Two Novel Sesquiterpene Lactones, Cytotoxic Vernolide-A and -B, from *Vernonia cinerea*

Yao-Haur Kuo,*,a,b Yu-Jen Kuo,b Ang-Su Yu,b Ming-Der Wu,c Chi-Wi Ong,c Li-Ming Yang Kuo, Jo-Ti Huang,a Chieh-Fu Chen,a and Shyh-Yuan Li*,b

^a National Research Institute of Chinese Medicine; Shih-Pai, Taipei, 112, Taiwan: ^b R.O.C., Department of Chemistry, Chinese Culture University; Taipei, 113, Taiwan: and ^c R.O.C., and Institute of Chemistry, National Sun Yat-Sen University; Kaohsiung, 804, Taiwan, R.O.C. Received October 16, 2002; accepted December 25, 2002

Bioassay-directed fractionation of an ethanolic extract of stems of *Vernonia cinerea* has resulted in the isolation of two novel sesquiterpene lactones, vernolide-A and -B. Their structures were elucidated on the basis of spectroscopic analysis. Biological evaluation showed that vernolide-A demonstrated potent cytotoxicity against human KB, DLD-1, NCI-661, and Hela tumor cell lines (ED₅₀=0.02, 0.05, 0.53, 0.04 μ g/ml for KB, DLD-1, NCI-661, and Hela, respectively); vernolide-B had marginal cytoxicity (ED₅₀=3.78, 5.88, 6.42 μ g/ml for KB, NCI-661, and Hela, respectively).

Kev words *Vernonia cinerea*; vernolide-A; vernonia-B; cytotoxicity

Vernonia cinerea Less. is a perennial herbaceous plant that is distributed throughout the middle and southern ares of Taiwan. During a search for bioactive agents from the terrestrial plants of Taiwan, we found that a crude extract of *V. cinerea* possessed cytotoxicity. Bioassay-guided fractionation of an EtOH extract led to the isolation of two novel sesquiterpene lactones, vernolide-A (1) and-B (2). We describe the structural elucidation of 1 and 2 using H–H correlation spectroscopy (COSY), ¹³C–¹H heteronuclear multiple quantum coherence (HMQC), and ¹³C–¹H heteronuclear multiple bond coherence (HMBC) experiments. Biological evaluation of the cytotoxicity of compounds 1 and 2 is also reported.

The molecular formula of $\mathbf{1}$ (C₂₁H₂₈O₇) was indicated by a molecular ion (m/z 392 [M]⁺) in the HR-EI-MS spectra. The IR and ¹³C-NMR spectra suggested that $\mathbf{1}$ may contain hydroxyl, ester, and γ -lactone functionalities.

The 13 C-NMR and distortionless enhancement by polarization transfer (DEPT) spectra indicated that **1** contained eight quaternary carbons, four tertiary carbons, four secondary carbons, and five primary carbons. In the 1 H- 1 H COSY spectrum, cross peaks between H-9 and H-8, -10, between H-14 and H-10, between H-2 and H-3, and between H-4' and H-3' were observed. Inspection of the HMBC spectrum, a singlet olefinic proton ($\delta_{\rm H}$ 5.82, s), a doublet methyl ($\delta_{\rm H}$ 0.86 ppm, 3H, d, J=6.5), a singlet methyl ($\delta_{\rm H}$ 1.44 ppm, 3H, s), and a methoxyl (3.25 ppm, 3H, s) were assigned at H-5, -10, -4, and -1, respectively. Three oxygenated quaternary

carbons could be assigned at C-1, -4, and -6, respectively, not only from ¹³C-NMR but also from the HMBC spectrum. In addition, a correlation between an oxygenated methylene (H-13) and the carbonyl carbon (C-12) was found, together with the above corroborations and referenced data, 1-4) suggesting that 1 is a sesquiterpene with a lactone skeleton which was usually isolated from Vernonia spp. and named as a hirsutinolide type sesquiterpene. Besides the major skeleton of 1 based on the above deduction, an additional functional group was also predicted by the HMBC spectrum. Thus, H-3' was correlated with a carbonyl carbon (C-1'), doublet methyl (C-4'), and singlet methyl (C-5') signals, indicating the presence of a tiglate.²⁾ Moreover, an oxygenated proton, (H-8), has a long-range correlation with a carbonyl carbon (C-1'), suggesting this functional group was at C-8. These findings together with the molecular ion at m/z 392 confirmed compound 1 as 1α -methoxyl- 8α -tigloyloxy hirsutinolide, which is tentatively named vernolide-A.

Vernolide-B (2) gave m/z 434 [M⁺], for $C_{23}H_{30}O_8$ by MS. The ¹H- and ¹³C-NMR spectra of 2 were similar to those of 1, and indicated the characteristic signals for a substituted hirsutinolide type sesquiterpene. However, additional signals $(\delta_{\rm H}\,2.01,\,\delta_{\rm C}\,20.6,\,170.1)$ for an acetate group were observed in the NMR spectra, and the oxygenated methylene (H-13a, b) shifted to low field (from $\delta_{\rm H}$ 4.61, 4.51 to 5.05, 4.97), revealing that compound 2 possesses an acetate group at C-13. Moreover, the correlation between the carbonyl carbon and H-13 in the HMBC spectrum, and a corresponding fragment ion at m/z 375 [M⁺-CH₃COO] in the mass spectrum, are in good agreement with the acetic acid ester at C-13. In addition to the above corroboration, on the basis of 2D ¹H-¹H COSY and ¹H-¹³C COSY spectral analyses, the complete assignments for the chemical shifts of ¹H- and ¹³C-NMR of 2 were definitively undoubtedly.

As to the stereochemistry of compounds 1 and 2, correlations between the methoxyl and CH_3 -15, and CH_3 -14 in the nuclear Overhauser effect spectroscopy (NOESY) and NOE spectra were observed. This evidence possibly supported that 1 and 2 possessed a 1,4 β ether ring and 8 α -tiglate acid ester configurations as does the known 8 α -tigloyloxy hirsutinolide, 1 and then their structures were established unambigu-

426 Vol. 51, No. 4

ously.

After cytotoxicity assay in human KB (oral epidermoid carcinoma), DLD-1 (colon adenocarcinoma), NCI-661 (lung large cell carcinoma), and Hela (cervix epithelioid carci-

Table 1. ¹H-NMR Data^{a)} of Compounds 1 and 2 (CDCl₃)

Position	1	2
2a	2.12 br d (2.8)	2.13 br d (3.1)
2b	1.85 m	1.86 m
3a	2.07 br d (3.5)	2.06 br d (2.4)
3b	1.91 s	1.92 s
5	5.82 s	5.82 s
8	6.25 d (8.0)	6.17 d (7.8)
9a	1.71 m	1.76 m
9b	2.33 dd (16, 11)	2.38 dd (16,11)
10	1.94 m	1.95 m
13a	4.61 d (13.2)	5.05 (13)
13b	4.51 d (13.2)	4.97 (13)
14	0.86 d (6.5)	0.84 d (6.9)
15	1.44 s	1.43 s
1-OCH ₃	3.25 s	3.21 s
13-OAc		2.01 s
3′	7.03 q (7.5)	6.99 q (7)
4'	1.78 br d (7.5)	1.74 d (7)
5′	1.80 br s	1.77 br s

a) Chemical shift values are given in ppm, and J values in parentheses are given in Hz. Assignments were confirmed by $^1\mathrm{H-}^1\mathrm{H}$ COSY, HMQC, and HMBC experiments.

Table 2. ¹³C-NMR Data^{a)} of Compounds 1 and 2 (CDCl₂)

Carbon	1	2	HMBC ($^{13}C\rightarrow ^{1}H$)
1	111.3 (s)	111.1 (s)	1-OCH ₃ , H-2, 3, 9,10, 14
2	32.8 (t)	32.6 (t)	H-3
3	39.9 (t)	39.8 (t)	H-5, 15
4	80.6 (s)	80.4 (s)	H-2, 3, 5, 15
5	126.3 (d)	126.6 (d)	H-3, 15
6	146.7 (s)	146.4 (s)	H-5, 8
7	147.6 (s)	150.3 (s)	H-5, 8, 9, 13
8	68.4 (d)	68.2 (d)	H-9, 10
9	36.1 (t)	35.8 (t)	H-8, 10, 14
10	42.6 (d)	42.5 (d)	H-8, 9, 14
11	133.7 (s)	129.6 (s)	H-8, 13
12	168.1 (s)	167.6 (s)	H-13
13	54.4 (t)	55.4 (t)	
14	16.8 (q)	16.7 (q)	H-9, 10
15	27.6 (q)	27.1 (q)	H-3, 5
1-OCH ₃	48.9 (q)	48.6 (q)	
CH3COO		20.6 (q)	
CH ₃ COO		170.1 (s)	H-13
1'	168.4 (s)	167.6 (s)	H-8, 3'
2'	128.4 (s)	128.3 (s)	H-4', 5'
3′	139.4 (d)	138.4 (d)	H-4', 5'
4′	14.6 (q)	14.3 (q)	H-3'
5'	11.9 (q)	11.8 (q)	H-3′

 $[\]it a$) Assignments were confirmed by HMQC and HMBC experiments.

noma) tumor cell lines, compound 1 exhibited potent cytotoxicity against the above tumor cells (ED $_{50}$ =0.02, 0.05, 0.53, 0.04 μ g/ml for KB, DLD-1, NCI-661, Hela, respectively). Compound 2 showed only marginal cytotoxic effects (ED $_{50}$ =3.78, 5.88, 6.42 μ g/ml for KB, NCI-661, and Hela, respectively). These results indicate revealed that replacement of a hydroxy by an acetate group in C-13 would decrease the activity. It seems that the C-13 position in the hirsutinolide type sesquiterpenes may play an important role in their activity. Detailed structure–activity relationships of the substituted hirsutinolide need to be investigated.

Experimental

General Experimental Procedures ¹H- and ¹³C-NMR spectra were recorded at 300.13 and 75.46 MHz, respectively, on a Bruker 300 AC spectrometer. The spectra of heteronuclear correlation, HMBC was established by the coupling of 8 Hz. Electron impact (EI)-MS and FAB-MS were performed on a JEOL SX-102A instrument. Silica gel (Merck 70—230 mesh) was used for column chromatography, and precoated Silica gel (Merck 60F-254) plates were used for TLC. HPLC was accomplished on an SPD-6AV liquid chromatograph using a preparative C₁₈ column. Melting points were determined on a Fisher–Johns apparatus and are uncorrected.

Plant Material The stems of *Vernonia cinerea* Less. were collected in June 1999 at Kaohsiung, southern Taiwan. A voucher specimen is deposited at the National Research Institute of Chinese Medicine, Shih-Pai, Taipei, Taiwan, R.O.C.

Extraction and Isolation The dried stems of *V. cinerea* (5.3 kg) were extracted exhaustively with ethanol. An EtOH extract (102 g) of dried stems of *V. cinerea* was extracted successively with *n*-hexane and CHCl₃. The CHCl₃ extract was chromatographed by column chromatography over Si gel and eluted with *n*-hexane–EtOAc and EtOAc to give 8 fractions. The bioactive fr. 5 (*n*-hexane: EtOAc=2:1) was further separated by HPLC $(5C_{18}, 250 \times 10 \text{ mm})$ with MeOH–H₂O (9:1) to furnish 1 (11 mg) and 2 (8 mg).

Vernolide-A (1): Red brown amorphous powder; IR v_{max} (KBr) 3450 (OH), 1760 (γ-lactone), 1720 (C=CCO₂R) cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; HR-EI-MS m/z 392.1834 [M]⁺ (Calcd for C₂₁H₂₈O₇: 392.1835).

Vernolide-B (2): Red brown amorphous powder; IR $\nu_{\rm max}$ (KBr) 3450 (OH), 1760, (γ-lactone), 1725 (OAc, C=CCO₂R) cm⁻¹; 1 H- and 13 C-NMR, see Table 1; HR-EI-MS m/z 434.1949 [M] $^{+}$ (Calcd for C₂₃H₃₀O₈: 434.1941).

Cytotoxicity Assay An *in vitro* cytotoxicity assay was performed as previously described. ⁵⁾

Acknowledgments The authors thank the National Science Council, ROC, for financial support to Y. H. Kuo. We also thank Mr. Shih-Jen Wang, NSC Regional Instrument Center of HSIN-CHU, for measuring the HREIMS data.

References

- Bohlmann F., Brindöpke G., Rastogi R. C., Phytochemistry, 17, 475— 482 (1978)
- Bohlmann F., Zdero C., King R. M., Robinson H., *Phytochemistry*, 21, 1045—1048 (1982).
- Bohlmann F., Mahanta P. K., Dutta L. N., Phytochemistry, 18, 289— 291 (1979).
- Borkosky S., Bardon A., Catalan C. A. N., Diaz J. G., Herz W., *Phyto-chemistry*, 44, 465—470 (1997).
- Kuo Y. H., Huang H. C., Kuo Yang L. M., Chen C. F., J. Org. Chem., 64, 7023—7027 (1999).