Two New Cyclopentenone Derivatives and a New Cyclooctadienone Derivative from *Erigeron annuus* **(L.) PERS.,** *Erigeron philadelphicus* **L., and** *Erigeron sumatrensis* **RETZ.**

Takeyoshi IIJIMA, Yasunori YAOITA, and Masao KIKUCHI*

Tohoku Pharmaceutical University; 4–4–1 Komatsushima, Aoba-ku, Sendai, Miyagi 981–8558, Japan. Received March 6, 2003; accepted March 30, 2003

Two new cyclopentenone derivatives, erigerenones A (1) and B (2), and a new cyclooctadienone derivative, erigerenone C (3), were isolated from the aerial parts of *Erigeron philadelphicus* **L. Compound 2 was also isolated from the aerial parts of** *Erigeron annuus* **(L.) PERS. and** *Erigeron sumatrensis* **RETZ. The structures of 1—3 were elucidated on the basis of their spectral data.**

Key words *Erigeron annuus*; *Erigeron philadelphicus*; *Erigeron sumatrensis*; Compositae; cyclopentenone derivative; cyclooctadienone derivative

The genus *Erigeron* is a common group of Compositae plants, and *Erigeron annuus* (L.) PERS. (*himejyon* in Japanese), *Erigeron philadelphicus* L. (*harujion* in Japanese) and *Erigeron sumatrensis* RETZ. (*oarechinogiku* in Japanese) are now, as naturalized weeds, widely distributed throughout urban and rural areas of Japan.¹⁾ Among these, *E. annuus* has been used as an hypoglycemic drug in China.²⁾ The constituents of *E. annuus*, *E. philadelphicus*, and *E. sumatrensis* have been previously investigated and shown to contain monoterpenoids, 3 sesquiterpenoids, 3 diterpenoid, 4 polyacetylenic compounds,⁵⁾ and γ -pyrone derivatives.¹⁾ Recently we reported the isolation and structural elucidation of norisoprenoids,⁶⁾ sesquiterpenoids,⁷⁾ diterpenoids,⁷⁾ triterpenoids,⁸⁾ and sterols⁸⁾ from the aerial parts and roots of *E. annuus*, *E. philadelphicus*, and *E. sumatrensis*. As part of our continuing study of the constituents of the genus *Erigeron* plants, we now report the isolation and structural elucidation of two new cyclopentenone derivatives, erigerenons A (**1**) and B (**2**), and a new cyclooctadienone derivative, erigerenone C (**3**), from the aerial parts of *E. annuus*, *E. philadelphicus*, and *E. sumatrensis*.

Compound 1 was isolated as a colorless oil, $[\alpha]_D$ +7.3°. The molecular formula was determined to be $C_{12}H_{16}O_4$ by high-resolution (HR)-electron ionization (EI)-MS. The IR spectrum showed the presence of ester (1735 cm⁻¹) and α , β unsaturated ketone $(1691, 1596 \text{ cm}^{-1})$ functionalities. The UV spectrum also suggested the presence of an α , β -unsaturated ketone (λ_{max} =237 nm). The ¹H- (Table 1) and ¹³C-NMR spectra (Table 2), obtained with the aid of distortionless enhancement by polarization transfer (DEPT) and ¹H-detected heteronuclear multiple quantum coherence (HMQC) spectra, showed signals due to a methyl $[\delta_{\rm H}$ 1.70 (3H, H₃-10); δ_c 13.1 (C-10)], a methylene [δ_H 2.58 (1H, H_a-2), 2.77 (1H, H_b-2); δ_c 33.8 (C-2)], two methines [δ_H 2.56 (1H, H-3), 3.68 (1H, H-7); δ_c 44.8 (C-7), 49.9 (C-3)], two methoxyl groups $\delta_{\rm H}$ 3.67 (3H, CH₃O-1), 3.84 (3H, CH₃O-6); $\delta_{\rm C}$ 51.7 (CH₃O-1), 59.0 (CH₃O-6)], a trisubstituted double bond $[\delta_{\rm H}]$ 5.32 (1H, H-5); δ_C 102.9 (C-5), 190.3 (C-6)], a disubstituted double bond $[\delta_{\rm H}$ 5.24 (1H, H-8), 5.74 (1H, H-9); $\delta_{\rm C}$ 127.6 (C-8), 128.5 (C-9)], and two carbonyl carbons δ_c 172.3 (C-1), 204.2 (C-4)]. The gross structure of **1** was elucidated by analyses of two-dimensional (2D) NMR data including ${}^{1}H-{}^{1}H$ shift correlation spectroscopy (${}^{1}H-{}^{1}H$ COSY) and ${}^{1}H-{}^{1}H$

detected heteronuclear multiple bond connectivity (HMBC) spectra (Fig. 1). The ¹H-¹H COSY spectrum of 1 implied connectivities for H₂-2—H-3, H-3—H-7, H-7—H-8, H-8– H-9, and H-9— H_3 -10. Interpretation of the HMBC spectrum revealed correlations from H_2 -2 to C-1 and C-4; H-5 to C-3 and C-7; H-7 to C-6; CH₃O-1 to C-1; and CH₃O-6 to C-6. Thus the gross structure of **1** was deduced to be as shown in Fig. 1. The relative stereochemistry at C-3 and C-7 was established by comparing the proton coupling constant between H-3 and H-7 with analogous couplings observed for other cyclopentenones. $9,10)$ In cyclopentene rings, a vicinal coupling constant of 5—6 Hz normally indicates a *cis* relationship, while a coupling constant of *ca.* 2 Hz suggests a *trans* relationship.11) These observations have been extended to cyclopentenone rings and a similar correlation has been observed. $9,10$ Thus, in the case of **1**, the small coupling constant of 2.2 Hz is suggestive of a *trans* relationship between H-3 and H-7. The geometry of the Δ^8 -double bond was deduced to be *Z* from ${}^{1}H-{}^{1}H$ coupling constant (*J*=11.0 Hz) between H-8 and H-9. On the basis of the above data, the structure of **1** was represented as shown in the formula.

Compound 2 was isolated as a colorless oil, $[\alpha]_D$ +7.9°. The molecular formula was determined to be $C_{12}H_{18}O_4$ by HR-EI-MS. The ¹ H- and 13C-NMR spectra of **2** resembled those of **1**, except for the presence of two methylene groups $[\delta_{\rm H}$ 1.51 (1H, H_a-8), 1.75 (1H, H_b-8), 1.33 (2H, H₂-9); $\delta_{\rm C}$ 19.5 (C-9), 33.8 (C-8)] instead of a disubstituted double bond in **1**. The molecular formula of **2** suggested that **2** was a dihydro derivative of **1**. The ¹ H–1 H COSY spectrum of **2** implied

Table 1. ¹H-NMR Chemical Shifts of Compounds **1—3** (CDCl₃, 400 MHz)

Proton	1 ^a	$\mathbf{2}$	3
$\overline{2}$	a 2.58 dd	a 2.53 dd	3.16 ddd
	$(20.5, 8.1)^{b}$	(20.2, 8.1)	(13.2, 5.6, 3.9)
	b 2.77 dd	b 27.5 dd	
	(20.5, 8.8)	(20.2, 8.8)	
3	2.56 m	2.51 m	α 3.30 dd
			(13.2, 11.0)
			β 2.40 ddd
			(11.0, 3.9, 1.5)
5	5.32 d (1.1)	5.27 d (0.7)	5.49 br s
7	3.68 ddd	2.64 ddd	6.19 dd
	(9.9, 2.2, 1.1)	(5.4, 5.1, 2.4)	(11.7, 0.7)
8	5.24 ddg	a 1.51 m	6.16 dd
	(11.0, 9.9, 1.8)	b 1.75 m	(12.7, 11.7)
9	5.74 dqd	1.33^{c} m	2.92 m
	(11.0, 7.0, 1.1)		
10	1.70 dd	0.93 t(7.3)	1.11 $d(6.6)$
	(7.0, 1.8)		
$CH3O-1$	3.67 s	3.68 s	3.69 s
$CH3O-6$	3.84s	3.84s	3.66 s

a) Measured at 600 MHz. *b*) Coupling constants (*J* in Hz) are given in parentheses. *c*) 2H.

Table 2. 13 C-NMR Chemical Shifts of Compounds $1 - 3$ (CDCl₃, 100 MHz)

Carbon	1 ^a	$\mathbf{2}$	3
	172.3	172.4	172.8
2	33.8	35.3	54.0
3	49.9	48.0	41.9
4	204.2	204.9	199.9
5	102.9	102.8	107.2
6	190.3	192.0	166.6
7	44.8	46.3	125.4
8	127.6	33.8	145.0
9	128.5	19.5	34.6
10	13.1	14.2	17.6
$CH3O-1$	51.7	51.7	51.6
$CH3O-6$	59.0	58.7	56.0

a) Measured at 150 MHz.

connectivities for H-7—H₂-8, H₂-8—H₂-9, and H₂-9—H₃-10. The relative stereochemistry at C-3 and C-7 was deduced to be *trans* from the ${}^{1}H-{}^{1}H$ coupling constant ($J=2.4$ Hz) between H-3 and H-7. $9-11$) Thus compound 2 was an 8,9-dihydro derivative of **1**. From the above data, the structure of **2** was represented as shown in the formula.

Compound **3** was isolated as a colorless oil, $[\alpha]_D$ +4.2°. The molecular formula was determined to be $C_{12}H_{16}O_4$ by HR-EI-MS. The IR spectrum showed the presence of ester (1731 cm^{-1}) and $\alpha, \beta-\gamma, \delta$ -unsaturated ketone (1627, 1592 cm^{-1}) functionalities. The UV spectrum also suggested the presence of an $\alpha, \beta-\gamma, \delta$ -unsaturated ketone ($\lambda_{\text{max}}=$ 279 nm). The ${}^{1}H$ - and ${}^{13}C$ -NMR spectra showed signals due to a secondary methyl $[\delta_{\rm H} 1.11 \ (3H, H_3-10); \delta_{\rm C} 17.6 \ (C-10)],$ a methylene $[\delta_{\rm H}$ 2.40 (1H, H_β-3), 3.30 (1H, H_β-3); $\delta_{\rm C}$ 41.9 (C-3)], two methines $[\delta_{\rm H}$ 2.92 (1H, H-9), 3.16 (1H, H-2); $\delta_{\rm C}$ 34.6 (C-9), 54.0 (C-2)], two methoxyl groups $[\delta_{\rm H}$ 3.66 (3H, CH₃O-6), 3.69 (3H, CH₃O-1); δ_c 51.6 (CH₃O-1), 56.0 (CH₃O-6)], a trisubstituted double bond $[\delta_{\rm H}$ 5.49 (1H, H-5); δ_C 107.2 (C-5), 166.6 (C-6)], a disubstituted double bond [δ_H

Fig. 1. ¹H-¹H COSY (Bold Lines) and HMBC (Arrows) Correlations for

1

Fig. 2. ¹H-¹H COSY (Bold Lines) and HMBC (Arrows) Correlations for **3**

Fig. 3. Selected *J*-Values (Dotted-Line Arrows) and Significant NOEs (Full-Line Arrows) in **3**

6.16 (1H, H-8), 6.19 (1H, H-7); δ _C 125.4 (C-7), 145.0 (C-8)], and two carbonyl carbons $[\delta_{\rm C} 172.8 \text{ (C-1)}, 199.9 \text{ (C-4)}]$. The gross structure of **3** was elucidated by analyses of 2D NMR data including ${}^{1}H-{}^{1}H$ COSY and HMBC spectra (Fig. 2). The ¹ H–1 H COSY spectrum of **3** implied connectivities for H-2—H-3, H-2—H-9, H-7—H-8, H-8—H-9, and H-9— H_3 -10. Interpretation of the HMBC spectrum revealed correlations from H_2 -3 to C-1 and C-4; H-5 to C-3, C-4, C-6 and C-7; CH₃O-1 to C-1; and CH₃O-6 to C-6. Thus the gross structure of **3** was deduced to be as shown in Fig. 2. The relative stereochemistry at C-2 and C-9 was established as follows (Fig. 3). In the ¹H-NMR spectrum, the long-range coupling observed between H_{β}-3 and H-5 (*J*=1.5 Hz) indicated that the bonds between them are W-shaped. The magnitude of $J_{2,3\alpha}$ =13.2 and $J_{2,3\beta}$ =3.9 Hz suggested that H-2 and H_{α}-3, H-2 and H_β -3 were located in *anti* and *gauche* arrangements, respectively. Thus the relative stereochemistry at C-2 was determined to be R^* . The magnitude of $J_{8.9} = 12.7$ Hz suggested that H-8 and H-9 were located in an *anti* arrangement. In the difference nuclear Overhauser effect (NOE) experiments, irradiation at δ 1.11 (H₃-10) caused NOE enhancement in the signals of the H-2, H-8, and H-9. The $^1H^{-1}H$ coupling constant $(J=12.7 \text{ Hz})$ between H-8 and H-9, and the observation of NOE from the H_3 -10 methyl group to H-8 implied that the relative stereochemistry at C-9 was *S**. The geometry of the Δ^5 -double bond was shown to be *E*. Accordingly, irradiation at δ 5.49 (H-5) caused NOE enhancement in the signal of the CH₃O-6. The *Z* configuration of the Δ ⁷-double bond was shown by the ${}^{1}H-{}^{1}H$ coupling constant ($J=11.7$ Hz) between

H-7 and H-8. On the basis of the above data, the structure of **3** was represented as shown in the formula.

In conclusion, we described here the isolation and structure elucidation of erigerenones A (**1**), B (**2**), and C (**3**) from the aerial parts of *E. annuus*, *E. philadelphicus*, and *E. sumatrensis*. Although dibenzocyclooctadienone lignans such as steganone¹²⁾ and benzocyclooctadienone sesquiterpenes such as isoparvifolinone13) are known, compound **3** is, to the best of our knowledge, the first example of a naturally occurring cyclooctadienone derivative without the fused phenyl system.

The framework of compounds **1**—**3** resembles that of (5 butyl-3-oxo-2,3-dihydrofuran-2-yl)-acetic acid (**4**), which was recently isolated from *E. annuus*.¹⁴⁾ This implies that compounds **1**—**4** may be formed by similar biosynthetic processes.

Experimental

General Procedures Optical rotations were determined using a JASCO DIP-360 digital polarimeter. IR spectra were recorded with a Perkin-Elmer FT-IR 1725X IR spectrophotometer and UV spectra on a Beckman DU-64 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded using JEOL JNM-LA 600 (600 and 150 MHz, respectively) and JEOL JNM-LA 400 (400 and 100 MHz, respectively) spectrometers. Chemical shifts are given on a δ (ppm) scale, with tetramethylsilane as an internal standard. The HR-EI-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (230—400 mesh, Merck). Preparative HPLC was carried out on a Tosoh HPLC system (pump, CCPM; detector, RI-8020 and UV-8020) using TSKgel ODS-120T (7.8 mm $i.d. \times 30$ cm) column (Tosoh).

Plant Material The aerial parts of *E. annuus* were collected in Sendai City, Miyagi Prefecture, Japan, in July 2001; those of *E. philadelphicus* in Sendai City in April 2002; and those of *E. sumatrensis* in Sendai City in October 2000.

Extraction and Isolation *E. annuus*: The aerial parts of *E. annuus* (5.3 kg) were extracted with MeOH at room temperature for 2 weeks. The MeOH extract was concentrated under reduced pressure and the residue was suspended in a small excess of water. This suspension was extracted with $CHCl₃$. The $CHCl₃$ -soluble fraction was concentrated under reduced pressure to afford a residue (79.4 g). A part of this residue (67.0 g) was chromatographed on a silica gel column using hexane–EtOAc $(7:1-1:7)$ and CHCl₃–MeOH $(9:1-1:1)$ to afford 62 fractions. Fraction 19 was purified by preparative HPLC [column temperature, 40 °C; mobile phase, MeOH–H₂O (1 : 1); flow rate, 1.5 ml/min; RI detector] to give $2(0.5 \text{ mg})$.

E. philadelphicus: The aerial parts of *E. philadelphicus* (2.5 kg) were extracted with MeOH at room temperature for 2 weeks. The MeOH extract was concentrated under reduced pressure and the residue was suspended in a small excess of water. This suspension was extracted with CHCl₃. The CHCl₃-soluble fraction was concentrated under reduced pressure to afford a residue (24.0 g). This residue was chromatographed on a silica gel column using hexanen–EtOAc $(7:1-1:7)$ and CHCl₃–MeOH $(9:1-1:1)$ to afford 47 fractions. Fraction 11 was purified by preparative HPLC [column temperature, 40 °C; mobile phase, MeOH-H₂O (1 : 1); flow rate, 1.5 ml/min; RI detector] to give **3** (2.4 mg). Fraction 17 was purified by preparative HPLC [column temperature, 40° C; mobile phase, MeOH–H₂O (1 : 1); flow rate, 1.5 ml/min; UV detector, 230 nm] to give **1** (1.5 mg) and **2** (0.4 mg).

E. sumatrensis: The aerial parts of *E. sumatrensis* (4.0 kg) were extracted with MeOH at room temperature for 2 weeks. The MeOH extract was concentrated under reduced pressure and the residue was suspended in a small excess of water. This suspension was extracted with $CHCl₃$. The $CHCl₃$ -soluble fraction was concentrated under reduced pressure to afford a residue (80.7 g). A part of this residue (50.0 g) was chromatographed on a silica gel column using hexane–EtOAc $(7:1-1:7)$ and CHCl₃–MeOH $(9:1-1:1)$ to afford 60 fractions. Fraction 18 was purified by preparative HPLC [column temperature, 40 °C; mobile phase, MeOH-H₂O (1 : 1); flow rate, 1.5 ml/min; RI detector] to give **2** (2.5 mg).

Erigerenone A (1): Colorless oil. $[\alpha]_D^{24}$ +7.3° (*c*=0.14, MeOH). UV λ_{max} MeOH nm (log ε): 237 (4.2). IR v_{max} CHCl₃ cm⁻¹: 1735, 1691, 1596. HR-EI-MS m/z : 224.1063 (M⁺, Calcd for C₁₂H₁₆O₄: 224.1049). ¹H-NMR $(600 \text{ MHz}, \text{CDCl}_3)$: see Table 1. ¹³C-NMR $(150 \text{ MHz}, \text{CDCl}_3)$: see Table 2.

Erigerenone B (2): Colorless oil. $[\alpha]_D^{26} + 7.9^{\circ}$ (*c*=0.25, MeOH). UV λ_{max} MeOH nm (log ε): 238 (4.1). IR v_{max} CHCl₃ cm⁻¹: 1735, 1688, 1593. HR-EI-MS m/z : 226.1178 (M⁺, Calcd for C₁₂H₁₈O₄: 226.1205). ¹H-NMR (400 MHz, CDCl₃): see Table 1. ¹³C-NMR (100 MHz, CDCl₃): see Table 2.

Erigerenone C (3): Colorless oil. $[\alpha]_D^{22} +4.2^{\circ}$ (*c*=0.24, MeOH). UV λ_{max} MeOH nm (log ε): 279 (3.8). IR v_{max} CHCl₃ cm⁻¹: 1731, 1627, 1592. HR-EI-MS m/z : 224.1055 (M⁺, Calcd for C₁₂H₁₆O₄: 224.1049). ¹H-NMR (400 MHz, CDCl₃): see Table 1. ¹³C-NMR (100 MHz, CDCl₃): see Table 2.

Acknowledgments We are grateful to Mr. S. Sato and Mr. T. Matsuki of this university for providing the mass and NMR spectra.

References

- 1) Hashidoko Y., *Biosci. Biotech. Biochem.*, **59**, 886—890 (1995).
- 2) Shanghai Scientific Technological Publishers and Shougakukan (eds.), "Dictionary of Chinese Materia Medica," Vol. 1, Shougakukan, Tokyo, 1985, p. 25.
- 3) Miyazawa M., Tokugawa M., Kameoka H., *Agric. Biol. Chem.*, **45**, 507—510 (1981).
- 4) Waddell T. G., Osborne C. B., Collison R., Levine M. J., Cross M. C., Silverton J. V., Falles H. M., Sokoloski E. A., *J. Org. Chem.*, **48**, 4450—4453 (1983).
- 5) Jakupovic J., Chau-Thi T. N., Fischer N. H., *Phytochemistry*, **25**, 1223—1224 (1986).
- 6) Iijima T., Yaoita Y., Kikuchi M., *Nat. Med.*, **57**, 75 (2003).
- 7) Iijima T., Yaoita Y., Kikuchi M., *Chem. Pharm. Bull.*, **51**, 545—549 (2003).
- 8) Iijima T., Yaoita Y., Kikuchi M., *J. Tohoku Pharmaceutical University*, "in press."
- 9) Cocu F. G., Wolczunowicz G., Bors L., Posternak T., *Helv. Chim. Acta*, **53**, 739—749 (1970).
- 10) Che Y., Gloer J. B., Wicklow D. T., *J. Nat. Prod.*, **65**, 399—402 (2002).
- 11) Wolczunowicz G., Cocu F. G., Posternak T., *Helv. Chim. Acta*, **53**, 2275—2288 (1970).
- 12) Kupchan S. M., Britton R. W., Ziegler M. F., Gilmore C. J., Restivo R. J., Bryan R. F., *J. Am. Chem. Soc.*, **95**, 1335—1336 (1973).
- 13) Joseph-Nathan P., Hernandez J. D., Roman L. U., Garcia G. E., Mendoza V., Mendoza S., *Phytochemistry*, **21**, 1129—1132 (1982).
- 14) Oh H., Lee S., Lee H., Lee D., Lee S. Y., Chung H., Kim T. S., Kwon T., *Phytochemistry*, **61**, 175—179 (2002).