spectra were measured with a JEOL JNM-LA 300 spectrometer (300 MHz for ¹H and 75 MHz for ¹³C). ¹H-NMR was run in CDCl₃ solution and ¹³C-NMR in C₅D₅N solution with tetramethylsilane (TMS) as an internal standard. Optical rotations were determined with a JASCO DIP-1000. TLC was performed on precoated silica gel 60 F₂₅₄ (Merck), and column chromatography (CC) was carried out on silica gel (230–400 mesh, Merck).

Plant Material The roots of *Cynanchum ascyrifolium* MATSUMURA were collected at Bakbong (Korea) in June 1987, and taxonomically identified by Dr. Bo Sup Chung, a former professor of the College of Pharmacy, Seoul National University. A voucher specimen has been deposited in the herbarium of our institute.

Extraction and Isolation The air-dried roots of *C. ascyrifolium* (2 kg) were cut into pieces and extracted with MeOH. The MeOH extract was evaporated *in vacuo* to give a crude extract (430 g), which was successively extracted with *n*-hexane, CHCl₃ and *n*-BuOH. The CHCl₃ extract (120 g) was fractionated by CC over silica gel using a CHCl₃–MeOH gradient to give three fractions (fr. 1: 1.5 g, fr. 2: 37 g, fr. 3: 19 g), of which fr. 2 and fr. 3 showed positive Liebermann–Burchard and Keller–Kiliani reactions. Fraction 2 (30 g) was submitted to CC on silica gel with *n*-hexane–EtOAc–MeOH (17: 17: 1) to give 1 (730 mg). Fraction 3 (12 g) was subjected to repeated CC over silica gel with CHCl₃–MeOH–7% HCO₂H (10: 3: 2) and EtOAc–MeOH–H₂O (25: 2: 1) to afford **2** (300 mg).

Cynascyroside D (1): Pale yellow powder, mp 102—104 °C; $[\alpha]_D^{23} - 54.3^{\circ}$ (*c*=0.1, MeOH); UV λ_{max}^{EtOH} nm: 212; IR ν_{max}^{KBr} cm⁻¹: 3451, 1714, 1651, 1518, 1100; FAB-MS (negative) *m/z*: 747 [M-H]⁻, 603 [M-H-144]⁻, 473 [603–130]⁻; ¹H-NMR: δ 1.13 (3H, s, H-19), 1.23, 1.26 (×2) (9H, d, *J*=6.4 Hz, H-6', H-6'', H-6'''), 2.18 (3H, s, H-21), 3.42 (3H, s, 3''-OMe), 3.46 (3H, s, 3'-OMe), 4.81 (1H, dd, *J*=9.6, 2.0 Hz, H-1'), 4.85 (1H, dd, *J*=9.6, 1.6 Hz, H-1''), 4.91 (1H, br d, *J*=3.9 Hz, H-1'''), 5.43 (1H, br d, *J*=4.4 Hz, H-6), 6.22 (1H, d, *J*=2.1 Hz, H-16), 7.27 (1H, d, *J*=2.1 Hz, H-15); ¹³C-NMR: see Tables 1 and 2.

Cynascyroside E (2): Pale yellow powder, mp 135—137 °C; $[\alpha]_D^{23} - 65.0^{\circ}$ (*c*=0.1, MeOH); UV λ_{\max}^{EiOH} nm: 219; IR v_{\max}^{Eir} cm⁻¹: 3472, 1715, 1651, 1454, 1370, 1061; FAB-MS (negative) *m/z*: 909 [M-H]⁻, 747 [M-H-162]⁻, 603 [747-144]⁻, 459 [603-144]⁻, 329 [aglycone]⁻; ¹H-NMR: δ 1.13 (3H, s, H-19), 1.24, 1.25, 1.29 (each 3H, d, *J*=6.4 Hz, H-6', H-6'', H-6'''), 2.17 (3H, s, H-21), 3.43, 3.46 (each 3H, s, 3"-OMe, 3"'-OMe), 4.45 (1H, d, *J*=7.2 Hz, H-1'''), 4.81 (1H, br d, *J*=9.9 Hz, H-1'), 4.85 (1H, br d, *J*=9.3 Hz, H-1'''), 5.09 (1H, br s, H-1''), 5.44 (1H, m, H-6), 6.21 (1H, d, *J*=2.1 Hz, H-16), 7.27

* To whom correspondence should be addressed. e-mail: jwkim@snu.ac.kr

(1H, d, J=2.1 Hz, H-15); ¹³C-NMR: see Tables 1 and 2.

Acidic Hydrolysis of Each Glycoside (1, 2) To a solution of each compound (100 mg) in 15 ml MeOH was added 30 ml of $0.1 \times H_2SO_4$, respectively. Each reaction mixture was kept at 50 °C for 50 min, then diluted with H_2O (30 ml) and concentrated to 60 ml. The solution was maintained at 60 °C for another 30 min, then neutralized with aq. saturated Ba(OH)₂, and the precipitate were filtered off. The filtrate was concentrated to dryness and chromatographed on a column of silica gel with cyclohexane–isopropyl ether–MeOH (4:4:1) to afford **3** (17.1 and 14.2 mg from **1** and **2**, respectively) (4), mp 72—74 °C; $[\alpha]_{D}^{23}$ –42.0° (*c*=0.1, MeOH). The sugar components in each hydrolysate were identified by TLC comparison with authentic samples. The *Rf* values of L-cymarose, D-digitoxose and L-diginose: 0.42, 0.04 and 0.35 with solvent *n*-hexane–Me₂CO (1:1); 0.59, 0.42 and 0.56 with CHCl₃–MeOH–H₂O (12:3:1, lower layer), respectively.

Results and Discussion

The CHCl₃-soluble extract of the roots of *C. ascyrifolium* was pre-fractionated using CC on silica gel to obtain a crude mixture of steroidal glycosides with 2-deoxy sugar residues which exhibited positive Liebermann–Burchard and Keller–Kiliani reactions. The crude glycoside mixture was subjected to repeated silica gel CC with various solvent systems to afford pure pregnane glycosides **1** and **2**.

Cynascyroside D (1) possessed the molecular formula C₄₀H₆₀O₁₃ on the basis of FAB mass spectrum and ¹³C-NMR data, and its IR spectrum showed absorption bands for hydroxyl (3451 cm^{-1}) , carbonyl (1714 cm^{-1}) and olefinic (1651 cm⁻¹) groups. The ¹H-NMR spectrum of **1** revealed the presence of two tertiary methyl groups [δ 1.13 (Me-19), 2.18 (Me-21)], one olefinic proton [δ 5.43 (brd, J=4.4 Hz, H-6)] and two aromatic protons on a furan ring [δ 6.22, 7.27 (each d, J=2.1 Hz, H-16, H-15)] in its aglycone moiety. Proton signals due to three secondary methyl groups [δ 1.23, 1.26 (9H, each d, J=6.4 Hz)], two methoxyl groups [δ 3.42, 3.46] and three anomeric protons [δ 4.81 (dd, J=9.6, 2.0 Hz), 4.85 (dd, J=9.6, 1.6 Hz), 4.91 (br d, J=3.9 Hz)] in its sugar moiety were observed. The splitting patterns of anomeric proton signals indicated that 1 has three sugar units, with one α -linkage and two β -linkages. Mild acidic hydrolysis of 1 afforded an aglycone (3), and two sugar components, L-cymarose and D-digitoxose, by comparison with authentic samples. The aglycone was identified as cynajapogenin A (3), which is a 14,15-seco-18-nor-pregnane isolated from Cynanchum atratum, by comparison of their physical and spectroscopic data.³⁾ In the ¹³C-NMR spectrum of 1, glycosidation shifts^{4,5)} were observed at the C-2 (-2.28 ppm), C-3 (+9.03 ppm) and C-4 (-2.68 ppm) positions when compared with ¹³C chemical shifts of **3**, indicat-

3 R = H

Fig. 1. Chemical Structures of Compounds 1—3

Table 1. ¹³C-NMR Chemical Shifts of the Aglycone Moieties

С	1	2	3
1	45.36	45.31	45.95
2	70.05	70.01	72.33
	(-2.28)	(-2.32)	
3	85.37	85.25	76.34
	(+9.03)	(+8.91)	
4	37.65	37.58	40.33
	(-2.68)	(-2.75)	
5	138.84	138.77	139.71
6	121.49	121.45	120.77
7	25.86	25.81	25.69
8	51.97	51.90	52.10
9	45.49	45.43	45.51
10	38.77	38.72	39.32
11	25.43	25.36	25.42
12	33.80	33.73	33.63
13	47.82	47.82	47.79
14	209.35	209.40	209.35
15	140.16	140.14	140.03
16	111.99	111.96	111.68
17	117.91	117.88	117.78
19	19.94	19.88	20.11
20	148.22	148.17	148.13
21	11.87	11.82	11.82

 δ values (ppm) from internal TMS in C5D5N. Glycosidation shifts are given in parentheses.

ing the attachment of the sugar chain at the C-3 hydroxyl group of the aglycone. The ¹H- and ¹³C-NMR spectra of **1** suggested that the three sugar components were β -L-cy-maropyranose, β -D-digitoxopyranose and α -L-cymaropyranose, which were supported by the ¹H-¹³C correlation spectroscopy (COSY) spectrum. Its negative FAB mass spectrum exhibited fragment ion peaks at m/z 747 [M-H]⁻, 603 [747–144]⁻, and 473 [603–130]⁻, suggesting that the sugar at the middle position in the sugar chain is D-digitoxopyranose. The ¹H- and ¹³C-NMR chemical shifts of the sugar moiety were identical with those reported for the sugar portion of glycoside-C, a known compound isolated from *Cy*-

Table 2. ¹³C-NMR Chemical Shifts of the Sugar Moieties

С	1	2
	β-l-Cym	β-D-Dgt
1'	97.84	97.78
2'	36.98	39.58
3'	77.82	69.34
4'	82.86	82.89
5'	69.36	67.63
6'	18.18	18.47
3'-OMe	58.96	—
	β -d-Dgt	β -L-Cym
1″	100.38	100.42
2″	38.38	36.97
3″	68.80	77.81
4″	80.77	82.12
5″	67.77	68.63
6"	18.38	18.12
3"-OMe	_	58.96
	α-L-Cym	α-L-Dgn
1‴	98.41	100.71
2‴	32.22	32.13
3‴	76.52	74.47
4‴	72.65	74.86
5‴	67.17	67.98
6‴	18.49	17.65
3‴-OMe	56.81	55.48
		β -D-Glc
1‴″		105.33
2‴″		75.15
3‴″		78.43
4‴″		71.62
5""		78.08
6""		62.89

Cym: cymaropyranosyl, Dgt: digitoxopyranosyl, Dgn: diginopyranosyl, Glc: glu-copyranosyl.

nanchum glaucescens.⁶⁾ Based on the above data, the structure of compound **1** was determined to be cynajapogenin A $3-O-\alpha$ -L-cymaropyranosyl- $(1\rightarrow 4)-\beta$ -D-digitoxopyranosyl- $(1\rightarrow 4)-\beta$ -L-cymaropyranoside.

Cynascyroside E (2) has the molecular formula $C_{46}H_{70}O_{18}$ on the basis of FAB mass spectrum and ¹³C-NMR data. Its IR and ¹H-NMR spectrum indicated that the aglycone of **2** is the same type as 1. Proton signals due to three secondary methyl groups at δ 1.24, 1.25 and 1.29 (each d, J=6.4 Hz), two methoxyl groups at δ 3.43 and 3.46, and four anomeric protons at δ 4.45 (d, J=7.2 Hz), 4.81 (br d, J=9.9 Hz), 4.85 (br d, J=9.3 Hz) and 5.09 (br s) were observed in its sugar moiety. These findings indicated that there were four sugar units with one α -linkage and three β -linkages in 2. Mild acidic hydrolysis of compound 2 yielded an aglycone (3), and four sugar components, D-digitoxose, L-cymarose, L-diginose and D-glucose, by comparison with authentic samples. Its negative FAB mass spectrum showed fragments at m/z909 $[M-H]^-$, 747 $[909-162]^-$, 603 $[747-144]^-$, 459 $[603-144]^-$ and 329 $[459-130]^-$, which indicated the presence of glucose at the terminal position and digitoxose linked to the aglycone. In the ¹³C-NMR spectrum of **2**, a glycosidation shift of the aglycone carbon signals was observed at the C-2 (-2.32 ppm), C-3 (+8.91 ppm) and C-4 (-2.75 ppm)positions, confirming the attachment of the sugar chain at the C-3 hydroxyl group of the aglycone. The sequence of these four sugars in compound 2 was confirmed by the heteronuclear multiple bond correlation (HMBC) spectrum, which showed distinct cross-peaks of correlation from $\delta_{\rm H}$ 4.45 (H-1^{""} of β -D-glucopyranose) to $\delta_{\rm C}$ 74.86 (C-4^{""} of α -L-diginopyranose), from $\delta_{\rm H}$ 4.85 (H-1^{""} of α -L-diginopyranose) to $\delta_{\rm C}$ 82.12 (C-4["] of β -L-cymaropyranose), from $\delta_{\rm H}$ 5.09 (H-1["] of β -L-cymaropyranose) to $\delta_{\rm C}$ 82.89 (C-4['] of β -D-digitoxopyranose), and from $\delta_{\rm H}$ 4.81 (H-1['] of β -D-digitoxopyranose) to $\delta_{\rm C}$ 85.25 (C-3). Thus, the structure of compound **2** was elucidated as cynajapogenin A 3-*O*- β -D-glucopyranosyl-(1(4)- α -L-diginopyranosyl-(1)- β -L-cymaropyranosyl-(1)- β -D-digitoxopyranosyl-(1)- β -D- β -D-

Acknowledgements This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Research Centre for New Drug Development at Seoul National University. We are grateful to Profes-

sor Koji Hayashi of Hokkaido University for supplying authentic samples of deoxy sugars.

References

- Kim J. G., "Illustrated Natural Drugs Encyclopedia," Vol. 1, Namsandang, Seoul, 1984, p. 201.
- Yeo H., Kim K. W., Kim J., Choi Y. H., *Phytochemistry*, 49, 1129– 1133 (1998).
- Zhang Z. X., Zhou J., Hayashi K., Kaneko K., *Phytochemistry*, 27, 2935–2941 (1988).
- Kasai R., Suzuo M., Asakawa J., Tanaka O., *Tetrahedron Lett.*, 1977, 175–178.
- Seo S., Tomita Y., Tori K., Yoshimura Y., J. Am. Chem. Soc., 100, 3331–3339 (1978).
- Nakagawa T., Hayashi K., Wada K., Mitsuhashi H., Tetrahedron, 39, 607–612 (1983).