Microbial Transformation of Rubijervine

Khalid A. EL SAYED^{*,1),a} and D. Chuck DUNBAR^b

^a Pharmacognosy Department, Faculty of Pharmacy, Mansoura University; Mansoura 35511, Egypt: and ^b National Center for Natural Products Research, University of Mississippi; University, MS 38677, U.S.A. Received March 11, 2002; accepted May 23, 2002

Preparative-scale fermentation of rubijervine (1), the known 22,26-epiminocholestane *Veratrum* alkaloid, with *Cunninghamella echinulata* ATCC 9244 has resulted in the isolation of the new metabolites 7α -hydroxyrubijervine (2) and solanid-5-ene- 3β ,12 α -diol-1-one (3). Structure elucidation of these metabolites was based primarily on 1D- and 2D-NMR analyses. The microbe *C. echinulata* ATCC 9244 was able to metabolize rings A and B of rubijervine but failed to metabolize rings C, D or its *N*-containing side chain, a finding which is analogous to the results of previous fermentation studies of steroidal alkaloids.

Key words biocatalysis; Veratrum alkaloid; rubijervine; Cunninghamella echinulata; 7α -hydroxyrubijervine; solanid-5-ene- 3β , 12α -diol-1-one

Veratrum alkaloids are a group of potent hypotensive agents that act by reflex suppression of the cardiovascaular system.^{2,3)} Rubijervine (1) is one of the most common Veratrum alkaloids possessing the 22,26-epiminocholestane (solanidane) skeleton.⁴⁾ The interest in Veratrum alkaloids has recently been renewed as they were patented several times during the past few years.⁵⁻⁸⁾ The use of steroidal alkaloids including solanidanes and C-nor-D-homosteroidal alkaloids to reverse or inhibit multidrug resistance in cancer or in bacterial, fungal, or parasite infections was reported.⁵⁾ The potent regulatory effects of jervane Veratrum alkaloids on hedgehog signaling, modulation of cholesterol biosynthesis and transport, and control of cell proliferation during mandibular arch morphogenesis have recently been reported.⁶⁻⁸⁾ Rubijervine and isorubijervine are suggested to be the plausible biogenetic precursors of cevanine and other C-nor-D-homosteroids.9) Rubijervine is classified as a possible carcinogen for humans, based on its high tg α value when evaluated by the DC polarography method in anhydrous N,N-dimethylformamide.¹⁰⁾ The antimicrobial activity of rubijervine and other Veratrum alkaloids against Pityrosporum ovale, Trichophyton mentagrophytes, and Saccharomyces cerevisiae and against the basidiomycetes Polstictus versi*color* has been reported.^{11,12)}

Metabolism studies have been used successfully as model systems to predict metabolic pathways in humans or to increase the efficacy of drugs by metabolic activation.¹³⁾ Steroidal alkaloids have been investigated in metabolism studies due to their interesting biological activities.¹⁴⁾ Tomatidine is a known spirosolane-type Solanum alkaloid related to rubijervine.¹⁵⁾ Incubation of tomatidine with Nocardia restrictus, Mycobacterium phlei, and Gymnoascus reesii resulted in the metabolism of tomatidine to 1,4-tomatidien-3one, tomatidone, tomatanin-3 α -ol, 1-tomatiden-3-one, and 4tomatiden-3-one but failed to induce any N-containing side chain modification.¹⁵⁾ Solanidine (12-deoxyrubijervine) was the subject of a previous microbial metabolism study which enabled its conversion into 11α -hydroxysolanidine using the fungus Helicostylum piriforme ATCC 8992.¹⁶⁾ The microbes Nocardia species ATCC 21145 and Cunninghamella elegans ATCC 9245 were able to metabolize rings A and B of the Cnor-D-homosteroidal Veratrum alkaloids veratramine and jervine, respectively, but failed to metabolize rings C and D or its *N*-containing side chain.^{17,18)} Rubijervine (1) was chosen for a microbial bioconversion study in an attempt to prepare new analogues, to determine if there was any metabolism in the *N*-containing side chain, and to compare its metabolism with that of solanidine, tomatidine, veratramine, and jervine.

Twenty-three growing cultures were screened for their ability to bioconvert 1. Only one culture (*C. echinulata* ATCC 9244) was observed to transform 1 completely to metabolites of greater polarity. Hence this microbe was chosen for preparative-scale fermentation because it entirely depleted 1 and converted it to the more polar metabolites 2 and 3.

The high-resolution FT-ICR MS of **2** displayed a peak at m/z 430.3341 (M+H)⁺, suggesting the molecular formula $C_{27}H_{43}O_3N$, and seven degrees of unsaturation. The IR, ¹³C-, and ¹H-NMR spectra of **2** (Table 1) suggested that it is a monohydroxylated rubijervine derivative.^{4,19} The broad proton singlet resonating at δ 3.57 is assigned to be the newly oxygenated H-7. This was based on its COSY coupling with the olefinic H-6 (δ_H 5.35) and H-8 (δ_H 1.42). The proton H-6 also displayed a ²J-HMBC coupling with C-7 (δ_C 64.3). The splitting pattern of H-7 indicated its equatorial nature, suggesting a β -orientation. This was further confirmed by the NOESY correlation between H-7 and the β -oriented H-8. Hence metabolite **2** is 7α -hydroxyrubijervine, a new natural product.

The high-resolution FT-ICR MS of **3** displayed a peak at m/z 428.3169 (M+H)⁺, suggesting the molecular formula $C_{27}H_{41}O_3N$, and eight degrees of unsaturation. The IR, ¹³C-, and ¹H-NMR spectra of **3** (Table 1) suggested it is a rubijervin-1-one derivative. The strong IR band at 1710 cm⁻¹ in-

Position –	2		3	
	$\delta_{ m C}$	$\delta_{_{ m H}}$	$\delta_{ m c}$	$\delta_{_{ m H}}$
1	36.8	1.55, m 1.49, m	213.6	_
2	32.2	1.62, m 1.30, m	37.9	2.43, m 2.01, m
3	70.7	3.24, m	71.2	3.20, m
4	43.1	2.12, m 2.09, m	43.9	2.14, m 2.06, m
5	143.5		140.3	
6	125.6	5.35, d (3.4)	126.2	5.21, d (5.2)
7	64.3	3.59, br s	32.6	1.64, m 1.31, m
8	38.3	1.42, m	32.0	1.48, m
9	40.7	2.07, m	50.5	1.63, m
10	37.4	_	37.0	
11	29.0	1.47, 2H, m	34.5	1.62, m 0.79, m
12	71.2	3.47, br s	71.9	3.62, br s
13	44.6		44.0	
14	41.8	2.08, m	42.8	2.11, m
15	31.5	1.85, m 0.94, m	30.5	1.65, m 1.11, m
16	69.1	2.52, ddd (10.4, 10.1, 3.2)	69.1	2.51, m
17	53.9	2.20, dd (10.4, 10.3)	55.0	2.18, m
18	18.1	0.70, 3H, s	20.5	0.73, 3H, s
19	18.7	0.84, 3H, s	19.7	1.01, 3H, s
20	37.1	1.62, m	38.1	1.58, m
21	19.0	0.88, 3H, d (6.1)	19.1	0.93, 3H, d (5.9)
22	75.1	1.48, m	75.2	1.46, m
23	29.6	1.64, m 1.20, m	29.7	1.49, m 1.20, m
24	33.9	1.62, m 0.78, m	34.5	1.62, m 0.79, m
25	31.6	1.47, m	31.6	1.47, m
26	60.5	2.81, dd (11.0, 3.5) 1.31, dd (11.0, 3.4)	60.9	2.77, dd (10.8, 3.4) 1.32, m
27	20.3	0.78, 3H, d (6.6)	20.1	0.78, 3H, d (6.3)

Table 1. ¹³C- and ¹H-NMR Spectral Data of 7α -Hydroxyrubijervine (2) and Solanid-5-ene-3 β , 12α -diol-1-one (3)^{*a*})

a) In DMSO-d₆, at 500 MHz for ¹H and 125 MHz for ¹³C. Coupling constants (J) are in Hz.

Fig. 1. Important HMBC Correlations in Rings A and B of Metabolite 3

dicated a new ketone functionality. The quaternary ketone carbon resonating at δ 213.6 was assigned to be C-1 (Table 1). This was based on its ³*J*-HMBC coupling with the methyl singlet H₃-19 ($\delta_{\rm H}$ 1.01) and ²*J*-HMBC coupling with both protons H₂-2 at δ 2.43 and 2.01 (Fig. 1). The methyl H₃-19 also shows ³*J*-HMBC coupling with C-5 and C-9 as well as a ²*J*-HMBC coupling with the quaternary carbon C-10 (Fig. 1). Metabolite **3** is thus confirmed to be the new solanid-5-ene-3 β ,12 α -diol-1-one, a new metabolic product reported for the first time in fermentation studies of steroidal alkaloids. Hence the microbe *C. echinulata* ATCC 9244 was able to metabolize rings A and B of rubijervine but failed to metabolize rings C and D or its *N*-containing side chain, a finding which is analogous to the results of previous fermentation studies of steroidal alkaloids.

Experimental

General Experimental Procedure Melting points were determined on a Thomas–Hoover capillary melting point apparatus and are uncorrected. The IR spectra were recorded on a ATI Mattson Genesis Series FTIR spectrophotometer. The ¹H- and ¹³C-NMR spectra were recorded in DMSO- d_6 on a Bruker AMX-500 spectrometer operating at 500 MHz for ¹H- and at 125 MHz for ¹³C-NMR. The HRMS spectra were measured on a Bioapex FT-ICR MS with electrospray ionization. TLC analyses were carried out on precoated silica gel G_{254} 500 μ m (E-Merk), with the following developing system: CHCl₃–MeOH–NH₄OH (80:20:0.01). For column chromatography, Si gel 60 and 40 μ m was used.

Chemicals Rubijervine (1) was isolated from the roots and rhizomes of *Veratrum viride* AITON.⁴⁾ The compound was authenticated by detailed NMR analysis and comparing its data with those in the literature.¹⁹⁾

Organisms Preliminary microbial metabolism studies were conducted as previously reported.^{17,18,20} Twenty-three microbial cultures, obtained from the Department of Pharmacognosy, University of Mississippi, culture collection were used for screening. The microbes utilized were reported earlier,²⁰ in addition to: *Cunninghamella* species NRRL 5695 and *C. echinulata* ATCC 9244. Stock cultures were maintained on agar slants of media recommended by the ATCC and were stored at 4 °C.

Microbial Metabolism of Rubijervine (1) *C. echinulata* ATCC 9244 was grown in three, 1-l culture flasks containing 200 ml of compound medium α .¹⁸⁾ A total of 50 mg of 1 was dissolved in EtOH 1 ml, equally divided between the three flasks and distributed among the 24-h old stage II cultures. After 14 d, the incubation mixtures were pooled and filtered. The filtrate (0.51) was exhaustively extracted with 10% MeOH/CHCl₃ (3× 300 ml), dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue (290 mg) was flash-chromatographed over 50 g of silica gel 60 starting with (100%) *n*-hexanes and gradient-eluted with increasing proportions of acetone and finally with (100%) MeOH. Alkaloid-containing fractions (48 mg) were subjected to column chromatography over Sephadex LH20 50 g using an isocratic CH₂Cl₂–MeOH (50 : 50) solvent system. Semi-pure compounds were finally purified by preparative TLC on Si gel G₂₅₄ using CHCl₃–MeOH (75 : 25) as a solvent system to give two metabolites: **2** (4.9 mg, *Rf* 0.33) and **3** (2.9 mg, *Rf* 0.59).

7α-Hydroxyrubijervine (**2**): Colorless needles from EtOH, mp 231— 232 °C, $[α]_D^{25}$ +3.5° (*c*=0.1, MeOH); IR v_{max} (CHCl₃): 3547 (NH), 3027— 2860, 1450, 1342, 1055 cm⁻¹; ¹³C- and ¹H-NMR, see Table 1; LR-EIMS *m/z* 429 (M)⁺; FT-ICR MS *m/z* Calcd for C₂₇H₄₄O₃N (M+H)⁺ 430.3321; Found 430.3341.

Solanid-5-ene-3 β ,12 α -diol-1-one (3): Colorless needles from MeOH, mp 241–243 °C, $[\alpha]_{2^{5}}^{2^{5}}$ +35° (c=0.1, MeOH); IR v_{max} (CHCl₃) 3698 (OH),

3596 (NH), 3021–2856, 1710 (C=O), 1458, 1361, 1060 cm⁻¹; ¹³C- and ¹H-NMR, see Table 1; LR-EIMS m/z 427 (M)⁺; FT-ICR MS m/z Calcd for C₂₇H₄₂O₃N (M+H)⁺ 428.3165; Found 428.3169.

Acknowledgment This paper is dedicated to Professor Ahmed F. Halim, Mansoura University, on his 60th birthday.

References and Notes

- Present address: Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, Louisiana 71209, U.S.A.
- 2) Kupchan S. M., Zimmerman J. H., Afonso A., *Lloydia*, **24**, 1–26 (1961).
- 3) Honerjager P., Rev. Physiol., Biochem. Pharmacol., 92, 1-74 (1982).
- El Sayed K. A., McChesney J. D., Halim A. F., Zaghloul A. M., Lee I.-S., *Int. J. Pharmacogn.*, 34, 161–173 (1996).
- Liscovitch M., Lavie Y., PCT Int. Appl. Application: WO 2000-2000IL866 20001228 (2001). CAN 135: 87198.
- Ten Berge D., Brouwer A., Korving J., Reijnen M. J., Van Raaij E. J., Verbeek F., Gaffield W., Meijlink F., *Development*, **128**, 2929–2938 (2001).
- Beachy P. A., Porter J. A., Cooper M. K., U.S. Patent Application: US 99-250785 19990212 (2001). CAN 135: 205566.

- Beachy P. A., U.S. Patent Application: WO 2000-2000US28479 20001013 (2001). CAN 134: 295995.
- Kaneko K., Kawamura N., Tanaka M., Mitsuhashi H., Koen Yoshishu-Tennen Yuki Kagobutsu Toronkai, 22nd, 55–62 (1979). CAN 93: 8387.
- Vachalkova A., Grancai D., Nagy M., Novotny L., *Neoplasma*, 45, 243—247 (1998).
- 11) Wolters B., *Planta Med.*, **19**, 189–196 (1970).
- 12) Han Y. B., Won S., Yakhak Hoeji, 17, 137 (1973). CAN 82: 645.
- Clark A. M., McChesney J. D., Hufford C. D., Med. Res. Rev., 5, 231–253 (1985).
- Vining L. C., "Economic Microbiology: Microbial Enzymes and Bioconversions," Vol. 5, ed. by Rose A. H., Academic Press, New York, 1980, pp. 523—530.
- Rosazza J. P. N., Duffel M. W., "Alkaloids: Chemistry and Pharmacology," Vol. 27, ed. by Brossi A., Academic Press, New York, 1986, pp. 391–392.
- 16) Sato Y., Tanabe K., *Steroids*, **9**, 553—565 (1967).
- 17) El Sayed K. A., J. Nat. Prod., 61, 149-151 (1998).
- 18) El Sayed K. A., Halim A. F., Zaghloul A. M., Dunbar D. C., McChesney J. D., *Phytochemistry*, 55, 19–22 (2000).
- 19) Keeler R. F., Phytochemistry, 13, 2336-2337 (1974).
- 20) El Sayed K. A., J. Nat. Prod., 64, 373-375 (2001).