Wrightiamines A and B, Two New Cytotoxic Pregnane Alkaloids from *Wrightia javanica*

Souichi Kawamoto,^{*a*} Takashi Koyano,^{*b*} Thaworn Kowithayakorn,^{*c*} Haruhiro Fujimoto,^{*a*} Emi Okuyama,^{*a*} Masahiko Hayashi,^{*d*} Kanki Komiyama,^{*d*} and Masami IshiBashi^{*,*a*}

^a Graduate School of Pharmaceutical Sciences, Chiba University; 1–33 Yayoi-cho, Inage-ku, Chiba 263–8522, Japan: ^b Temko Corporation; 4–27–4 Honcho, Nakano-ku, Tokyo 164–0012, Japan: ^c Department of Horticulture, Faculty of Agriculture, Khon Kaen University; Khon Kaen 40002, Thailand: and ^d The Kitasato Institute; 5–9–1 Shirokane, Minatoku, Tokyo 108–8642, Japan. Received January 30, 2003; accepted March 7, 2003

Two new pregnane alkaloids, wrightiamines A (1) and B (2), were isolated from the extract of the tropical Apocynaceous plant *Wrightia javanica* collected in Thailand, and their structures were elucidated by spectral data. Wrightiamine B (2) was preparaed from 3β -hydroxy- 5α -pregnan-20-one to establish the configuration of the C-20 position as S. Wrightiamine A (1) exhibited cytotoxic activity against vincristine-resistant murine leukemia P388 cells.

Key words Apocynaceae; Wrightia javanica; pregnane alkaloid; cytotoxicity

Wrightia javanica DC. (Apocynaceae) is a small tree widely distributed over the northern Malayan peninsula and other south Asian areas, and its milky lotion has been used as a folk medicine.¹⁾ During our search for bioactive natural products from tropical plants,²⁾ we investigated the chemical constituents of leaves of *W. javanica* collected in Thailand. Here we describe the isolation and structure elucidation of two new pregnane alkaloids, wrightiamines A (1) and B (2), and preparation of compound 2 to establish the C-20 configuration. 1 exhibited cytotoxic activity against vincristine-(VCR)-resistant murine leukemia P388 cells, while the cytotoxicity of 2 was weak.

The leaves of *W. javanica*, collected in Thailand, were extracted with MeOH, and the MeOH extract was subjected to solvent partitioning to give hexane-, EtOAc-, *n*-BuOH-, and water-soluble fractions. The *n*-BuOH-soluble fraction containing Dragendorff reagent-positive spots on TLC examination was subjected to repeated chromatography on silica gel and Sephadex LH-20, followed by further purification with HPLC on ODS to give **1** and **2**.

1 was obtained as colorless amorphous solid and was suggested to have the molecular formula C₂₁H₃₄N₂ based on its high resolution (HR)-FAB-MS data (m/z 315.2790, M+H, Δ +1.1 mmu). The IR spectrum of 1 showed absorption bands due to an amino $(3400 \,\mathrm{cm}^{-1})$ and an imino group (1650 cm^{-1}). The presence of an imino group was also indicated from the ¹H- and ¹³C-NMR signals [$\delta_{\rm H}$ 7.67, 1H, s (H-18); $\delta_{\rm C}$ 169.9 (C-18)]. The ¹H-NMR spectrum of **1** showed signals due to one tertiary methyl [$\delta_{\rm H}$ 0.83, 3H, s (H₃-19)], one secondary methyl [$\delta_{\rm H}$ 1.39, 3H, d, J=7.0 Hz (H₃-21)], and two nitrogen-bearing sp^3 methines [$\delta_{\rm H}$ 3.58, 1H, br t, J=11.0 Hz (H-3) and 4.07, 1H, m (H-20)]. In addition to these groups, the ¹³C-NMR spectrum aided by ¹H-detected heteronuclear multiple quantum coherence (HMQC) experiments revealed the presence of nine sp^3 methylenes, five sp^3 methines, and two sp^3 quaternary carbons. Since one of six unsaturation degrees was accounted for by the imino group and no other sp^2 carbon signals were observed in the ¹³C-NMR spectrum, 1 was inferred to have five rings. The ${}^{1}H{}^{-1}H$ correlation spectroscopy (COSY) and heteronuclear multiple bond connectivity (HMBC) spectra of 1 showed correlations consistent with the pregnane skeleton. The ¹H–¹H COSY spectrum suggested the presence of an amino group on C-3, and the methine proton on C-3 ($\delta_{\rm H}$ 3.58) was observed as a broad triplet (J=11 Hz), indicating that H-3 is α -axial and that the C-3 amino group has β -equatorial orientation. The imino proton ($\delta_{\rm H}$ 7.67, H-18) showed HMBC correlations to C-13, C-17, and C-20, thus suggesting that the imino carbon (C-18) was attached at the C-13 position and the nitrogen of the imino group was connected to the C-20 position to construct a 1-pyrroline ring. Substantial nuclear Overhauser effect (NOE) correlations were observed for H-20/H-17 and H₂-21/H-16 β , indicating that H-20 is α and the methyl group (C-21) has β orientation. From these results, the structure of wrightiamine A was concluded to be 1, which corresponds to a 5,6-dihydro derivative of conkurchine (3).³⁾ Comparison of the ¹H- and ¹³C-NMR data of **1** with those of **3** in the literature³) also supported the structure of **1**.

Compound **2** was suggested to have the molecular formula $C_{21}H_{35}NO$ based on the HR-FAB-MS data (*m/z* 318.2812, M+H, Δ +1.5 mmu). The ¹H-NMR spectrum of **2** showed signals due to two tertiary methyl [$\delta_{\rm H}$ 0.63, 3H, s (H₃-18); 0.89, 3H, s (H₃-19)] and one secondary methyl [$\delta_{\rm H}$ 1.59, 3H, d, *J*=6.5 Hz (H₃-21)] groups, and its ¹³C-NMR spectrum revealed the presence of a ketone ($\delta_{\rm C}$ 209.4) and a nitrogenbearing methine carbon ($\delta_{\rm C}$ 50.4). The IR spectrum of **2** showed absorption bands due to an amino (3450 cm⁻¹) and a carbonyl (1690 cm⁻¹) group. Since one of five unsaturation degrees was due to the ketone group and no other *sp*² carbon

© 2003 Pharmaceutical Society of Japan

(a) Refs. 5, 6 [(i) NH₂OHHCl, pyridine, EtOH, reflux, 5h, 92%; (ii) H₂, PtO₂, AcOH,
16h; (iii) silica gel column, ether saturated with NH₃/MeOH (85:15), 5: 63%; 6: 20%];
(b) CrO₃, H₂SO₄, acetone, 2: 86%; 7: 71%.

Chart	1
Unart	1

Table 1. ¹³C-NMR Spectral Data of Compounds 1 and 2 in C₅D₅N

Position –	1	2
	$\delta_{ m C}$	$\delta_{ m C}$
1	37.4	37.7
2	27.6	37.4
3	51.3	209.4
4	33.9	43.9
5	45.4	45.7
6	28.7	28.0
7	32.9	30.8
8	37.6	34.2
9	54.4	52.6
10	36.1	34.2
11	23.4	20.5
12	33.7	38.3
13	66.9	41.7
14	55.2	55.0
15	29.4	23.4
16	24.7	26.5
17	49.3	54.7
18	169.9	11.2
19	17.7	10.3
20	69.2	50.4
21	12.5	19.1

signals were observed, 2 was suggested to have four rings. The HMQC and distortionless enhancement by polarization transfer (DEPT) data revealed that 2 has three methyls, nine methylenes, six methines, and three quaternary carbons. The HMBC spectral data of 2 were indicative of the pregnane skeleton, and the ketone group was placed on C-3 (HMBC correlations: H₂-1/C-3, H₂-2/C-3, H₂-4/C-3, and H₂-5/C-3), and the amino group on C-20 (HMBC correlations: H₃-21/C-20 and H-17/C-20). The ¹³C-NMR chemical shift of the C-19 methyl carbon ($\delta_{\rm C}$ 10.3) suggested that 2 has the 5 α -H configuration, since the C-19 of 5α - and 5β -pregnan-3,20-dione resonated at $\delta_{\rm C}$ 10.3 and 22.6, respectively.⁴⁾ To determine the configuration of the C-20 amino-bearing methine carbon, compound 2 and its 20-epimer were prepared as shown in Chart 1. 3β -Hydroxy- 5α -pregnan-20-one (4) was converted into the known 20S- and 20R-amino-5 α -pregnan-3 β -ol (5, 6) using procedures reported in the literature.^{5,6)} The absolute configurations of the C-20 of 5 and 6 have been firmly established based on chemical evidence.⁷⁾ Jones oxidation of **5** and 6 afforded 20S- and 20R-amino-5 α -pregnan-3-one (2, 7), respectively, and wrightiamine B proved to be identical to the 20*S*-isomer (2) on the basis of the comparison of TLC and ¹H-NMR spectral data. Thus the structure of wrightiamine B was established to be 20*S*-amino-5 α -pregnan-3-one (2).

The cytotoxic activities of **1** and **2** against VCR-resistant murine leukemia P388 cells were examined, and the IC₅₀ values in the presence and absence of VCR 12.5 ng/ml were 2.0 and 3.1 μ g/ml, respectively, for **1**, and 22 and *ca*. 25 μ g/ml, respectively, for **2**. Thus compound **1** was cytotoxic but had no reversal effect of multidrug resistance,⁸⁾ while the cytotoxicity of **2** was weak.

Experimental

General Optical rotations were recorded on a JASCO J-20. IR spectra were measured on KBr disks in a Hitachi 260-10 infrared spectrophotometer. NMR spectra were recorded on JEOL JNM GSX-A400, A500, and ecp600 spectrometers. HR-FAB mass spectra were acquired on a JMS HX-110 mass spectrometer.

Plant Materials Leaves of *W. javanica* were collected in Khon Kaen, Thailand. A voucher specimen is maintained in the Department of Horticulture, Faculty of Agriculture, Khon Kaen University.

Extraction and Isolation The air-dried leaves (200 g) were extracted with MeOH. The MeOH extract (68 g) was partitioned between hexane (200 ml×3) and 10% aqueous MeOH (200 ml), and the aqueous phase was further extracted with EtOAc (200 ml×3) and n-BuOH (200 ml×2) to give four corresponding fractions (4.7, 8.9, 17.9, 25.5 g, respectively). Part of the n-BuOH-soluble fraction (8.3 g) was subjected to silica gel column chromatography (3.8×33 cm) eluted with 0-100% MeOH/CHCl₃. The fraction eluted with MeOH/CHCl₃ (1:1) was further separated by gel filtration with Sephadex LH-20 (2.4×33 cm) eluted with MeOH, followed by purification on a second silica gel column (1.4×13 cm; eluent: CHCl₂/n-BuOH/AcOH/ H₂O, 1.5:6:1:1) and a second Sephadex LH-20 column (1.4×38 cm; eluent: MeOH) to afford 1 (29.2 mg). Another part of the n-BuOH-soluble fraction (9.6 g) was subjected to silica gel column chromatography (3.6×25 cm) eluted with 0-100% MeOH/CHCl₃. The fraction eluted with MeOH/CHCl₃ (1:1) was further separated by gel filtration on Sephadex LH-20 (1.5×27 cm) eluted with MeOH, followed by purification with a second silica gel column (1.5×15 cm; eluent: CHCl₃/n-BuOH/AcOH/H₂O, 1.5:6:1:1) and ODS flash column chromatography (1.5×15 cm; eluent: 60-100% MeOH with 0.1% trifluoroacetic acid (TFA)), and finally with ODS HPLC (Develosil ODS UG-5, 10×250 mm; eluent: 70% MeOH with 0.1% TFA) to give 2 (3.4 mg).

Wrightiamine A (1): Colorless amorphous solid; $[\alpha]_{D}^{25} - 14^{\circ}$ (c=0.2, MeOH); IR (KBr) v_{max} 3400 and 1650 cm⁻¹; ¹H-NMR (C₅D₅N) $\delta_{\rm H}$ 7.67 (1H, s; H-18), 4.07 (1H, m; H-20), 3.58 (1H, br t, J=11.0 Hz; H-3), 2.31 (1H, br t, J=11.0 Hz; H-2a), 2.10 (2H, m; H-2b and H-4a), 1.95 (1H, t, J=11.0 Hz; H-4b), 1.39 (3H, d, J=7.0 Hz; H₃-21), and 0.83 (3H, s; H₃-19); ¹³C-NMR (Table 1); electron impact (EI)-MS m/z 314 (M⁺); FAB-MS m/z 315 (M+H)⁺; HR-FAB-MS m/z 315.2790 [Calcd. for C₂₁H₃₄N₂, (M+H) 315.2779].

Wrightiamine B (2): Colorless amorphous solid; $[\alpha]_{D}^{25}$ +5° (*c*=0.04, MeOH); CD (MeOH) λ_{ext} 289 ($\Delta \varepsilon$ 0.42), 237 (-0.053), 222 (0.17), and 209 nm (-0.19); IR (KBr) v_{max} 3450 and 1685 cm⁻¹; ¹H-NMR (C₅D₅N) $\delta_{\rm H}$ 3.48 (1H, m; H-20), 2.35 (1H, m; H-2a), 2.34 (1H, m; H-2b), 2.24 (1H, m; H-4a), 2.07 (1H, m; H-4b), 1.78 (1H, m; H-17), 1.59 (3H, d, *J*=6.5 Hz; H₃-21), 0.86 (3H, s; H₃-19), and 0.63 (3H, s; H₃-18); ¹³C-NMR (Table 1); EI-MS *m/z* 317 (M⁺); FAB-MS *m/z* 318 (M+H)⁺; HR-FAB-MS *m/z* 318.2812 [Calcd. for C₂₁H₃₆NO, (M+H) 318.2797].

Preparation of 20*S***- and 20***R***-Amino-5α-pregnan-3-one (2, 7) Commercially available 3β-hydroxy-5α-pregnan-20-one (4, 721 mg) was converted into known 20***S***-amino-5α-pregnan-3β-ol (5, 326 mg) and 20***R***-amino-5α-pregnan-3β-ol (6, 104 mg) using the procedures reported in the literature^{5,6} [(i) NH₂OH.HCl, pyridine, EtOH, reflux, 5 h, 92%; (ii) H₂, PtO₂, AcOH, 16 h; (iii) silica gel column, ether saturated with M₃/MeOH (85:15), 5: 63%; 6: 20%]. 20***S***-aminoalcohol (5, 6.6 mg) dissolved in acetone (1.0 ml) was treated with 6µl of Jones reagent (CrO₃ 2.67 g, conc. H₂SO₄ 2.3 ml, and H₂O** *ca***. 7.7 ml) for 5 min at room temperature. After addition of 4 N NaOH (10 ml), the reaction mixture was extracted with CHCl₃ (3 ml×10), dried over MgSO₄, and purified with silica gel column chromatography (9×35 mm; 5—10% MeOH/CHCl₃) to give 20***S***-amino-5α-pregnan-3-one (2, 5.1 mg). 20***R***-Aminoalcohol (6, 6.4 mg) was converted into 20***R***-amino-5α-pregnan-3-one (7, 5.0 mg). 7: [α]_D²⁵ -3° (***c***=0.2, MeOH); IR (KBr)** *v***_{max} 3450 and 1685 cm⁻¹; ¹H-NMR (C₅D₅N) δ_H 3.54 (1H, m; H-**

20), 2.49 (1H, m; H-2a), 2.07 (1H, m; H-2b), 2.20 (1H, m; H-4a), 2.06 (1H, m; H-4b), 1.70 (1H, m; H-17), 1.49 (3H, d, J=6.5 Hz; H₃-21), 0.87 (3H, s; H₃-18), and 0.78 (3H, s; H₃-19); EI-MS *m*/*z* 317 (M⁺); FAB-MS *m*/*z* 318 (M+H)⁺; HR-FAB-MS *m*/*z* 318.2796 [Calcd. for C₂₁H₃₆NO, (M+H) 318.2797].

Acknowledgments This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Sport, and Culture of Japan, and by Grants-in-Aid from the Shorai Foundation for Science and Technology, Mochida Memorial Foundation for Medical and Pharmaceutical Research, and Suzuken Memorial Foundation.

References and Notes

 Corner E. J. H., Watanabe K., "Illustrated Guide to Tropical Plants," Hirokawa Publishing Company, Tokyo, 1969, p. 660.

- For a previous report in this series, see: Tanaka T., Ishibashi M., Fujimoto H., Okuyama E., Koyano T., Kowithayakorn T., Hayashi M., Komiyama K., *J. Nat. Prod.*, 65, 1709–1711 (2002).
- Janot M. M., Jarreau F. X., Minh T.-H., Qui K.-H., Goutarel R., Bull. Soc. Chim. France, 1964, 1555—1563 (1964).
- 4) Blunt J. W., Stothers J. B., Org. Mag. Res., 9, 439-464 (1977).
- 5) van de Woude G., van Hove L., *Bull. Soc. Chim. Berg.*, **76**, 566–578 (1967).
- Biesemans M., van de Woude G., van Hove L., *Bull. Soc. Chim. Berg.*, 94, 59–68 (1985).
- 7) Fieser L. F., Fieser M., "Steroids," Reihold, New York, 1959, p. 861.
- Kam T. S., Subramaniam G., Sim K.-M., Yoganathan K., Koyano T., Toyoshima M., Rho M.-C., Hayashi M., Komiyama K., *Bioorg. Med. Chem. Lett.*, 8, 2769–2772 (1998).