Four New 3,5-Cyclosteroidal Saponins from Dracaena surculosa

Akihito Yokosuka, Yoshihiro MIMAKI,* and Yutaka SASHIDA

Laboratory of Medicinal Plant Science, School of Pharmacy, Tokyo University of Pharmacy and Life Science; 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan. Received February 18, 2002; accepted March 25, 2002

Further search for steroidal compounds contained in *Dracaena surculosa* (Agavaceae) led to the isolation of two new 3,5-cyclospirostanol saponins (1, 2) and two new 3,5-cyclofurostanol saponins (3, 4). Their structural assignment was established by spectroscopic analysis and a few chemical transformations as $(24S,25R)-1\beta$ -[(β -D-fu-copyranosyl)oxy]-6 β -hydroxy-3 α ,5 α -cyclospirostan-24-yl β -D-glucopyranoside (1), $(24S,25R)-1\beta$ -[(β -D-glucopyranosyl)oxy]-6 β -hydroxy-3 α ,5 α -cyclospirostan-24-yl β -D-glucopyranoside (2), $(25S)-1\beta$ -[(β -D-glucopyranosyl)oxy]-6 β -hydroxy-22 α -methoxy-3 α ,5 α -cyclofurostan-26-yl β -D-glucopyranoside (3), and $(25S)-1\beta$ -[(β -D-fucopyranosyl)oxy]-6 β -hydroxy-22 α -methoxy-3 α ,5 α -cyclofurostan-26-yl β -D-glucopyranoside (4), respectively.

Key words Dracaena surculosa; Agavaceae; steroidal saponin; 3,5-cyclospiostanol saponin; 3,5-cyclofurostanol saponin

Dracaena surculosa LINDLE is an Agavaceae plant distributed in tropical regions of Asia, America, and Africa.¹⁾ We previously made a phytochemical analysis of the whole plant of *D. surculosa* and isolated nine steroidal saponins, including three new bisdesmosidic spirostanol saponins.²⁾ Our further investigation of the chemical constituents of this plant has resulted in the isolation of two new 3,5-cyclospirostanol saponins (1, 2) and two new 3,5-cyclofurostanol saponins (3, 4). In this paper, we report the structural elucidation of the new compounds based on spectroscopic analysis and a few chemical transformations.

The plant material (fresh weight of 4.3 kg) was extracted with hot MeOH. The MeOH extract was passed through a porous-polymer polystyrene resin (Diaion HP-20) column, eluting with 30% MeOH, MeOH, and EtOAc. Column chromatography of the MeOH eluate portion over silica gel and octadecylsilanized (ODS) silica gel gave 1 (14 mg), 2 (4 mg), 3 (22 mg), and 4 (27 mg).

Compound 1 was isolated as an amorphous solid, $[\alpha]_{D}$ -90.0° (MeOH). The positive-ion FAB-MS of 1 showed an $[M+Na]^+$ ion at m/z 777, compatible with the molecular formula of $C_{39}H_{62}O_{14}$, which was confirmed by data from the ¹³C-NMR spectrum with a total of 39 carbon signals and the results of elemental analysis. The ¹H-NMR spectrum of 1 (Table 1) exhibited two three-proton singlet signals at δ 1.64 and 0.88, indicating the presence of two angular methyl groups, as well as two three-proton doublet signals at δ 1.32 (J=6.9 Hz) and 1.12 (J=6.9 Hz), which were characteristic of the steroidal skeleton. In addition, two anomeric protons observed at δ 5.03 (d, J=7.7 Hz) and 4.57 (d, J=7.8 Hz) implied the presence of two monosaccharides, one of which was assumed to be 6-deoxyhexopyranose from a three-proton doublet signal at δ 1.56 (J=6.4 Hz). This ¹H-NMR information and one quaternary carbon signal at δ 111.2, along with two anomeric carbon signals at δ 103.4 and 101.2 in the ¹³C-NMR spectrum were indicative of 1 being a spirostanol saponin with two monosaccharides. Comparison of the ¹Hand ¹³C-NMR assignments of 1, which were carried out by analysis of the ¹H-¹H shift correlation spectroscopy (COSY), ¹H-detected heteronuclear multiple quantum coherence (HMQC), and ¹H-detected heteronuclear multiple-bond connectivities (HMBC) spectra, with those of $(24S, 25R)-1\beta$ -[(β -D-fucopyranosyl)oxy]-3 β -hydroxyspirost-5-en-24-yl β -Dglucopyranoside (surculoside B), a spirostanol bisdesmoside previously encountered in the same plant source,²⁾ revealed that the structure of the ring C-F portion of the molecule was identical to the reference compound, including the β -Dglucopyranosyloxy group attached at C-24 and the configurations of C-24 and C-25. However, significant differences were recognized in the signals from the ring A and B parts; the C-3 hydroxy-bearing methine proton and carbon could not be detected and a methylene carbon was newly observed in a very high field (δ 15.8), which was associated with the proton signals at δ 1.51 (t-like, J=4.0 Hz) and 0.56 (dd, J= 8.0, 4.0 Hz) and suggested the presence of a cyclopropane ring. The oxymethine carbon at δ 84.8 was correlated to the one-bond coupled proton at δ 4.35 (brd, J=4.0 Hz) by the HMQC spectrum. An HMBC correlation between the methyl singlet signal at δ 1.64 attributable to H₃-19 and the carbon resonance at δ 84.8 allowed the assignment of $\delta_{\rm H}$ 4.35 and $\delta_{\rm C}$ 84.8 as H-1 and C-1, respectively (Fig. 1). The H-1 proton thus assigned showed spin-coupling correlation with the

Table 1. ¹H- and ¹³C-NMR Chemical Shift Assignments of 1 in C₅D₅N

Position	$^{1}\mathrm{H}$	J (Hz)	¹³ C
1	4.35. br d	4.0	84.8
2 (2H)	2.28, br m		33.1
3	1.14, m		23.2
4a	1.51, t-like	4.0	15.8
b	0.56. dd	8.0, 4.0	
5		,	40.0
6	3.47, br s		73.0
7eq	2.05, ddd	13.4, 3.3, 2.4	38.6
ax	1.26, ddd	13.4, 12.0, 2.4	
8	2.48, m		30.1
9	0.87, m		50.2
10	_		49.2
11eq	1.81, m		23.3
ax	1.68, m		
12eq	1.77, m		40.5
ax	1.21, m		
13			41.0
14	1.18, m		56.6
15a	2.08, m		32.1
b	1.44, m		
16	4.54, m		81.6
17	1.85, dd	8.5, 6.7	62.5
18	0.88, s		16.8
19	1.64, s		16.9
20	1.97, m		42.5
21	1.12, d	6.9	14.7
22	—		111.2
23 (2H)	2.05, d-like	10.8	34.1
24	4.80, ddd	10.8, 10.8, 6.1	72.8
25	2.26, m	10.0	31.7
26eq	3.93, br d	10.2	64.2
ax	3.52, br d	10.2	0.0
27	1.32, d	6.9	9.9
1'	4.57, d	7.8	103.4
2'	4.2/, dd	9.3, 7.8	72.0
3	4.07, dd	9.5, 5.5	/5./
4	4.04, overlapping	6.4	72.8
5	5.//, q-like	0.4 6.4	/1.4
0	1.30, d	0.4	17.5
1	5.05, d	1.1	101.2
∠ 3″	4.00, dd	0.0, /./	73.3 7 97
5 1″	4.27, uu 4.22, dd	9.0, 0.0	/0./
+ 5″	4.32, uu 3.03. ddd	9.2, 9.0	78.4
5	5.95, uuu 4.50, dd	9.2, 4.7, 2.2	/ 0.4 62 5
u a b	4.30, dd	11.9, 2.2	02.5
U	4.40, uu	11.2, 4./	

methylene protons at δ 2.28 (2H, br m), which, in turn, exhibited a correlation with the methine proton at δ 1.14. The δ 1.14 resonance had spin-coupling links with a geminal pair of protons at δ 1.51 and 0.56, which showed no additional coupling correlation. Thus, the structural fragment of $-C_{(1)}H(-O_{-})-C_{(2)}H_2-C_{(3)}H-C_{(4)}H_2$ was assigned to the ring A part. The 19-methyl proton exhibited long-range correlations with not only the signal at δ 49.2 due to C-10 but also another quaternary carbon signal at δ 40.0 exclusively assignable to C-5. The remaining free bond at C-3 was rationally linked to C-5 on the basis of the above NMR data and taking into account of the acceptable distance of a linkage between C-3 and C-5. In addition, signals for a secondary hydroxyl group were identified at $\delta_{\rm H}$ 3.47 (1H, br s) and $\delta_{\rm C}$ 73.0, and HMBC correlations from δ 3.47 to C-5 and C-10 led to the location of the hydroxyl group at C-6. As in surculoside B, linkage of a β -D-glucopyranosyl group at C-1 was

Fig. 1. HMBC Correlations of the Ring A and B Moieties of 1

Fig. 2. NOE Correlations of the Ring A and B Moieties of 1

confirmed by a long-range correlation between the signals of the anomeric proton at δ 4.57 and the C-1 carbon. Accordingly, the ring A and B parts were shown to include a 3,5cyclo-1-fucosyloxy-6-hydroxyl structure. In the phase-sensitive NOE correlation spectroscopy (PHNOESY) spectrum of 1, an NOE correlation between H-8 [δ 2.48 (m)] and H₃-19 indicated the B/C trans ring fusion. Further NOEs from H-1 to H-9 [δ 0.87 (m)] and H-11 α (eq) [δ 1.81 (m)], H-3 to H-4b (δ 0.56), H-6, and H-7 α (ax) [δ 1.26 (ddd, J=13.4, 12.0, 2.4 Hz)], and from H-4b to H-6 were consistent with the 1β , 3α , 5α , and 6β configurations (Fig. 2). Finally, the structure of 1 was ascertained by converting 1 to surculoside B; the solution of 1 dissolved in dioxane– $H_2O(8:1)$ containing ptoluenesulfonic acid (p-TsOH) as catalyst was heated at 95°C for 3 h to give surculoside B. All of these data allowed the structural elucidation of 1 as $(24S, 25R) - 1\beta - [(\beta - D - fucopyra$ nosyl)oxy]-6 β -hydroxy-3 α ,5 α -cyclospirostan-24-yl β -D-glucopyranoside.

Compound 2 ($C_{39}H_{62}O_{15}$) was obtained as an amorphous solid. The ¹H-NMR spectrum of **2** showed signals characteristic of the 1,24-bisdesmosidic spirostanol saponin with a 3α , 5α -cyclo ring system and a 6β -hydroxyl group as observed in that of 1. Analysis of the ¹³C-NMR spectrum of 2 and comparison with that of 1 suggested that the structure of the aglycon moiety of 2 was completely identical to that of 1, but differed from 1 in terms of the monosaccharide constituent. Instead of the signals for a fucosyl moiety, six signals assignable to a β -D-glucopyranosyl group were observed at δ 103.1 (C-1), 74.9 (C-2), 78.9 (C-3), 72.0 (C-4), 78.2 (C-5), and 63.1 (C-6). In the HMBC spectrum, the anomeric proton signal at δ 4.78 (d, J=7.9 Hz) corresponding to the carbon signal at δ 103.1 showed a long-range correlation with the aglycon C-1 carbon signal at δ 85.0, while the anomeric proton signal of another glucosyl residue at δ 5.04 had a correlation with C-24 at δ 72.8. Thus, the structure of 2 was formulated as $(24S, 25R)-1\beta$ -[(β -D-glucopyranosyl)oxy]-6 β -hydroxy-3 α ,5 α -cyclospirostan-24-yl β -D-glucopyranoside.

Compound 3 ($C_{40}H_{66}O_{15}$) was suggested to be a 22methoxyfurostanol saponin by a positive color reaction with Ehrlich's reagent,^{3,4)} and the ¹H-NMR [δ 3.25 (3H, s)] and ¹³C-NMR [δ 112.7 (C-22) and 47.3 (Me)] spectra.⁵) The ¹H-NMR spectrum showed signals for four steroid methyl groups at δ 1.64 (s), 1.17 (d, J=6.9 Hz), 1.05 (d, J=6.7 Hz), and 0.85 (s), a pair of cyclopropane methylene protons at δ 1.58 (t-like, J=4.0 Hz) and 0.60 (dd, J=7.9, 4.0 Hz), and two anomeric protons at δ 4.85 (d, J=7.8 Hz) and 4.77 (d, J=7.8 Hz). The ¹H- and ¹³C-NMR assignments of **3**, which were carried out by analysis of the COSY spectrum followed by HMQC and HMBC data, suggested that the structure of the ring A and B parts included a 3,5-cyclo-1-glucosyloxy-6hydroxyl structure. In the PHNOESY spectrum, an NOE correlation between H-8 [δ 2.48 (m)] and H₂-19 [1.64 (s)] confirmed the B/C trans ring fusion. Furthermore, NOE correlations were observed from H-1 [δ 4.41 (br d, J=4.9 Hz)] to H-9 [δ 0.82 (m)] and H-11 α (eq) [δ 1.80 (m)], H-3 [δ 1.13 (m)] to H-4b [δ 0.60 (dd, J=7.9, 4.0 Hz)], H-6 [δ 3.48 (br s)], and H-7 α (ax) [δ 1.25 (ddd, J=13.0, 11.8, 2.5 Hz)], and from H-4b to H-6, which corresponded to the 1β , 3α , 5α , and 6β configurations. When the dioxane-H₂O solution of 3 was treated in the presence of p-TsOH at 95°C for 1 h, 3 was converted to (25S)-1 β -[(β -D-glucopyranosyl)oxy]-3 β -hydroxy-22 α -methoxyfurost-5-en-26-yl β -D-glucopyranoside.²⁾ Thus, the structure of **3** was assigned as $(25S)-1\beta$ -[(β -D-glucopyranosyl)oxy]-6 β -hydroxy-22 α -methoxy-3 α ,5 α -cyclofurostan-26-yl β -D-glucopyranoside.

Compound 4 ($C_{40}H_{66}O_{14}$) was also a 22 α -methoxy-3 α ,5 α cyclofurostanol saponin closely related to **3**. The ¹H- and ¹³C-NMR spectra clearly indicated the presence of a terminal β -D-fucopyranosyl unit [$\delta_{\rm H}$ 4.58 (d, J=7.8 Hz); $\delta_{\rm C}$ 103.4 (C-1), 72.0 (C-2), 75.7 (C-3), 72.8 (C-4), 71.4 (C-5), and 17.3 (C-6)] and a terminal β -D-glucopyranosyl unit [$\delta_{\rm H}$ 4.85 (d, J=7.8 Hz); $\delta_{\rm C}$ 105.1 (C-1), 75.2 (C-2), 78.6 (C-3), 71.8 (C-4), 78.5 (C-5), and 62.9 (C-6)]. In the HMBC spectrum, the anomeric proton signal at δ 4.58 showed a long-range correlation with the aglycon C-1 carbon signal at δ 84.8, while another anomeric proton signal at δ 4.85 had a correlation with C-26 at δ 74.9. The structure of **4** was shown to be (25*S*)-1 β -[(β -D-fucopyranosyl)oxy]-6 β -hydroxy-22 α -methoxy-3 α ,5 α cyclofurostan-26-yl β -D-glucopyranoside.

Recently, Nohara and his co-workers reported four new 3,5-cyclosteroidal compounds with the withanolide skeleton, called cilistol p, cilistol pm, cilistol pl, and cilistol u, respectively, from *Solanum cilistum*.⁶⁾ Compounds 1—4 are the first 3,5-cyclosteroidal glycosides with the spirostanol or furostanol skeleton.

Experimental

Optical rotations were measured using a JASCO DIP-360 (Tokyo, Japan) automatic digital polarimeter. IR spectra were recorded on a JASCO FT-IR 620 spectrophotometer. NMR spectra were recorded on a Bruker DRX-500 (500 MHz for ¹H-NMR, Karlsruhe, Germany) spectrophotometer using standard Bruker pulse programs. Chemical shifts were given as δ values with reference to tetramethylsilane (TMS) as internal standard. FAB-MS were recorded on a Finnigan MAT TSQ-700 (San Jose, CA, U.S.A.) and high resolution matrix-assisted laser desorption ionization time-of-flight (HRMALDI-TOF) MS on a Micromass Q-TOF-2 (Manchester, U.K.) mass spectrometer. Elemental analysis was carried out using an Elementar Vario EL (Hanau, Germany) elemental analyzer. Diaion HP-20 (Mitsubishi-Kasei, Tokyo, Japan), silica gel (Fuji-Silysia Chemical, Aichi, Japan), and ODS silica gel (Nacalai Tesque, Kyoto, Japan) were used for column chromatography. TLC was carried out on precoated Kieselgel 60 F_{254} (0.25 mm thick,

Merck, Darmstadt, Germany) and $RP_{18}F_{254}S$ plates (0.25 mm thick, Merck), and spots were visualized by spraying the plates with 10% H_2SO_4 solution, followed by heating. All chemicals used were of biochemical reagent grade.

Plant Material *D. surculosa* was purchased from a nursery in Exotic Plants (Chiba, Japan) in October 1997, and identified by one of the authors (Y. S). A voucher of the plant is on file in our laboratory (voucher no. DS-97-007., Laboratory of Medicinal Plant Science).

Extraction and Isolation The plant material (fresh weight, 4.3 kg) was extracted with hot MeOH twice (101 each time). The MeOH extract was concentrated under reduced pressure, and the extract was passed through a Diaion HP-20 column, eluting with 30% MeOH, MeOH, and EtOAc. Column chromatography of the MeOH eluate portion on silica gel and elution with a stepwise gradient mixture of $CHCl_3$ -MeOH (9:1; 4:1; 3:1; 2:1; 1:1), and finally with MeOH alone, gave five fractions (I—V). Fraction III was subjected to column chromatography on silica gel eluting with $CHCl_3$ -MeOH-H₂O (60:10:1; 50:10:1; 40:10:1) and ODS silica gel with MeOH-H₂O (8:5) and MeCN-H₂O (1:3; 2:5) to give **1** (14 mg), **2** (4 mg), **3** (22 mg), and **4** (27 mg).

Compound 1: Amorphous solid, $[\alpha]_{26}^{26} - 90.0^{\circ}$ (*c*=0.10, MeOH). FAB-MS (positive mode) *m/z*: 777 [M+Na]⁺. *Anal.* Calcd for C₃₉H₆₂O₁₄·3H₂O: C, 57.90; H, 8.47. Found: C, 57.54; H, 8.45. IR v_{max} (film) cm⁻¹: 3388 (OH), 2928 (CH), 1074. ¹H- and ¹³C-NMR, see Table 1.

Transformation of 1 into Surculoside B A solution of **1** (7.8 mg) in a mixture of dioxane– H_2O (8:1, 3 ml) containing a catalytic amount of *p*-TsOH was heated at 95°C for 3 h. After cooling, the reaction mixture was chromatographed on silica gel eluting with CHCl₃–MeOH– H_2O (40:10:1) and ODS silica gel with MeCN– H_2O (1:3) to yield surculoside B (2.0 mg).²⁾

Compound **2**: Amorphous solid, $[\alpha]_D^{26} - 42.0^\circ$ (*c*=0.10, MeOH). FAB-MS (positive mode) *m/z*: 793 [M+Na]⁺. HR-MALDI-TOF-MS *m/z*: 793.3990 (Calcd for $C_{39}H_{62}O_{15}Na$: 793.3986). IR v_{max} (film) cm⁻¹: 3388 (OH), 2926 (CH), 1077. ¹H-NMR (C₅D₅N) δ : 5.04 (1H, d, J=7.8 Hz, H-1"), 4.79 (1H, ddd, J=10.9, 10.8, 6.4 Hz, H-24), 4.78 (1H, d, J=7.9 Hz, H-1'), 4.52 (1H, m, H-16), 4.41 (1H, br d, J=5.3 Hz, H-1), 3.47 (1H, br s, H-6), 1.65 (3H, s, H₃-19), 1.58 (1H, t-like, J=3.9 Hz, H-4a), 1.32 (3H, d, J=6.9 Hz, H₃-27), 1.14 (1H, m, H-3), 1.11 (3H, d, J=7.0 Hz, H₃-21), 0.83 (3H, s, H₃-18), 0.56 (1H, dd, J=7.9, 3.9 Hz, H-4b). ¹³C-NMR (C₅D₅N) δ : 85.0 (C-1), 33.0 (C-2), 23.2 (C-3), 15.9 (C-4), 39.9 (C-5), 73.0 (C-6), 38.6 (C-7), 30.0 (C-8), 50.0 (C-9), 49.1 (C-10), 23.3 (C-11), 40.5 (C-12), 40.9 (C-13), 56.5 (C-14), 32.0 (C-15), 81.6 (C-16), 62.4 (C-17), 16.7 (C-18), 16.9 (C-19), 42.5 (C-20), 14.7 (C-21), 111.2 (C-22), 34.1 (C-23), 72.8 (C-24), 31.7 (C-25), 64.2 (C-26), 9.9 (C-27), 103.1 (C-1'), 74.9 (C-2'), 78.9 (C-3'), 72.0 (C-4'), 78.2 (C-5'), 63.1 (C-6'), 101.2 (C-1"), 75.3 (C-2"), 78.7 (C-3"), 71.5 (C-4"), 78.4 (C-5"), 62.5 (C-6").

Compound 3: Amorphous solid, $[\alpha]_D^{26}$ -42.0° (*c*=0.10, MeOH). FAB-MS (negative mode) m/z: 785 [M-H]⁻. Anal. Calcd for C₄₀H₆₆O₁₅· 3H₂O: C, 58.23; H, 8.80. Found: C, 58.56; H, 8.62. IR v_{max} (film) cm⁻¹: 3387 (OH), 2927 (CH), 1076. ¹H-NMR (C₅D₅N) δ : 4.85 (1H, d, J=7.8 Hz, H-1"), 4.77 (1H, d, J=7.8 Hz, H-1'), 4.50 (1H, q-like, J=7.0 Hz, H-16), 4.41 (1H, br d, J=4.9 Hz, H-1), 3.48 (1H, br s, H-6), 3.25 (3H, s, OMe), 2.48 (1H, m, H-8), 1.80 (1H, m, H-11α), 1.64 (3H, s, H₃-19), 1.58 (1H, t-like, J=4.0 Hz, H-4a), 1.25 (1H, ddd, J=13.0, 11.8, 2.5 Hz, H-7 α), 1.17 (3H, d, J=6.9 Hz, H₃-21), 1.13 (1H, m, H-3), 1.05 (3H, d, J=6.7 Hz, H₃-27), 0.85 (3H, s, H₃-18), 0.82 (1H, m, H-9), 0.60 (1H, dd, J=7.9, 4.0 Hz, H-4b). ¹³C-NMR (C₅D₅N) δ : 85.0 (C-1), 33.0 (C-2), 23.2 (C-3), 15.8 (C-4), 40.0 (C-5), 73.0 (C-6), 38.5 (C-7), 30.0 (C-8), 50.0 (C-9), 49.1 (C-10), 23.2 (C-11), 40.4 (C-12), 41.3 (C-13), 56.5 (C-14), 32.2 (C-15), 81.4 (C-16), 64.3 (C-17), 16.7 (C-18), 16.9 (C-19), 40.4 (C-20), 16.2 (C-21), 112.7 (C-22), 30.9 (C-23), 28.2 (C-24), 34.4 (C-25), 74.9 (C-26), 17.6 (C-27), 47.3 (OMe), 103.1 (C-1'), 74.9 (C-2'), 78.9 (C-3'), 72.0 (C-4'), 78.2 (C-5'), 63.1 (C-6'), 105.1 (C-1"), 75.2 (C-2"), 78.6 (C-3"), 71.7 (C-4"), 78.5 (C-5"), 62.9 (C-6").

Transformation of 3 into (25*S*)-1*β*-[(*β*-D-Glucopyranosyl)oxy]-3*β*-hydroxy-22*α*-methoxyfurost-5-en-26-yl *β*-D-Glucopyranoside A solution of 3 (12 mg) in a mixture of dioxane–H₂O (8 : 1, 3 ml) containing a catalytic amount of *p*-TsOH was heated at 95°C for 1 h. After cooling, the reaction mixture was chromatographed on silica gel eluting with CHCl₃–MeOH–H₂O (40 : 10 : 1) and ODS silica gel with MeCN–H₂O (1 : 3) to yield (25*S*)-1*β*-[(*β*-D-glucopyranosyl)oxy]-3*β*-hydroxy-22*α*-methoxyfurost-5-en-26-yl *β*-Dglucopyranoside (1.0 mg).²⁾ An aliquot of 4 mg of 3 did not react and was recovered.

Compound 4: Amorphous solid, $[\alpha]_D^{26} - 56.0^{\circ}$ (c=0.10, MeOH). FAB-MS (negative mode) m/z: 769 [M–H]⁻. Anal. Calcd for $C_{40}H_{66}O_{14} \cdot 3/2H_2O$: C, 59.02; H, 8.54. Found: C, 59.10; H, 8.63. IR v_{max} (film) cm⁻¹: 3388 (OH), 2930 (CH), 1074. ¹H-NMR (C_5D_5N) δ : 4.85 (1H, d, J=7.8 Hz, H-1"), 4.58 (1H, d, J=7.8 Hz, H-1'), 4.52 (1H, q-like, J=7.2 Hz, H-16), 4.37 (1H, br d,

 $\begin{array}{l} J{=}5.0\,{\rm Hz},\,{\rm H}{-}1),\,3.47\,\,(1{\rm H},\,{\rm br\,s},\,{\rm H}{-}6),\,3.26\,\,(3{\rm H},\,{\rm s},\,{\rm OMe}),\,1.64\,\,(3{\rm H},\,{\rm s},\,{\rm H}_{3}{-}19),\,1.56\,\,(3{\rm H},\,{\rm d},\,J{=}6.4\,{\rm Hz},\,{\rm H}_{3}{-}6'),\,1.51\,\,(1{\rm H},\,{\rm t-like},\,J{=}3.9\,{\rm Hz},\,{\rm H}{-}4a),\,1.19\,\,(3{\rm H},\,{\rm d},\,J{=}6.9\,{\rm Hz},\,{\rm H}_{3}{-}21),\,1.14\,\,(1{\rm H},\,{\rm m},\,{\rm H}{-}3),\,1.06\,\,(3{\rm H},\,{\rm d},\,J{=}6.7\,{\rm Hz},\,{\rm H}_{3}{-}27),\,0.90\,\,(3{\rm H},\,{\rm s},\,{\rm H}_{3}{-}18),\,0.57\,\,(1{\rm H},\,{\rm dd},\,J{=}7.9,\,3.9\,{\rm Hz},\,{\rm H}{-}4b).\,{}^{13}{\rm C}{-}{\rm NMR}\,\,({\rm C}_{5}{\rm D}_{5}{\rm N})\,\,\delta;\,84.8\,\,({\rm C}{-}1),\,33.0\,\,({\rm C}{-}2),\,23.3\,\,({\rm C}{-}3),\,15.8\,\,({\rm C}{-}4),\,40.0\,\,({\rm C}{-}5),\,73.0\,\,({\rm C}{-}6),\,38.6\,\,({\rm C}{-}7),\,30.0\,\,({\rm C}{-}8),\,50.2\,\,({\rm C}{-}9),\,49.2\,\,({\rm C}{-}10),\,23.3\,\,({\rm C}{-}11),\,40.5\,\,({\rm C}{-}12),\,41.4\,\,({\rm C}{-}13),\,56.5\,\,({\rm C}{-}14),\,32.2\,\,({\rm C}{-}15),\,81.4\,\,({\rm C}{-}16),\,64.3\,\,({\rm C}{-}17),\,16.7\,\,({\rm C}{-}18),\,16.9\,\,({\rm C}{-}19),\,40.5\,\,({\rm C}{-}20),\,16.3\,\,({\rm C}{-}21),\,112.7\,\,({\rm C}{-}22),\,30.9\,\,({\rm C}{-}23),\,28.2\,\,({\rm C}{-}24),\,34.5\,\,({\rm C}{-}25),\,74.9\,\,({\rm C}{-}26),\,17.6\,\,({\rm C}{-}27),\,47.3\,\,({\rm OMe}),\,103.4\,\,({\rm C}{-}1'),\,72.0\,\,({\rm C}{-}2'),\,75.7\,\,({\rm C}{-}3'),\,72.8\,\,({\rm C}{-}4'),\,71.4\,\,({\rm C}{-}5'),\,17.3\,\,({\rm C}{-}6'),\,105.1\,\,({\rm C}{-}1''),\,75.2\,\,({\rm C}{-}2''),\,78.6\,\,({\rm C}{-}3''),\,71.8\,\,({\rm C}{-}4''),\,78.5\,\,({\rm C}{-}5''),\,62.9\,\,({\rm C}{-}6'').\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}{-}5''),\,21.4\,\,({\rm C}{-}6'').\,21.4\,\,({\rm C}{-}1''),\,21.4\,\,({\rm C}$

Acknowledgments We are grateful to Mr. Akira Higuchi, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd. for the measurement of the HR-MALDI-TOF-MS.

References and Notes

 Tsukamoto Y. (executive ed.), "The Grand Dictionary of Horticulture," Shogakukan, Tokyo, 1989, Vol. 1, pp. 148—149.

- Yokosuka A., Mimaki Y., Sashida Y., J. Nat. Prod., 63, 1239–1243 (2000).
- Kiyosawa S., Hutoh M., Komori T., Nohara T., Hosokawa I., Kawasaki T., Chem. Pharm. Bull., 16, 1162—1164 (1968).
- Nohara T., Miyahara K., Kawasaki T., Chem. Pharm. Bull., 23, 872– 885 (1975).
- 5) The furostanol saponins (**3**, **4**) were obtained as a mixture of the C-22 hydroxyl and C-22 methoxyl forms, which could not be separated because of their readily convertible nature in dissolved solvent. The furostanols are presumed to exist in the C-22 hydroxyl form and the C-22 methoxyl saponins may be produced through the extraction and purification procedures. The C-22 hydroxyl form present in the mixture was completely converted to the C-22 methoxyl form by treatment with hot MeOH, and the structural elucidation of **3** and **4** was carried out with the C-22 methoxyl form. The configuration of C-22 was determined to be α by an NOE correlation between the signals of the C-22 methoxyl protons and the H-16 proton.
- Zhu X.-H., Ando J., Takagi M., Ikeda T., Yoshimitu A., Nohara T., *Chem. Pharm. Bull.*, 49, 1440–1443 (2001).