Four New Diarylheptanoids from the Roots of *Juglans mandshurica*

Gao Li,^a Ming-Lu Xu,^a Han-Gon Choi,^a Seung-Ho Lee,^a Yurng-Dong JAHNG,^a Chong-Soon Lee,^b Dong-Cheul Moon,^{*c*} Mi-Hee Woo,^{*d*} and Jong-Keun Son*^{,*a*}

aCollege of Pharmacy, Yeungnam University; Gyongsan, 712–749, Korea: b Department of Biochemistry, College of Natural Sciences, Yeungnam University; Gyongsan, 712–749, Korea: cCollege of Pharmacy, Chungbuk University; Chugju, 360-763, Korea: and ^d Catholic University of Daegu; Gyongsan, 712-702, Korea. Received October 7, 2002; accepted December 2, 2002

Four new diarylheptanoids (1—4), along with two known tetralones (5, 6), were isolated from the roots of *Juglans mandshurica* **and their structures were elucidated on the basis of spectroscopic studies.**

Key words *Juglans mandshurica*; Juglandaceae; diarylheptanoid; tetralone

The roots of *Juglans mandshurica* MAXIMOWICZ (Juglandaceae) have been used as a folk medicine for treatment of cancer in Korea. Several naphthoquinones and naphthalenyl glucosides from *Juglans* species have been reported.¹⁻⁷⁾ In the course of isolating cytotoxic compounds from the roots of this plant, we have isolated six naphthalene glycosides, two tetralone glucosides, one naphthalene carboxylic acid glucoside, and five diarylheptanoids. $8-12$) In this paper, we report four new diarylheptanoids, along with two known tetralones, from the roots of *J. mandshurica.*

Results and Discussion

The MeOH extract of the roots of *Juglans mandshurica* was partitioned between $H₂O$ and hexane and the resulting $H₂O$ layer was extracted with CHCl₃. The CHCl₃ extract was chromatographed on a silica gel column. The two major fractions were chromatographed on a reverse-phase column, which afforded compounds **1**—**6**.

The molecular formula of 1, $C_{20}H_{22}O_5$ was established from high resolution (HR)-FAB-MS, 13 C-NMR, and distortionless enhancement by polarization transfer (DEPT) spectral data. The 13C-NMR and DEPT spectra showed one methyl, five methylene, seven methine, and seven quaternary carbon signals including characteristic peaks of a carbonyl group and 12 aromatic carbons. In the ¹H-NMR spectrum, signals on the aromatic region showed coupling patterns due to two sets of 1,3,4-trisubstituted benzene rings: $^{2}J_{\text{H5'He'}}$ (8.1 Hz) and $^{3}J_{\text{H2'H6'}}$ (2.1 Hz), and $^{2}J_{\text{H5''H6''}}$ (8.0 Hz) and $^{3}J_{\text{H2''H6''}}$ (1.9 Hz), respectively. The H-2' signal (δ 5.67) appeared abnormally upfield from other proton signals of the two benzene rings, and this shielding effect is characteristic of diphenylether-type diarylheptanoids that have an ether linkage between $C-3'$ and $C-4''$.¹³⁾ The correlations in the ¹H-¹H correlation spectroscopy (COSY) spectrum displayed connectivities between H-1 and H-2, between H-4–H-5–H- $6-H-7$, between H-5' and H-6', and between H-5" and H-6". In addition, a weak cross-peak due to the long-range coupling between $H-2'$ and $H-6'$ was recognized. In the HMBC spectrum of **1**, the linkages of two benzene rings on the alkyl chain were established by cross-peaks between H-1 and C-1', $C-2'$, and $C-6'$, and those between H-7 and $C-1''$, $C-2''$, and $C-6$, respectively. The position of the carbonyl group on the aliphatic chain was established by the correlation of C-3 with H-1 and H-4. The location of the methoxyl group was identified by both a correlation between the C-3" and C-3"-OCH₃

* To whom correspondence should be addressed. e-mail: jkson@yu.ac.kr © 2003 Pharmaceutical Society of Japan

in the HMBC and a positive NOE effect between H-2" and $C-3''-OCH₃$ in the one dimensional nuclear Overhauser effect (1D-NOE) difference spectrum of **1**.

The absolute stereochemistry of the chiral center in **1** was determined using Mosher ester methodology based on the differences between the ¹ H-NMR chemical shifts of (*S*)- and (R) -MTPA ester derivatives $(1_R, 1_S)$. ¹H-NMR data were assigned based on the ${}^{1}H-{}^{1}H$ COSY spectra of $\mathbf{1}_R$ and $\mathbf{1}_S$ (Table 1). For **1**, the positive value of $\Delta \delta_{\text{H}}(\delta_{\text{s}} - \delta_{\text{R}})$ at H-1 and the negative value of $\Delta \delta_{\text{H}}(\delta_{\text{s}} - \delta_{\text{R}})$ at H-4 suggested a *R* configuration at C-2 in compound **1**. Thus the structure of **1** was proposed.

Compound 2 had the molecular formula $C_{20}H_{24}O_4$ as determined from HR-FAB-MS and NMR data. The ¹H-NMR spectrum of **2** was very similar to that of **1**, exhibiting a H-29 signal upfield $(\delta 5.71)$ from the other aromatic ones, a characteristic of diphenyether-type diarylheptanoids, and coupling patterns due to two sets of 1,3,4-trisubstituted aromatic groups. However, no carbonyl signal was observed in the

Position	Ιc \boldsymbol{o}_S	\mathbf{r} o_{R}	$\varDelta\delta$ $\delta_{S}-\delta_{R}$	Position	$-$ s o_{S}	F_R O_{D}	Δδ $o_S - o_R$	Position	\mathcal{P}_{S} $O_{\rm c}$	\mathbf{J}_D o_R	$\Delta\delta$ $\delta_{\scriptscriptstyle S}$ – $\delta_{\scriptscriptstyle R}$
	3.60 3.24	3.39 3.10	$+0.21$ $+0.14$	\mathcal{L} ∼	1.68	1.78	-0.10		2.80 2.59	2.77 2.49	$+0.03$ $+0.10$
\sim	5.36	5.41	R		4.56	4.64	R		5.51	5.53	S
4	1.71	1.89	-0.18		1.51	1.38	$+0.13$	6	1.90	1.99	-0.09
	1.37	1.74	-0.37		1.15	0.93	$+0.22$				

Table 1. Characteristic 1 H-NMR Data of Mosher Esters of **1**, **2**, and **3** for Determination of Stereochemistry

13C-NMR spectrum of **2** as seen in that of **1**. Cross-peaks in the ¹H-¹H COSY spectrum indicated the connectivities from H-1 to H-7 on the aliphatic chain. The location of the methoxyl group was identified by both a cross-peak between the C-3" and C-3"-OCH₃ in the heteronuclear multiple bond connectivity (HMBC) spectrum and a NOE effect between $H-2''$ and $C-3''-OCH_3$ in the nuclear Overhauser effect spectroscopy (NOESY) spectrum of **2**. To determine the absolute configuration of the hydroxyl group at C-3, Mosher ester derivatives $(2_R, 2_S)$ of 2 were prepared, and ¹H-NMR data were also assigned based on the ${}^{1}H-{}^{1}H$ COSY spectra (Table 1). For **2**, the negative value of $\Delta \delta_{\text{H}}(\delta_{\text{S}} - \delta_{\text{R}})$ at H-2 and the positive value of $\Delta \delta_{\text{H}}(\delta_{\text{s}} - \delta_{\text{R}})$ at H-4 suggested a *R* configuration at C-3 in compound **2**.

 1 H- and 13 C-NMR data of 3 were identical with those of the reported compound (5*R*)-5-hydroxy-7-(4-hydroxy-3 methoxyphenyl)-1(4-hydroxyphenyl)-3-heptanone from an other plant.¹⁴⁾ However, optical rotation value ($[\alpha]_D^{25}$ -2.52°) of **3** was different from that of literature $([\alpha]_D^{25} + 1.05^{\circ}).^{14}$ To determine the absolute configuration of the hydroxyl group at C-5, Mosher ester derivatives $(\mathbf{3}_R, \mathbf{3}_S)$ of 3 were prepared, and ¹H-NMR data of $\mathbf{3}_R$ and $\mathbf{3}_S$ were also assigned based on the H–1 H COSY spectra (Table 1). For **3**, the positive value of $\Delta \delta_{\rm H}(\delta_{\rm s}-\delta_{\rm r})$ at H-4 and the negative value of $\Delta \delta_{\rm H}(\delta_{\rm s}-\delta_{\rm r})$ at H-5 suggested a *S* configuration at C-5 in compound **3** and the structure of **3** was determined to be (5*S*)-5-hydroxy-7-(4 hydroxy-3methoxyphenyl)-1(4-hydroxyphenyl)-3-heptanone.

Compound 4 had the molecular formula $C_{21}H_{26}O_5$ as determined from its HR-FAB-MS, ¹³C-NMR, and DEPT spectral data. The ¹ H-NMR spectrum of **4** showed signals for a 1,3,4-trisubstituted and a 1,4-disubstituted aromatic group. The 13C-NMR spectrum of **4** exhibited a total of 21 carbon signals, including characteristic signals due to a carbonyl group (C-3) and two sets of chemically equivalent aromatic carbons (C-2', C-6' and C-3', C-5'). The ${}^{1}H-{}^{1}H$ COSY spectrum of **4** showed connectivities among H-4, H-5, H-6, and H-7, between H-1 and H-2, between H-2' (H-6') and H-3' $(H-5')$, and between H-5" and H-6". In the HMBC spectrum of **4**, the connectivities among two aromatic rings and the alkyl chain were indicated by the cross-peaks between H-7 and $C-1$ ", $C-2$ ", and $C-6$ " and those between H-1 and $C-1$ ', $C 2'$, and C-6' and the location of the carbonyl group in the chain was established by the correlation of C-3 with H-1, H-2, and H4. The positions of two methoxyl groups on C-5 and C-3" of 4 were determined based on both HMBC correlations between C-5 and C-5-OCH₃ and between C-3" and C-3"-OCH₃ and NOE correlations in the NOESY spectrum: that between $C-3$ "-OCH₃ and H-2" and those between $C-5$ -OCH₃ and H-4, H-6, and H-7. Absolute configuration on the chiral center of **4** was not determined.

Compounds **5** $[(S)-(+)$ -4-hydroxytetralone] and **6** $[(-)$ -re-

giolone] were reported from other plants and identified by comparison of physical and spectroscopic data (optical rotation values, ${}^{1}H$ - and ${}^{13}C$ -NMR) with those in the literature.^{5,15,16)}

Only **4** among these compounds showed weak cytotoxicities against the HT-29 and MCF-7 cell lines (IC₅₀: 41.3 μ g/ml and $>50 \mu g/ml$, respectively).

Experimental

General Experimental Procedures Optical rotations were measured using a JASCO DIP-1000 (Tokyo, Japan) automatic digital polarimeter. FT-IR spectra were recorded on a JASCO FT-IR 300E spectrophotometer, and UV spectra on a JASCO V-550 spectrophotometer. The NMR spectra were recorded on Bruker 250 MHz (DMX 250) spectrometer using Bruker's standard pulse program. Samples were dissolved in either chloroform- d_1 or acetone- d_6 , and chemical shifts were reported in ppm downfield from TMS. The FAB-MS spectra were measured with a VG TRIO 2A mass spectrometer. Stationary phases for column chromatography (Silica gel 60, 70—230 and 270—400 mesh and Lichroprep Rp-18 gel, 40—63 μ m, Merck) and TLC plates (Si-gel 60 F_{254} and Rp-18 F_{254}) were purchased from EM Scientific. Spots were detected under UV radiation and by spraying with 10% H_2SO_4 , followed by heating. For preparative HPLC, a LC-10AD pump (Shimadzu), SPD-10A detector (Shimadzu), and Shim-Pack Preparative ODS $(20\times250 \text{ mm})$ column were used. All other chemicals and solvents were of analytical grade and used without further purification.

Plant Material Roots of *J. mandshurica* were collected in September 1993 in a mountainous area of Pyongchang-goon, Gangwon-do, Korea, and dried at room temperature for 2 weeks. A voucher specimen is deposited at the College of Pharmacy, Yeungnam University.

Extraction and Isolation The roots of *J. mandshurica* (3 kg) were extracted twice with MeOH by reflux for 12 h. The MeOH solution was evaporated to dryness (300 g) and partitioned between H_2O and hexane. The resulting H_2O layer was extracted with CHCl₃ and the CHCl₃ solution was evaporated to dryness *in vacuo*. The CHCl₃ extract (50 g) was loaded on a silica gel column (60×9 cm, Si-gel $70-230$ mesh) and the column was eluted with MeOH–EtOAc saturated with $H₂O$ (gradient from EtOAc 100% to MeOH 100%) The eluent was combined on the basis of TLC, giving 17 fractions. Fraction 6 (5.7 g) was chromatographed on a silica gel column (6034 cm, Si-gel 70—230 mesh) with *n*-hexane–EtOAc (gradient from 85 : 15 to 10 : 90). The major fraction 7 from the column was further purified on a reverse-phase column (75×2.6 cm, LiChroprep Rp-18) with MeOH– H2O (gradient from 1 : 9 to 9 : 1), affording **3**, **5**, and **6**. Fraction 7 (4.3 g) was chromatographed on a silica gel column $(60 \times 4 \text{ cm}, \text{ Si-gel } 70 \rightarrow 230 \text{ mesh})$ with *n*-hexane–EtOAc (gradient from 40 : 60 to 10 : 90) and the subfraction 3 from the column was further purified on a reverse-phase column (60×2 cm, LiChroprep Rp-18) with MeOH–H₂O (gradient from 2 : 8 to 9 : 1), affording **1**, **2**, and **4**.

Compound **1**: Brown solid (14 mg); $[\alpha]_D^{25} - 81.13^\circ$ (*c*=0.03, MeOH); UV (MeOH) λ_{max} (log ε) 282.2 (3.53); IR (KBr) v_{max} 3447, 2925, 1637, 1595, 1508, 1383, 1270, 1030 cm⁻¹; ¹H-NMR (acetone- d_6 , 250 MHz) δ 7.05 (1H, d, $J=1.9$ Hz, H-2"), 7.00 (1H, d, $J=8.0$ Hz, H-5"), 6.87 (1H, dd, $J=8.0$, 1.9 Hz, H-6"), 6.71 (1H, d, J=8.1 Hz, H-5'), 6.55 (1H, dd, J=8.1, 2.1 Hz, H-6'), 5.66 (1H, d, $J=2.1$ Hz, H-2'), 4.01 (1H, dd, $J=6.9$, 2.4 Hz, H-2), 3.69 (3H, s, 3"-OCH₃), 2.94 (1H, dd, J=14.8, 2.4 Hz, H-1a), 2.83 (1H, dd, *J*=14.8, 6.9 Hz, H-1b), 2.72 (2H, t, *J*=6.1 Hz, H-7), 1.93 (1H, m, H-4a), 1.75—1.40 (5H, m, H-6a, -4b, -6b, -5a, -5b); ¹³C-NMR (acetone- d_6 , 62.9 MHz) δ 211.8 (C-3), 152.6 (C-3"), 148.4 (C-3'), 145.2 (C-4'), 144.7 $(C-4'')$, 140.3 $(C-1'')$, 128.1 $(C-1')$, 124.6 $(C-5'')$, 124.0 $(C-6')$, 122.1 $(C-6'')$, 115.8 (C-2"), 115.8 (C-5'), 115.7 (C-2'), 76.4 (C-2), 55.7 (3"-OCH₃), 41.4 (C-4), 37.5 (C-1), 36.1 (C-7), 27.9 (C-6), 20.0 (C-5); HR-FAB-MS *m*/*z* 343.1542 (Calcd for $C_{20}H_{23}O_5$ [M+H]⁺, 343.1545).

Compound 2: Brown oil (27 mg); $[\alpha]_D^{25} - 39.07^{\circ}$ (*c*=0.21, MeOH); UV (MeOH) λ_{max} (log ε) 278.6 (3.60); IR (KBr) v_{max} 3420, 2926, 1594, 1515, 1455, 1265, 1151, 1119, 1031, 835 cm⁻¹; ¹H-NMR (acetone- d_6 , 250 MHz) δ 7.05 (1H, d, J=8.0 Hz, H-5"), 6.99 (1H, d, J=1.8 Hz, H-2"), 6.91 (1H, dd, *J*=8.0, 1.8 Hz, H-6"), 6.72 (1H, d, *J*=8.0 Hz, H-5'), 6.53 (1H, dd, *J*=8.0, 1.8 Hz, H-6'), 5.71 (1H, d, J=1.8 Hz, H-2'), 3.65 (3H, s, 3"-OCH₃), 3.00 (1H, m, H-3), 2.76—2.40 (4H, m, H-7a, -1a, -1b, -7b), 1.74 (1H, m, H-6a), 1.52 (1H, m, H-6b), 1.40 (2H, m, H-2), 1.27—1.00 (3H, m, H-4a, -5a, -5b), 0.82 (1H, m, H-4b); ¹³C-NMR (acetone- d_6 , 62.9 MHz) δ 153.1 (C-3"), 149.3 $(C-3')$, 144.5 $(C-4'')$, 144.4 $(C-4')$, 141.8 $(C-1'')$, 134.0 $(C-1')$, 124.8 $(C-5'')$, 122.8 (C-6'), 122.7 (C-6"), 116.7 (C-2"), 116.4 (C-5'), 114.0 (C-2'), 71.5 (C-3), 56.4 (3"-OCH₃), 39.7 (C-4), 37.5 (C-2), 36.1 (C-7), 31.1 (C-6), 29.1 (C-1), 23.4 (C-5); HR-FAB-MS m/z 329.1756 (Calcd for $C_{20}H_{25}O_4$ [M+H]⁺ 329.1753).

Compound **3**: Yellow oil (10 mg); $[\alpha]_D^{25} - 2.52^{\circ}$ (*c*=0.09, MeOH), lit.¹⁴⁾ $[\alpha]_D^{25}$ +1.05° (c =0.80, EtOH); ¹H- and ¹³C-NMR data are consistent with literature values;¹⁴⁾ HR-FAB-MS m/z 345.1699 (Calcd for C₂₀H₂₅O₅ $[M+H]$ ⁺ 345.1702).

Compound 4: Brown oil (15 mg); $[\alpha]_D^{21}$ -7.1° (*c*=0.42, MeOH); UV (MeOH) λ_{max} (log ε) 224.2 (3.99), 280.6 (3.48); IR (KBr) v_{max} 3426, 2931, 1700, 1654, 1617, 1509, 1457, 1364, 1270, 1032, 825 cm⁻¹; ¹H-NMR (CDCl₃, 250 MHz) δ 6.99 (2H, d, J=8.4 Hz, H-2'/H-6'), 6.80 (1H, d, *J*=8.0 Hz, H-5"), 6.70 (2H, d, *J*=8.4 Hz, H-3'/H-5'), 6.64 (1H, s, H-2"), 6.63 (1H, d, $J=8.0$ Hz, H-6"), 3.84 (3H, s, 3"-OCH₃), 3.67 (1H, m, H-5), 3.28 (3H, s, 5-OCH₃), 2.79 (2H, t, $J=6.3$ Hz, H-1), 2.69 (2H, t, $J=6.1$ Hz, H-2), 2.66 (1H, d, J=15.8 Hz, H-4a), 2.59 (2H, m, H-7), 2.41 (1H, dd, J=15.8, 5.3 Hz, H-4b), 1.75 (2H, m, H-6); ¹³C-NMR (CDCl₃, 62.9 MHz) δ 209.0 (C-3), 154.0 (C-4'), 146.3 (C-3"), 143.6 (C-4"), 133.7 (C-1"), 132.8 (C-1'), 129.3 (C-2'/C-6'), 120.8 (C-6"), 115.2 (C-3'/C-5'), 114.2 (C-5"), 110.9 (C- $2'$), 76.6 (C-5), 57.0 (5-OCH₃), 55.8 (3"-OCH₃), 47.3 (C-4), 45.6 (C-2), 36.0 (C-6), 31.0 (C-7), 28.6 (C-1); HR-FAB-MS *m*/*z* 359.1860 (Calcd for $C_{21}H_{27}O_5$ [M+H]⁺ 359.1858).

Compound 5: Brown oil (16 mg); $[\alpha]_D^{25} + 6.35^{\circ}$ (*c*=0.35, MeOH), lit.¹⁵⁾ $[\alpha]_D^{27}$ +23.5° (c =0.7, CHCl₃); ¹H- and ¹³C-NMR data are consistent with literature values;¹⁶⁾ positive FAB-MS m/z 163.0 (C₁₀H₁₀O₂ [M+H]⁺).

Compound 6: Brown amorphous powder (40 mg); $[\alpha]_D^{25} - 0.85^\circ$ (*c*=0.51, MeOH), lit.⁵⁾ $[\alpha]_D - 3.3^\circ$ (*c*=0.077, EtOH); ¹H- and ¹³C-NMR data are consistent with literature values;⁵⁾ positive FAB-MS m/z 179.0 (C₁₀H₁₀O₃) $[M+H]^+$).

Preparation of Mosher Esters A previously described method was used.^{17,18)} To each 1 mg of 1, 2, and 3 in 0.5 ml of CH_2Cl_2 were added sequentially 0.2 ml of pyridine, 0.5 mg of 4-(dimethylamino)pyridine, and 12.5 mg of (R) - $(-)$ - α -methoxy- α -(trifluoromethyl)phenylacetyl [(R) -MTPA] chloride, separately. The mixture was left at room temperature overnight and purified over a microcolumn $(0.6\times6$ cm) of silica gel (230— 400 mesh) eluted with $3-4$ ml of hexane–CH₂Cl₂ (1:3). The elute was dried, CH₂Cl₂ (5 ml) was added, and the CH₂Cl₂ was washed using 1% NaHCO₃ (5 ml \times 2) and H₂O (5 ml \times 2). The washed elute was dried *in vacuo* to give the *S*-Mosher esters $(1_s, 2_s, 3_s)$ of 1, 2, and 3, respectively. Using (S) -MTPA chloride afforded the *R*-Mosher esters $(\mathbf{1}_R, \mathbf{2}_R, \mathbf{3}_R)$ of 1, 2, and 3, respectively. Their ¹H-NMR chemical shifts are given in Table 1.

Cytotoxicity Bioassays The tetrazolum-based colorimetric assay (MTT assay) was used for the *in vitro* assay of cytotoxicity against human colon carcinoma (HT-29) and human breast carcinoma (MCF-7) cells.¹⁹

Acknowledgment This work was supported by grant R01-2000-000- 001 from the Korea Science and Engineering Foundation.

References

- 1) Binder R. G., Benson M. E., Flash R. A., *Phytochemistry*, **28**, 2799— 2801 (1989).
- 2) Gupta S. R., Ravindranath B., Seshadri T. R., *Phytochemistry*, **11**, 2634—2636 (1972).
- 3) Muller W.-U., Leistner E., *Phytochemistry*, **17**, 1739—1742 (1978).
- 4) Hirakawa K., Ogiue E., Motoyoshiya J., Yajima M., *Phytochemistry*, **25**, 1494—1495 (1986).
- 5) Talpatra S. K., Karmacharta B., De S. C., Talapatra B., *Phytochemistry*, **27**, 3929—3932 (1988).
- 6) Pardhasaradhi M., Hari Babu M., *Phytochemistry*, **17**, 2042—2043 (1978).
- 7) Hedin P. A., Collum D. H., Langhans V. E., Grave C. H., *J. Agric. Food Chem.*, **28**, 340—342 (1980).
- 8) Joe Y. K., Son J. K., Park S. H., Lee I. J., Moon D. C., *J. Nat. Prod.*, **59**, 159—160 (1996).
- 9) Son J. K., *Arch. Pharm. Res.*, **18**, 203—205 (1995).
- 10) Kim S. H., Lee K. S., Son J. K., Je G. H., Lee J. S., Lee C. H., Cheong C. J., *J. Nat. Prod.*, **61**, 643—645 (1998).
- 11) Lee S. W., Lee K. S., Son J. K., *Planta Med.*, **66**, 184—186 (2000).
- 12) Lee K. S., Li G., Lee C. S., Woo M. H., Lee S. H., Jhang Y. D., Son J. K., *J. Nat. Prod.*, **65**, 1707—1708 (2002).
- 13) Tanaka T., Jiang Z., Kouno I., *Phytochemistry*, **47**, 851—854 (1998).
- 14) Shin D., Kinoshita K., Koyotaka K., Takahashi K., *J. Nat. Prod.*, **65**, 1315—1318 (2002).
- 15) Joly S., Nair Mangalam S., *Tetrahedron Asymm.*, **12**, 2283—2287 (2001).
- 16) Fournet A., Angelo Barrios A., Muñoz V., Hocquemillwe R., Roblot F., Cavé A., *Planta Med.*, **60**, 8—12 (1994).
- 17) Dale J. A., Mosher H. S., *J. Am. Chem. Soc.*, **95**, 512—519 (1973).
- 18) Rieser M. J., Hui Y. H., Rupprecht J. K., Kozlowski J. F., Wood K. V., McLaughlin J. L., Hanson P. R., Zhuang A., Hoye T. R., *J. Am. Chem. Soc.*, **144**, 10203—10213 (1992).
- 19) Rubinstein L. V., Shoemaker R. H., Paul K. D., Simon R. M., Tosini S., Skehan P., Scudiero D. A., Monks A., Boyd M. R., *J. Nat. Cancer Inst.*, **82**, 1113—1118 (1990).