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The fragmentation from bb-carboline-type monoterpenoid
glucoindole alkaloids to harman, which is a hypothetical path-
way to generate simple bb-carbolines, was actualized in the colli-
sion-induced dissociation in MS.
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Simple b-carboline alkaloids such as harman (1) are
proved to be biogenetically formed, in general, from trypto-
phan and acetic acid or pyruvate.1,2) Harmans co-occur some-
times in Rubiaceous plants accompanied with b-carboline-
type monoterpenoid glucoindole alkaloids. 

Previously, we observed that harman (1) could be obtained
from lyaloside (2) or lyalosidic acid (3) by treatment with b-
glucosidase in acetate buffer (pH 4.7). This finding led us to
consider the fragmentation of a protonated compound as
shown in Chart 1.3) During our recent study4,5) on Peruvian
Uña de Gato (original plant: Uncaria tomentosa, Rubiaceae),
we clarified the co-existence of a simple b-carboline alka-
loid, harman (1), and b-carboline-type monoterpenoid alka-
loids, i.e., lyaloside (2) and 3,4-dehydro-5(S )-5-carboxystric-
tosidine (4). The above two findings supported the possibility
of secondary formation of simple b-carboline alkaloids from
b-carboline-type monoterpenoid glucoindole alkaloids
through the fragmentation shown in Chart 1. We postulated
that similar fragmentation would be actualized in the colli-
sion-induced dissociation (CID) in MS of these compounds
when MH� was selected as the precursor ion.6,7) In this
paper, we describe the experiments of FAB-MS/MS (tandem
mass spectrometry)8) which resulted in the anticipated frag-
mentation of b-carboline-type monoterpenoid glucoindole
alkaloids into simple b-carbolines.

We examined CID9) of b-carboline-type monoterpenoid
glucoindole alkaloids (2—6). The CID of lyaloside (2), a b-
carboline-type alkaloid, showed two prominent product ions
at m/z 365 [MH�C6H10O5]

�, m/z 182 [MH�C15H21O9]
� and

a weak ion at m/z 393 [MH�C5H10O4]
� when MH� (m/z

527) was selected as the precursor ion (Fig. 2). Lyalosidic
acid (3), a carboxylic acid derivative of lyaloside (2), gave
the same product ion at m/z 182 accompanied with the ions
at m/z 379 [MH�C5H10O4]

� and m/z 351 [MH�C6H10O5]
�

which correspond to the product ions of lyaloside (2), respec-
tively. As anticipated, the product ion at m/z 182 correspond-
ing to harman (1) was observed. Harman (1) in the CID

would be formed through a homolytic cleavage of the C14—
C15 bond by fragmentation of the protonated intermediates
shown in Chart 2.

On the other hand, strictosidine (5), which is a tetrahydro-
b-carboline-type compound, gave no ion corresponding to
harman (1) in the CID. Furthermore, 3,4-dehydro-5(S )-5-car-
boxystrictosidine (4), a new alkaloid of Peruvian Uña de
Gato, and 5-carbomethoxylyaloside (6),10) which was synthe-
sized from L-tryptophan methyl ester and secoxyloganin
tetraacetate,11) gave the product ions m/z 228 or m/z 240 cor-
responding to 5,6-dihydro-5(S )-5-carboxyharman or 5-car-
bomethoxyharman, respectively (Fig. 2). These data indi-
cated that the 3,4-double bond in b-carboline-type alkaloids
was essential for this type of fragmentation. 

In conclusion, the fragmentation from b-carboline-type
monoterpenoid glucoindole alkaloids to harman, which is a
hypothetical pathway to generate the simple b-carbolines,
was actualized in the CID measurement in MS. Further, we
revealed that tandem mass spectrometry could be employed
as the reaction-site of the H�-promoted fragmentation reac-
tion. By this method, it will be possible to predict the prod-
ucts and mechanism of various related reactions.
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