
The Russulaceae family is one of the largest in the subdi-
vision Basidiomycotina in Whittaker’s Kingdom of Fungi and
comprises hundreds of species.1) While secondary metabo-
lites occurring in the fruiting bodies of European Lactarius
species have been well investigated,2) the Russula mush-
rooms have received less attention, notwithstanding the
larger number of existing species.3) The constituents of Rus-
sula delica FR. have been previously investigated and shown
to contain protoilludane sesquiterpenoids.4—6) It has been re-
ported that the extract of the fruiting bodies of R. delica can
inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced
inflammatory ear edema in mice.7) In a continuation of our
investigation of the terpenoid constituents of mushrooms,8)

we describe here the isolation and structure elucidation of a
new norsesquiterpenoid, russulanorol (1), together with three
known compounds from the fruiting bodies of R. delica. The
known compounds were identified as blennin C (2),9,10) lac-
tarolide A (3),11) and furandiol (4),12) respectively, by com-
parison of their spectroscopic data with those previously de-
scribed in the literature. To the best of our knowledge, this is
the first report of the latter of these compounds from R. del-
ica.

Compound 1 was isolated as an amorphous powder. The
molecular formula was determined to be C14H22O4 by high-
resolution (HR)-electron ionization (EI)-MS. The IR spec-
trum showed the presence of a hydroxyl group (3370 cm21).
Inspection of the 1H- (Table 1) and 13C-NMR (Table 2) spec-
tra, obtained with the aid of 1H–1H shift correlation spec-
troscopy (1H–1H COSY), 1H-detected heteronuclear multi-
ple-quantum coherence (HMQC) and distorsionless enhance-
ment by polarization transfer (DEPT) spectra, revealed that
this compound exists in solution as a solvent-dependent mix-
ture of two stereoisomers [1a (major isomer) and 1b (minor
isomer)], in a ratio of 2 : 1 and 10 : 1 in CDCl3 and CD3OD,
respectively. The 1H- and 13C-NMR spectra of 1 showed sig-
nals due to two methines [1a; dH,CDCl3

5.14 (1H, H-11),
dC,CDCl3

97.2 (C-11); 1b; dH,CDCl3
5.17 (1H, H-11), dC,CDCl3

100.0 (C-11)], assignable to a hemiacetal group. The above
spectral data suggested that 1 contains two stereoisomers (1a,
b) on a hemiacetal group, which coexist at equilibrium in a
certain ratio. Compound 1 was treated with acetic anhydride-
pyridine to afford a sole diacetate 5, the molecular formula of
which was determined to be C18H26O6 by HR-EI-MS. Com-
pound 5 was used for structural analysis of 1. The 1H-NMR
spectrum of 5 showed signals due to three tertiary methyl
groups [d 0.90 (3H, H3-14), 1.05 (3H, H3-13), 1.27 (3H, H3-
12)], two acetyl groups [d 2.02 (3H, 11-COCH3), 2.06 (3H,
10-COCH3)], three methylenes [d 0.99 (1H, H-1a), 1.11
(1H, H-8a), 1.53 (1H, H-8b), 1.61 (1H, H-1b), 1.75 (1H, H-
4b), 2.07 (1H, H-4a)], three methines [d 2.48 (1H, H-2),
2.58 (1H, H-7), 3.02 (1H, H-5)], an oxymethine [d 4.34 (1H,
H-6)], and an acetal [d 6.56 (1H, H-11)]. The 13C-NMR
spectrum revealed 18 carbon signals that included an oxy-
genated quaternary carbon [d 88.7 (C-3)] and two acetal car-
bons [d 94.8 (C-11), 111.6 (C-10)]. There were six degrees
of unsaturation in the molecule according to the molecular
formula. Two acetyl groups accounted for two of those. Since
compound 5 has no olefinic and carbonyl carbons except for
the carbonyl carbon in the two acetyl groups, 5 was con-
firmed to be tetracyclic based on its molecular formula and
degree of unsaturation. By 1H–1H COSY and the 1H-detected
heteronuclear multiple-bond connectivity (HMBC) spectra,
the planar structure of 5 was deduced to be as shown in Fig.
1. The presence of the acetoxyl group at C-10 was indicated
by the difference nuclear Overhauser effect (NOE) experi-
ment, in which irradiation at d 3.02 (H-5) caused NOE en-
hancement in the signal of the methyl protons in the acetoxyl
group at C-10 (Fig. 2). The relative stereostructure was deter-
mined as follows. A molecular model reveals that, by its for-
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mation, the tricyclic system (rings B, C, and D) itself sets up
the relative configurations at the chiral centers C-3, C-5, C-6,
and C-10 (Fig. 2). In the difference NOE experiment, irradia-
tion at d 2.58 (H-7) caused NOE enhancement in the signals
of H-2 and H-11. These NOEs implied a cis-junction for the
A/B rings and an a-orientation of the acetoxyl group at C-11
(Fig. 2). Furthermore, irradiation at d 1.11 (H-8a) caused
NOE enhancement in the signals of H-1a and H-4a . These
NOEs exhibited the conformation of 5 depicted in Fig. 2.
This conformation was supported by W-type long-range cou-
plings between H-1b and H-8b (J52.2 Hz), and between H-2
and H-4b (J52.0 Hz, Fig. 2). The relative stereostructure of
5 is therefore represented as shown in the formula. Conse-
quently, compound 1 is an equilibrium mixture of two

stereoisomers (1a, b) on the C-11 acetal carbon.13)

To determine the absolute stereochemistry of 1, the fol-
lowing derivatization was performed. Treatment of 1 with
pyridinium chlorochromate (PCC)–Al2O3 in benzene gave a
g-lactone 6. The circular dichroism (CD) spectrum of 6
showed a positive Cotton effect at 217.5 nm (De 13.28). The
application of the lactone sector rule14) to 6 suggests that the
expected sign of the Cotton effect should be positive (Fig. 3).
Thus the absolute stereostructure of 1 is represented as
shown in the formula.

Compound 1 has a previously unknown carbon skeleton:
we propose the name “russulane” for this new skeleton. A
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Table 1. 1H-NMR Chemical Shifts of Compounds 1 and 5 (400 MHz)

Proton 1a (major)a) 1b (minor)a) 1a (major)b) 1b (minor)b) 5a)

1 a 1.02 (1H, dd, 12.2, 9.3)c) a 1.02 (1H, dd, 12.2, 9.3) a 1.09 (1H, dd, 12.7, 9.3) a 1.09 (1H, dd, 12.7, 9.3) a 0.99 (1H, dd, 12.9, 9.3)
b 1.63 (1H, m) b 1.63 (1H, m) b 1.58 (1H, ddd, b 1.58 (1H, ddd, b 1.61 (1H, ddd, 

12.7, 8.3, 2.2) 12.7, 8.3, 2.2) 12.9, 8.3, 2.2)
2 2.45 (1H, m) 2.45 (1H, m) 2.33 (1H, dddd, 2.33 (1H, dddd, 2.48 (1H, dddd, 

10.5, 9.3, 8.3, 2.0) 10.5, 9.3, 8.3, 2.0) 10.5, 9.3, 8.3, 2.0)
4 a 2.01 (1H, d, 12.4) a 2.04 (1H, d, 12.7) a 2.07 (1H, d, 12.7) a 2.03 (1H, d, 12.8) a 2.07 (1H, d, 12.4)

b 1.77 b 1.81 b 1.75 b 1.78 (1H, ddd, b 1.75 
(1H, ddd, 12.4, 4.4, 1.7) (1H, ddd, 12.7, 4.4, 2.0) (1H, ddd, 12.7, 3.7, 2.0) (12.8, 3.7, 2.0) (1H, ddd, 12.4, 3.9, 2.0)

5 2.79 (1H, dd, 8.5, 4.4) 2.90 (1H, dd, 8.3, 4.4) 2.76 (1H, dd, 8.5, 3.7) 2.76 (1H, dd, 8.5, 3.7) 3.02 (1H, dd, 8.5, 3.9)
6 4.34 (1H, d, 8.5) 4.13 (1H, d, 8.3) 4.28 (1H, d, 8.5) 4.07 (1H, d, 8.5) 4.34 (1H, d, 8.5)
7 2.56 (1H, m) 2.56 (1H, m) 2.43 (1H, ddd, 2.51 (1H, ddd, 2.58 (1H, ddd, 

13.4, 10.5, 7.6) 13.4, 10.5, 7.6) 13.4, 10.5, 7.8)
8 a 1.11 a 1.06 a 1.19 a 1.19 a 1.11 

(1H, dd, 12.7, 12.7) (1H, dd, 13.2, 13.2) (1H, dd, 13.4, 12.2) (1H, dd, 13.4, 12.2) (1H, dd, 13.4, 12.2)
b 1.55 (1H, m) b 1.55 (1H, m) b 1.50 (1H, ddd, b 1.50 (1H, ddd, b 1.53 (1H, ddd, 

12.2, 7.6, 2.2) 12.2, 7.6, 2.2) 12.2, 7.8, 2.2)
11 5.14 (1H, d, 4.1) 5.17 (1H, d, 12.0) 4.95 (1H, s) 5.06 (1H, s) 6.56 (1H, s)
12 1.29 (3H, s) 1.32 (3H, s) 1.25 (3H, s) 1.30 (3H, s) 1.27 (3H, s)
13 1.05 (3H, s) 1.04 (3H, s) 1.06 (3H, s) 1.05 (3H, s) 1.05 (3H, s)
14 0.90 (3H, s) 0.90 (3H, s) 0.92 (3H, s) 0.92 (3H, s) 0.90 (3H, s)

11-OH 3.07 (1H, d, 4.1) 3.74 (1H, d, 12.0)
10-COCH3 2.06 (3H, s)
11-COCH3 2.02 (3H, s)

a) Measurement in CDCl3. b) Measurement in CD3OD. c) Coupling constants (J in Hz) are given in parentheses.

Table 2. 13C-NMR Chemical Shifts of Compounds 1 and 5 (100 MHz)

Carbon
1a 1b 1a 1b

(major)a) (minor)a) (major)b) (minor)b) 5a)

1 45.5 45.7 46.4 46.6 45.4
2 46.4 46.5 47.9 47.9c) 46.0
3 86.4 87.1 86.8 87.2 88.7
4 29.5 30.9 30.4 31.1 29.5
5 46.8 48.5 47.0 50.6 46.52
6 78.0 78.9 79.5 79.5 77.8
7 42.7 42.6 44.3 44.0 42.2
8 46.9 47.8 47.6 47.9c) 46.45
9 38.3 38.2 39.2 39.1 38.3

10 111.3 109.5 112.3 110.5 111.6
11 97.2 100.0 98.5 101.3 94.8
12 24.0 24.3 24.4 24.4 23.9
13 29.1 28.9 29.4 29.2 29.1
14 26.2 25.9 26.7 26.4 26.1

10-COCH3 21.1d)

10-COCH3 168.9
11-COCH3 21.2d)

11-COCH3 169.4

a) Measurement in CDCl3. b) Measurement in CD3OD. c) Signals overlapped.
d) Assignments are interchangeable.

Fig. 1. 1H–1H COSY (Bold Lines) and HMBC (Full-Line Arrows) Corre-
lations for 5

Fig. 2. NOEs (Full-Line Arrows) and W-Type Coupling (Dotted-Line Ar-
rows) in 5



possible biosynthetic pathway for the carbon framework of 1
is shown in Fig. 4. The loss of a carbon atom (C-8 or C-13)
from secolactarane gives rise to a monocyclic carbon skele-
ton A, with a six-membered ring construction between C-5
and C-9, resulting in the formation of a russulane-type car-
bon skeleton. The cooccurrence of 1 with 2 in the same
mushroom reinforces this hypothesis.

Experimental
General Procedures Optical rotations were determined using a JASCO

DIP-360 digital polarimeter. CD spectra were measured on a JASCO J-720
spectropolarimeter. IR spectra were recorded with a Perkin-Elmer FT-IR
1725X IR spectrophotometer. 1H- and 13C-NMR spectra were recorded on a
JEOL JNM-LA 400 (400 and 100 MHz, respectively) spectrometer. Chemi-
cal shifts are given on a d (ppm) scale, with tetramethylsilane as the internal
standard. HR-EI-MS were recorded on a JEOL JMS-DX 303 mass spec-
trometer. Column chromatography was carried out on Kieselgel 60 (230—
400 mesh, Merck). HPLC was carried out on a Tosoh HPLC system (pump,
CCPD; detector, RI-8010) using a TSK gel ODS-120T (7.8 mm i.d.330 cm)
column (Tosoh).

Fungal Material The fruiting bodies of R. delica (from Morioka, Iwate
Prefecture, Japan) were purchased in a food market.

Extraction and Isolation The fresh fruit bodies of R. delica (1.7 kg)
were extracted four times with Et2O at room temperature for 2 weeks. The
Et2O extract (11.2 g) was chromatographed on a silica gel column using
hexane–EtOAc (7 : 3—1 : 7), EtOAc, and MeOH to afford 41 fractions. Frac-
tion 10 was purified by preparative HPLC [column temperature, 40 °C; mo-
bile phase, MeOH–H2O (4 : 1); flow rate, 1.0 ml/min] to give 2 (0.6 mg) and
4 (4.1 mg). Fraction 19 was purified by preparative HPLC [column tempera-
ture, 40 °C; mobile phase, MeOH–H2O (1 : 1); flow rate, 1.5 ml/min] to give

1 (15.0 mg) and 3 (2.0 mg).
Russulanorol (1): Amorphous powder. IR nmax CHCl3 cm21: 3370. HR-

EI-MS m/z: 254.1540 (M1, Calcd for C14H22O4: 254.1518). 1H-NMR
(400 MHz, CDCl3 and CD3OD): see Table 1. 13C-NMR (100 MHz, CDCl3

and CD3OD): see Table 2.
Acetylation of 1 Compound 1 (6.7 mg) was treated overnight with

0.5 ml of acetic anhydride and 0.5 ml of pyridine. The product was purified
by HPLC [column temperature, 40 °C; mobile phase, MeOH–H2O (7 : 2);
flow rate, 1.0 ml/min], giving 5 (7.8 mg).

Compound 5: Colorless oil. [a]D
21 238.5° (c50.8, CHCl3). IR nmax CHCl3

cm21: 1751. HR-EI-MS m/z: 338.1718 (M1, Calcd for C18H26O6: 338.1729).
1H-NMR (400 MHz, CDCl3): see Table 1. 13C-NMR (100 MHz, CDCl3): see
Table 2.

Oxidation of 1 To a solution of compound 1 (6.9 mg) in benzene
(10 ml), PCC–Al2O3 (67.5 mg) was added and the mixture was stirred for 2 h
at room temperature. The reaction mixture was filtered and the filtrates were
evaporated. The product was purified by HPLC [column temperature, 40 °C;
mobile phase, MeOH–H2O (1 : 1); flow rate, 1.5 ml/min], giving 6 (3.4 mg).

Compound 6: Colorless oil. [a]D
20 244.5° (c50.3, CHCl3). CD (c51.913

1024, MeOH) De (nm): 13.28 (217.5). IR nmax CHCl3 cm21: 1766, 1724.
HR-EI-MS m/z: 252.1386 (M1, Calcd for C14H20O4: 252.1362). 1H-NMR
(400 MHz, CDCl3) d : 1.02 (3H, s, H3-14), 1.15 (3H, s, H3-13), 1.32 (1H, dd,
J513.2, 12.7 Hz, H-1a), 1.41 (1H, dd, J514.1, 4.1 Hz, H-8a), 1.45 (3H, s,
H3-12), 1.51 (1H, dd, J512.7, 6.8 Hz, H-1b), 1.88 (1H, ddd, J514.1, 8.8,
1.0 Hz, H-8b), 2.08 (1H, ddd, J512.4, 5.6, 1.7 Hz, H-4b), 2.14 (1H, d,
J512.4 Hz, H-4a), 2.48 (1H, dddd, J510.5, 9.5, 8.8, 4.1 Hz, H-7), 2.66 (1H,
dddd, J513.2, 10.5, 6.8, 1.7 Hz, H-2), 2.90 (1H, dd, J55.4, 3.2 Hz, H-5),
4.93 (1H, dd, J59.5, 3.2 Hz, H-6), 8.10 (1H, s, H-11). 13C-NMR (100 MHz,
CDCl3) d : 23.8 (C-12), 30.0 (C-14), 30.9 (C-13), 36.1 (C-4), 39.7 (C-9),
40.9 (C-7), 43.3 (C-1), 45.6 (C-5), 45.9 (C-8), 48.7 (C-2), 76.1 (C-6), 87.2
(C-3), 160.7 (C-11), 174.9 (C-10).
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Fig. 3. Lactone Sector Projection of 6

Fig. 4. Possible Biogenetic Pathway for the Carbon Framework of 1


