A New Norsesquiterpenoid from *Russula delica* **FR.**

Yasunori YAOITA, Hitomi ONO, and Masao KIKUCHI*

Tohoku Pharmaceutical University; 4–4–1 Komatsushima, Aoba-ku, Sendai, Miyagi 981–8558, Japan. Received March 19, 2003; accepted May 15, 2003

Russulanorol (1), a new norsesquiterpenoid with a novel carbon skeleton, was isolated from the fruiting bodies of *Russula delica* **FR. (Russulaceae) together with three known sesquiterpenoids. The structure of 1 was elucidated on the basis of spectral data and chemical transformation. Compound 1 is an equilibrium mixture of two stereoisomers (1a, b) on the C-11 acetal carbon.**

Key words *Russula delica*; Russulaceae; norsesquiterpenoid

The Russulaceae family is one of the largest in the subdivision Basidiomycotina in Whittaker's *Kingdom of Fungi* and comprises hundreds of species.¹⁾ While secondary metabolites occurring in the fruiting bodies of European *Lactarius* species have been well investigated,²⁾ the *Russula* mushrooms have received less attention, notwithstanding the larger number of existing species.³⁾ The constituents of *Russula delica* FR. have been previously investigated and shown to contain protoilludane sesquiterpenoids. $4-\delta$ It has been reported that the extract of the fruiting bodies of *R. delica* can inhibit 12-*O*-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory ear edema in mice. 7 In a continuation of our investigation of the terpenoid constituents of mushrooms, 8) we describe here the isolation and structure elucidation of a new norsesquiterpenoid, russulanorol (**1**), together with three known compounds from the fruiting bodies of *R. delica*. The known compounds were identified as blennin C (2) , ^{9,10)} lactarolide A (3) ,¹¹⁾ and furandiol (4) ,¹²⁾ respectively, by comparison of their spectroscopic data with those previously described in the literature. To the best of our knowledge, this is the first report of the latter of these compounds from *R. delica*.

molecular formula was determined to be $C_{14}H_{22}O_4$ by highresolution (HR)-electron ionization (EI)-MS. The IR spectrum showed the presence of a hydroxyl group (3370 cm^{-1}) . Inspection of the 1 H- (Table 1) and 13 C-NMR (Table 2) spectra, obtained with the aid of $^1H-^1H$ shift correlation spectroscopy $(^{1}H - ^{1}H$ COSY), ¹H-detected heteronuclear multiple-quantum coherence (HMQC) and distorsionless enhancement by polarization transfer (DEPT) spectra, revealed that this compound exists in solution as a solvent-dependent mixture of two stereoisomers [**1a** (major isomer) and **1b** (minor isomer)], in a ratio of $2:1$ and $10:1$ in CDCl₃ and CD₃OD, respectively. The ¹H- and ¹³C-NMR spectra of **1** showed signals due to two methines [1a; $\delta_{\text{H,CDCl}_3}$ 5.14 (1H, H-11), $\delta_{\rm C,CDCl_3}$ 97.2 (C-11); **1b**; $\delta_{\rm H,CDCl_3}$ 5.17 (1H, H-11), $\delta_{\rm C,CDCl_3}$ 100.0 (C-11)], assignable to a hemiacetal group. The above spectral data suggested that **1** contains two stereoisomers (**1a**, **b**) on a hemiacetal group, which coexist at equilibrium in a certain ratio. Compound **1** was treated with acetic anhydridepyridine to afford a sole diacetate **5**, the molecular formula of which was determined to be $C_{18}H_{26}O_6$ by HR-EI-MS. Compound **5** was used for structural analysis of **1**. The ¹ H-NMR spectrum of **5** showed signals due to three tertiary methyl groups $[\delta$ 0.90 (3H, H₃-14), 1.05 (3H, H₃-13), 1.27 (3H, H₃-12)], two acetyl groups $\lceil \delta \ 2.02 \ (3H, 11\text{-COCH}_3), 2.06 \ (3H,$ 10-COCH₃)], three methylenes [δ 0.99 (1H, H-1 α), 1.11 $(1H, H-8\alpha)$, 1.53 $(1H, H-8\beta)$, 1.61 $(1H, H-1\beta)$, 1.75 $(1H, H-1\beta)$ 4 β), 2.07 (1H, H-4 α)], three methines [δ 2.48 (1H, H-2), 2.58 (1H, H-7), 3.02 (1H, H-5)], an oxymethine δ 4.34 (1H, H-6)], and an acetal $[\delta 6.56 (1H, H-11)]$. The ¹³C-NMR spectrum revealed 18 carbon signals that included an oxygenated quaternary carbon [δ 88.7 (C-3)] and two acetal carbons δ 94.8 (C-11), 111.6 (C-10)]. There were six degrees of unsaturation in the molecule according to the molecular formula. Two acetyl groups accounted for two of those. Since compound **5** has no olefinic and carbonyl carbons except for the carbonyl carbon in the two acetyl groups, **5** was confirmed to be tetracyclic based on its molecular formula and degree of unsaturation. By ${}^{1}H-{}^{1}H$ COSY and the ${}^{1}H$ -detected heteronuclear multiple-bond connectivity (HMBC) spectra, the planar structure of **5** was deduced to be as shown in Fig. 1. The presence of the acetoxyl group at C-10 was indicated by the difference nuclear Overhauser effect (NOE) experiment, in which irradiation at δ 3.02 (H-5) caused NOE enhancement in the signal of the methyl protons in the acetoxyl group at C-10 (Fig. 2). The relative stereostructure was determined as follows. A molecular model reveals that, by its for-

Compound **1** was isolated as an amorphous powder. The

Table 1. ¹ H-NMR Chemical Shifts of Compounds **1** and **5** (400 MHz)

a) Measurement in CDCl₃. *b*) Measurement in CD₃OD. *c*) Coupling constants (*J* in Hz) are given in parentheses.

Table 2. 13C-NMR Chemical Shifts of Compounds **1** and **5** (100 MHz)

Carbon	1a $(major)^a$	1b $(minor)^{a}$	1a $(major)^{b)}$	1 _b $(minor)^{b}$	5 ^a
$\mathbf{1}$	45.5	45.7	46.4	46.6	45.4
\overline{c}	46.4	46.5	47.9	47.9^{c}	46.0
3	86.4	87.1	86.8	87.2	88.7
$\overline{4}$	29.5	30.9	30.4	31.1	29.5
5	46.8	48.5	47.0	50.6	46.52
6	78.0	78.9	79.5	79.5	77.8
7	42.7	42.6	44.3	44.0	42.2
8	46.9	47.8	47.6	47.9^{c}	46.45
9	38.3	38.2	39.2	39.1	38.3
10	111.3	109.5	112.3	110.5	111.6
11	97.2	100.0	98.5	101.3	94.8
12	24.0	24.3	24.4	24.4	23.9
13	29.1	28.9	29.4	29.2	29.1
14	26.2	25.9	26.7	26.4	26.1
10 -COCH ₃					21.1^{d}
10 -COCH ₃					168.9
$11-COCH3$					21.2^{d}
11 -COCH ₃					169.4

a) Measurement in CDCl₃. *b*) Measurement in CD₃OD. *c*) Signals overlapped. *d*) Assignments are interchangeable.

mation, the tricyclic system (rings B, C, and D) itself sets up the relative configurations at the chiral centers C-3, C-5, C-6, and C-10 (Fig. 2). In the difference NOE experiment, irradiation at δ 2.58 (H-7) caused NOE enhancement in the signals of H-2 and H-11. These NOEs implied a *cis*-junction for the A/B rings and an α -orientation of the acetoxyl group at C-11 (Fig. 2). Furthermore, irradiation at δ 1.11 (H-8 α) caused NOE enhancement in the signals of H-1 α and H-4 α . These NOEs exhibited the conformation of **5** depicted in Fig. 2. This conformation was supported by W-type long-range couplings between H-1 β and H-8 β (*J*=2.2 Hz), and between H-2 and H-4 β (*J*=2.0 Hz, Fig. 2). The relative stereostructure of **5** is therefore represented as shown in the formula. Consequently, compound **1** is an equilibrium mixture of two

Fig. 1. ¹H-¹H COSY (Bold Lines) and HMBC (Full-Line Arrows) Correlations for **5**

Fig. 2. NOEs (Full-Line Arrows) and W-Type Coupling (Dotted-Line Arrows) in **5**

stereoisomers (1a, b) on the C-11 acetal carbon.¹³⁾

To determine the absolute stereochemistry of **1**, the following derivatization was performed. Treatment of **1** with pyridinium chlorochromate (PCC)– AI_2O_3 in benzene gave a γ -lactone **6**. The circular dichroism (CD) spectrum of **6** showed a positive Cotton effect at 217.5 nm ($\Delta \varepsilon$ +3.28). The application of the lactone sector rule¹⁴⁾ to 6 suggests that the expected sign of the Cotton effect should be positive (Fig. 3). Thus the absolute stereostructure of **1** is represented as shown in the formula.

Compound **1** has a previously unknown carbon skeleton: we propose the name "russulane" for this new skeleton. A

Fig. 3. Lactone Sector Projection of **6**

Fig. 4. Possible Biogenetic Pathway for the Carbon Framework of **1**

possible biosynthetic pathway for the carbon framework of **1** is shown in Fig. 4. The loss of a carbon atom (C-8 or C-13) from secolactarane gives rise to a monocyclic carbon skeleton **A**, with a six-membered ring construction between C-5 and C-9, resulting in the formation of a russulane-type carbon skeleton. The cooccurrence of **1** with **2** in the same mushroom reinforces this hypothesis.

Experimental

General Procedures Optical rotations were determined using a JASCO DIP-360 digital polarimeter. CD spectra were measured on a JASCO J-720 spectropolarimeter. IR spectra were recorded with a Perkin-Elmer FT-IR 1725X IR spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on a JEOL JNM-LA 400 (400 and 100 MHz, respectively) spectrometer. Chemical shifts are given on a δ (ppm) scale, with tetramethylsilane as the internal standard. HR-EI-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (230— 400 mesh, Merck). HPLC was carried out on a Tosoh HPLC system (pump, CCPD; detector, RI-8010) using a TSK gel ODS-120T $(7.8 \text{ mm } i.d. \times 30 \text{ cm})$ column (Tosoh).

Fungal Material The fruiting bodies of *R. delica* (from Morioka, Iwate Prefecture, Japan) were purchased in a food market.

Extraction and Isolation The fresh fruit bodies of *R. delica* (1.7 kg) were extracted four times with Et₂O at room temperature for 2 weeks. The Et₂O extract $(11.2 g)$ was chromatographed on a silica gel column using hexane–EtOAc (7:3-1:7), EtOAc, and MeOH to afford 41 fractions. Fraction 10 was purified by preparative HPLC [column temperature, 40 °C; mobile phase, MeOH–H₂O (4:1); flow rate, 1.0 ml/min] to give $2(0.6 \text{ mg})$ and **4** (4.1 mg). Fraction 19 was purified by preparative HPLC [column temperature, 40° C; mobile phase, MeOH–H₂O (1 : 1); flow rate, 1.5 ml/min] to give **1** (15.0 mg) and **3** (2.0 mg).

Russulanorol (1): Amorphous powder. IR v_{max} CHCl₃ cm⁻¹: 3370. HR-EI-MS m/z : 254.1540 (M⁺, Calcd for C₁₄H₂₂O₄: 254.1518). ¹H-NMR $(400 \text{ MHz}, \text{CDCl}_3 \text{ and } \text{CD}_3\text{OD})$: see Table 1. ¹⁵C-NMR (100 MHz, CDCl₃ and CD_3OD): see Table 2.

Acetylation of 1 Compound **1** (6.7 mg) was treated overnight with 0.5 ml of acetic anhydride and 0.5 ml of pyridine. The product was purified by HPLC [column temperature, 40° C; mobile phase, MeOH–H₂O (7:2); flow rate, 1.0 ml/min], giving **5** (7.8 mg).

Compound **5**: Colorless oil. $[\alpha]_D^{21}$ –38.5° (*c*=0.8, CHCl₃). IR v_{max} CHCl₃ cm⁻¹: 1751. HR-EI-MS m/z : 338.1718 (M⁺, Calcd for C₁₈H₂₆O₆: 338.1729).
¹H NMP (400 MHz, CDCl): see Table 1⁻¹³C NMP (100 MHz, CDCl): see ¹H-NMR (400 MHz, CDCl₃): see Table 1.¹³C-NMR (100 MHz, CDCl₃): see Table 2.

Oxidation of 1 To a solution of compound **1** (6.9 mg) in benzene (10 ml), PCC–Al₂O₃ (67.5 mg) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was filtered and the filtrates were evaporated. The product was purified by HPLC [column temperature, 40 °C; mobile phase, MeOH–H₂O (1 : 1); flow rate, 1.5 ml/min], giving $6(3.4 \text{ mg})$.

Compound **6**: Colorless oil. $[\alpha]_D^{20}$ –44.5° (*c*=0.3, CHCl₃). CD (*c*=1.91× 10^{-4} , MeOH) $\Delta \varepsilon$ (nm): +3.28 (217.5). IR v_{max} CHCl₃ cm⁻¹: 1766, 1724. HR-EI-MS m/z : 252.1386 (M⁺, Calcd for C₁₄H₂₀O₄: 252.1362). ¹H-NMR $(400 \text{ MHz}, \text{CDCl}_3)$ δ : 1.02 (3H, s, H₃-14), 1.15 (3H, s, H₃-13), 1.32 (1H, dd, *J*=13.2, 12.7 Hz, H-1α), 1.41 (1H, dd, *J*=14.1, 4.1 Hz, H-8α), 1.45 (3H, s, H₃-12), 1.51 (1H, dd, $J=12.7$, 6.8 Hz, H-1 β), 1.88 (1H, ddd, $J=14.1$, 8.8, 1.0 Hz, H-8 β), 2.08 (1H, ddd, J=12.4, 5.6, 1.7 Hz, H-4 β), 2.14 (1H, d, *J*=12.4 Hz, H-4 α), 2.48 (1H, dddd, *J*=10.5, 9.5, 8.8, 4.1 Hz, H-7), 2.66 (1H, dddd, $J=13.2$, 10.5, 6.8, 1.7 Hz, H-2), 2.90 (1H, dd, $J=5.4$, 3.2 Hz, H-5), 4.93 (1H, dd, J=9.5, 3.2 Hz, H-6), 8.10 (1H, s, H-11). ¹³C-NMR (100 MHz, CDCl₃) δ : 23.8 (C-12), 30.0 (C-14), 30.9 (C-13), 36.1 (C-4), 39.7 (C-9), 40.9 (C-7), 43.3 (C-1), 45.6 (C-5), 45.9 (C-8), 48.7 (C-2), 76.1 (C-6), 87.2 (C-3), 160.7 (C-11), 174.9 (C-10).

Acknowledgments We are grateful to Mr. S. Sato and Mr. T. Matsuki of this university for providing the mass and NMR spectra.

References and Notes

- 1) Whittaker R. H., *Science*, **163**, 150—160 (1969).
- 2) Daniewski W. M., Vidari G., "Progress in the Chemistry of Organic Natural Products," Vol. 77, ed. by Herz W., Falk H., Kirby G. W., Moore R. E., Tamm Ch., Springer-Verlag, Wien, 1999, pp. 70—171.
- 3) Tan J., Dong Z., Liu J., *Helv. Chim. Acta*, **83**, 3191—3197 (2000).
- 4) Clericuzio M., Fu J., Pan F., Pang Z., Sterner O., *Tetrahedron*, **53**, 9735—9740 (1997).
- 5) Clericuzio M., Pan F., Han F., Pang Z., Sterner O., *Tetrahedron Lett.*, **38**, 8237—8240 (1997).
- 6) Clericuzio M., Han F., Pan F., Pang Z., Sterner O., *Acta Chem. Scand.*, **52**, 1333—1337 (1998).
- 7) Yasukawa K., Kanno H., Kaminaga T., Takido M., Kasahara Y., Kumaki K., *Phytother. Res.*, **10**, 367—369 (1996).
- 8) Yaoita Y., Machida K., Kikuchi M., *Chem. Pharm. Bull.*, **47**, 894— 896 (1999).
- 9) De Bernardi M., Fronza G., Vidari G., Vita-Finzi P., *La Chimica e L' Industria*, **58**, 177—178 (1976).
- 10) De Bernardi M., Fronza G., Scilingo A., Vidari G., Vita-Finzi P., *Tetrahedron*, **42**, 4277—4283 (1986).
- 11) De Bernardi M., Fronza G., Mellerio G., Vidari G., Vita-Finzi P., *Phytochemistry*, **18**, 293—298 (1979).
- 12) Kobata K., Kano S., Shibata H., *Biosci. Biotech. Biochem.*, **59**, 316— 318 (1995).
- 13) The configuration of the hydroxyl group at C-11 of **1a** (major isomer) was determined to be α by the difference NOE experiment in CD₃OD, in which irradiation at δ 2.43 (H-7) caused NOE enhancement in the signal of H-11.
- 14) Jennings J. P., Klyne W., Scopes P. M., *J. Chem. Soc.*, **1965**, 7229— 7237 (1965).