A New Phlorotannin from the Brown Alga *Ecklonia stolonifera*

Hye Sook KANG,^{*a*} Hae Young CHUNG,^{*b*} Jee Hyung JUNG,^{*b*} Byeng Wha SON,^{*c*} and Jae Sue CHOI*^{,*a*}

^a Faculty of Food Science and Biotechnology, Pukyong National University; and ^c Department of Chemistry, Pukyong National University; Busan 608–737, Korea: and bCollege of Pharmacy, Pusan National University; Busan 609–735, Korea. Received April 23, 2003; accepted June 2, 2003

A new phlorotannin, named eckstolonol (1), was isolated from the EtOAc soluble fraction of the methanolic extract of the brown alga, *Ecklonia stolonifera* OKAMURA, along with three known phlorotannins, eckol (2), phlo**rofucofuroeckol A (3), and dieckol (4). The structure of eckstolonol was identified as 5,8,13,14-tetraoxa-pentaphene-1,3,6,9,11-pentaol on the basis of spectroscopic evidence. The new compound was found to be a radical scavenger on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.**

Key words phlorotannin; eckstolonol; 1,1-diphenyl-2-picrylhydrazyl radical; *Ecklonia stolonifera*

Ecklonia stolonifera OKAMURA is a member of the family of Laminariaceae, belonging to the order Laminariales as a perennial brown alga. The previous phytochemical investigations performed on this species resulted in the isolation of phloroglucinol,¹⁾ phlorotannins²⁾ and ecklonialactones.^{3,4)} In the course of a continuous study on the active principles of this alga, we isolated a new phlorotannin with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, along with three known ones, of the methanolic extract of *E. stolonifera*. Column chromatography of the EtOAc soluble part from the methanolic extract of this alga yielded four phlorotannins, compounds **1**—**4** in the order of increasing polarity. The structures of **2**, **3**, and **4** were identified by comparison with published spectral data as eckol, phlorofucofuroeckol A, and dieckol, respectively (Fig. 1).^{5—8}

Compound **1** was obtained as off-white amorphous powder. The molecular formula of 1 was determined as $C_{18}H_{10}O_9$ based on the NMR and HR-FAB-MS data $[M^+, m/z]$: 370.0324 Calcd for $C_{18}H_{10}O_9$ m/z : 370.0325, Δ -0.1 mmu] indicating fourteen degrees of unsaturation. The infrared (IR) spectrum of **1** showed the absorption bands at 3243 (OH) and 1635 (aromatic C=C) cm⁻¹. The carbon-13 nuclear magnetic resonance $(^{13}C-NMR)$ spectrum of 1 indicated the presence of five non-substituted and thirteen O-bearing aromatic carbons, whereas the proton nuclear magnetic resonance $(^1H$ -NMR) spectrum contained signals characteristic of five aromatic protons, *i.e.* two AB systems at δ 6.04 (1H, J=2.7 Hz) and 5.82 (1H, $J=2.7$ Hz), and δ 6.01 (1H, $J=2.7$ Hz) and 5.84 (1H, $J=2.7$ Hz), and a singlet at 6.10 (1H) as well as five singlets indicating phenolic hydroxy protons at δ 9.77, 9.64, 9.60, 9.27, and 9.26. These NMR spectral features are very similar to those of eckol (**2**) isolated from *Eisenia bicyclis* and *Ecklonia kurome*, 5,6) indicating that **1** is composed of three phloroglucinol units. The only difference between the ¹H-NMR spectra of **1** and **2** is that the former lacks the signals for one phenolic hydroxyl proton and one aromatic proton, suggesting that **1** has an additional aryl-ether linkage. This was supported by the presence of a new oxygen-bearing carbon signal (δ 122.7), which is characteristic of an aromatic carbon with two oxygenated neighbors, and also by the formation of a pentaacetate (**1a**) on usual acetylation. Analysis of HMQC, HMBC and NOESY spectra of **1** allowed an unambiguous assignment of all the proton and carbon signals (Table 1, Fig. 2). In the HMBC spectrum, each cross peak between δ 9.77 and C-1 (δ 146.1), C-2 (δ 98.8), and C-14a

153.3), and C-4 (δ 93.9) indicated the presence of the hydroxyl group at C-1 and C-3, respectively. Similarly, each cross peak between δ 9.26 and C-10 (δ 98.8), C-11 (δ 153.0), and C-12 (δ 93.9), and between δ 9.64 and C-8a (δ 122.7), C-9 (δ 146.0), and C-10 (δ 98.8) designated the existence of the hydroxyl groups at C-11 and C-9, respectively. Each cross peak between δ 9.60 and C-5a (δ 125.9), C-6 (δ 140.1), and C-7 (δ 97.6), established the presence of the hydroxyl group at C-6. The stereostructure of compound **1** was deduced to be planar and achiral by its specific rotation and a loss of additional anisotropic effect for the aromatic protons. It was found that specific rotation showed zero value and the similar chemical shifts not only between H-2 and H-10, but also between H-4 and H-12. Consequently, the structure of **1** was established as 5,8,13,14-tetraoxa-pentaphene-1,3,6,9,11 pentaol, named eckstolonol. Compounds **1**—**4** were found to be potent radical scavengers with the IC_{50} values of 8.8, 11.5, 4.6, and 6.2 μ M, respectively. **1**, **3** and **4** were much stronger than that of a well-known antioxidant, L-ascorbic acid with an IC₅₀ value of 10.3 μ M.

(δ 122.3), and between δ 9.27 and C-2 (δ 98.9), C-3 (δ

Fig. 1. The Structures of the Phlorotannins from *E. stolonifera*

Table 1. NMR Spectral Data of 1 in DMSO- $d_6^{(a)}$

Position	δ_c	DEPT	$\delta_{\rm H} (J, {\rm Hz})^{b}$	HMBC
1	146.1	C		
$\overline{\mathbf{c}}$	98.8	CH	6.04, d, (2.7)	C-1, C-3, C-14a
3	153.3	C		
$\overline{4}$	93.9	CН	5.84, d, (2.7)	C-2, C-3, C-4a, C-14a
4a	142.1	C		
5a	125.9	C		
6	140.1	C		
7	97.6	CН	6.10, s	C-5a, C-6, C-7a, C-13a, C-13b
7a	137.2	C		
8a	122.7	C		
9	146.0	C		
10	98.8	CH	6.01, d, (2.7)	C-8a, C-9, C-11, C-12
11	153.0	C		
12	93.9	CН	5.82, d, (2.7)	C-8a, C-10, C-11, C-12a
12a	141.7	C		
13a	122.5	C		
13 _b	131.6	C		
14a	122.3	\mathcal{C}		
$1-OH$			9.77, s	C-1, C-2, C-14a
$9-OH$			9.64, s	C-8a, C-9, C-10
$6-OH$			9.60, s	$C-5a$, $C-6$, $C-7$
$3-OH$			9.27, s	$C-2, C-3, C-4$
$11-OH$			9.26, s	C-10, C-11, C-12

a) Chemical shifts are referred to TMS. Multiplicities are indicated by usual symbols. Coupling constants (Hz) are in parentheses. *b*) These assignments were based on the evidence of HMQC measurements.

HMBC correlation

Fig. 2. Long-Range Correlations of **1** in the HMBC Spectrum

Experimental

General ¹H- and ¹³C-NMR spectra were determined on a JNM ECP-400 spectrometer using CD₃OD, CDCl₃, and DMSO- d_6 with tetramethylsilane (TMS) as an internal standard. HMQC and HMBC spectra were recorded using pulsed field gradients. EI-MS, FAB-MS, IR and optical rotation were taken with a GC-MS QP-5050A (Shimadzu, Japan), a JMS-HX110A/HX110A Tandem mass spectrometer (JEOL), a FT-IR spectrometer spectrum 2000 (Perkin-Elmer Ltd., England), and a Perkin-Elmer polarimeter 341 (U.S.A.), respectively. Column chromatography was done with silica gel 60 (230—400 mesh, Merck, Germany), RP-18 Lichroprep (Merck, Germany), and Sephadex LH-20 (Sigma, st. Louis, MO, U.S.A.). TLC was carried out on a precoated Merck Kieselgel 60 F_{254} plate (0.25 mm) and a RP-18 F_{254s} plate (Merck, Art. 5685) and the spots were detected under UV light using 50% H₂SO₄ reagent. All the solvent for column chromatography was of a reagent grade from commercial sources.

Plant Material Leafy thalli of the *E. stolonifera* were collected at Gijang-gun in Busan, Korea in February 2000 and authenticated by Prof. H. G. Kim of the Faculty of Marine Bioscience and Technology, Kangnung National University. A voucher specimen (no. 20000228) has been deposited in the author's laboratory (J. S. Choi).

Extraction and Isolation The lyophilized powder (3 kg) was refluxed with MeOH (3×91) for 3 h. The extract (700 g) was suspended in water and

partitioned with *n*-hexane (27.93 g), CH₂Cl₂ (25.58 g), EtOAc (24.99 g), *n*-BuOH (99.59 g), in sequence. The EtOAc fraction (24.99 g), which exhibited the most potent antioxidative effect on the DPPH radical, was applied to a silica gel (Merck, $70-230$ mesh, 800 g) column (4×80 cm). The column was eluted using mixtures of EtOAc/MeOH under gradient conditions (50 : 1—5 : 1) to yield the 10 subfractions (F1—F10), *i.e.*, F1—F3; EtOAc/ MeOH, 50 : 1 (5 l), F4—F6; EtOAc/MeOH, 10 : 1 (5 l), F7—F8; EtOAc/ MeOH, 5 : 1 (5 l), and F9—F10; EtOAc/MeOH, 2 : 1 (2 l). The F1 was carried out further with a silica gel $(70-230 \text{ mesh}, 250 \text{ g})$ column $(3 \times 70 \text{ cm})$ chromatography (hexane/EtOAc, 1 : 1) to get the 11 subfractions (F1-1—F1- 11). Compounds **1** (60 mg) and **2** (135 mg) were obtained from the RP-18 column chromatography (20% MeOH *ca.* 100% MeOH, gradient) of F1-5 (1.01 g). Compounds **3** and **4** in F1-6 (945 mg) were achieved by the RP-18 column chromatography using a 20% MeOH *ca.* 100% MeOH gradient, then purified by Sephadex LH-20 column chromatography with MeOH as a solevent, respectively.

Eckstolonol (1): Off-white powder, $[\alpha]_D^{20}$: 0° ($c=0.008$, MeOH) negative FAB-MS m/z : 369.0, HR-FAB-MS m/z : 370.0324 (Calcd for C₁₈H₁₀O₉, m/z 370.0325). IR (KBr) cm⁻¹: 3243, 1635, 1518, 1494, 1396, 1281, 1243, 1207, 1154, 1118, 1089, 1012, 810. ¹H- and ¹³C-NMR: see Table 1.

Eckstolonol Pentaacetate (**1a**): A mixture of **1** (5 mg), acetic anhydride (0.3 ml), and pyridine (0.2 ml) was allowed to stand at room temperature for 24 h. The reaction mixture was evaporated the solvent with a N_2 gas stream to afford **1a** (7.8 mg). IR (KBr) cm⁻¹: 1769, 1506, 1477, 1371, 1193, 1079, 1021, 885. EI-MS m/z (R. int.): 580 (M⁺, 21), 538 (45), 496 (47), 454 (72), 412 (52), 370 (100), 341 (30), ¹H-NMR (400 MHz, CDCl₃+DMSO-*d*₆) δ: 1.59 (3H, s), 1.61 (3H, s), 1.64 (3H, s), 1.65 (3H, s), 1.73 (3H, s), 5.80 (1H, s), 5.96 (1H, d, *J*=2.6 Hz), 5.97 (1H, d, *J*=2.6 Hz), 6.00 (1H, d, *J*=2.6 Hz), 6.02 (1H, d, J=2.6 Hz).

Eckol (2): Amorphous powder, Positive FAB-MS m/z : 372 [M]⁺, $C_{18}H_{12}O_9$. ¹H-NMR (400 MHz, CD₃OD) δ : 5.93 (3H, s), 5.94 (2H, s), 6.13 $(1\text{H}, \text{s})$. ¹³C-NMR (100 MHz, CD₃OD) δ : 162.4, 160.7, 160.7, 150.0, 147.7, 147.6, 144.7, 143.8, 139.0, 126.1, 125.3, 125.1, 100.3, 99.9, 98.2, 96.3, 95.9, 96.9.

Phlorofucofuroeckol A (**3**): Amorphous powder, Positive FAB-MS *m*/*z*: 602 $[M]^+$, $C_{30}H_{18}O_{14}$. ¹H-NMR (400 MHz, CD₃OD) δ : 6.63 (1H, s), 6.40 $(1H, s)$, 6.26 $(1H, s)$, 5.97 $(2H, d, J=2.1 Hz)$, 5.94 $(1H, t, J=1.9 Hz)$, 5.92 $(1H, t, J=1.9 \text{ Hz}), 5.88 (2H, d, J=2.1 \text{ Hz}).$ ¹³C-NMR (100 MHz, CD₃OD) δ : 162.67, 162.64, 161.00, 161.00, 160.97, 160.97, 153.99, 152.50, 151.96, 149.07, 149.03, 146.74, 144.71, 139.19, 136.15, 128.89, 125.86, 125.56, 123.17, 106.15, 106.11, 100.78, 100.22, 98.60, 98.48, 97.03, 96.24, 96.24, 96.21, 96.21.

Dieckol (4): Amorphous powder, Positive FAB-MS m/z : 742 [M]⁺, $C_{36}H_{22}O_{18}.$ ¹H-NMR (400 MHz, CD₃OD) δ : 6.15 (1H, s), 6.13 (1H, s), 6.09 $(2H, 8)$, 6.06 (1H, d, *J*=2.9 Hz), 6.05 (1H, d, *J*=2.9 Hz), 5.98 (1H, d, *J*=2.8 Hz), 5.95 (1H, d, *J*=2.8 Hz), 5.92 (3H, s). ¹³C-NMR (100 MHz, CD3OD) d: 162.67, 160.95, 160.95, 158.61, 156.81, 155.33, 153.19, 153.19, 148.14, 148.09, 147.92, 147.71, 145.10, 144.95, 144.20, 144.10, 139.44, 139.27, 127.28, 127.00, 126.46, 126.41, 125.67, 125.45, 125.38, 100.67, 100.56, 100.30, 100.19, 98.47, 97.02, 97.02, 96.65, 96.57, 96.17, 96.17.

DPPH Radical Scavenging Effect The DPPH radical scavenging effect was evaluated as previously described by Blois⁹⁾ with minor modifications. A methanolic sample solution of 160 μ l at several concentrations and 40 μ l of the DPPH methanolic solution $(1.5 \times 10^{-4} \text{ M})$ were added to a 96-well microplate, in a total volume of 200 μ l. After letting the reaction mixture stand at room temperature for 30 min, its absorbance was determined at 520 nm, in a microplate reader (VERSA max, Molecular device, CA, U.S.A.).

Acknowledgements The FAB-MS spectra were provided by the Korea Basic Science Institute. This study was supported by a grant from the "2002 Korea Sea Grant Program (2002 KSGP)", Ministry of Maritime Affairs and Fisheries (2002).

References

- 1) Lee J. H., Park J. C., Choi J. S., *Arch. Pharm. Res.*, **19**, 223—227 (1996).
- 2) Taniguchi K., Kurata K., Suzuki M., *Nippon Suisan Gakkaishi*, **57**, 2065—2071 (1991).
- 3) Kurata K., Taniguchi K., Shiraishi K., Hayama N., Tanaka I., Suzuki M., *Chem. Lett.*, 267—270 (1989).
- 4) Kurata K., Taniguchi K., Shiraishi K., Suzuki M., *Phytochemistry*, **33**, 155—159 (1993).
- 5) Nakamura T., Nagayama K., Uchida K., Tanaka R., *Fish. Sci.*, **62**, 923—926 (1996).
- 6) Fukuyama Y., Kodama M., Miura I., Kinzyo Z., Kido M., Mori H., Nakayama Y., Takahashi M., *Chem. Pharm. Bull.*, **37**, 349—353 (1989).
- 7) Fukuyama Y., Kodama M., Miura I., Kinzyo Z., Mori H., Nakayama
- Y., Takahashi M., *Chem. Pharm. Bull.*, **38**, 133—135 (1990).
- 8) Fukuyama Y., Miura I., Kinzyo Z., Mori H., Kido M., Nakayama Y., Takahashi M., Ochi M., *Chem. Lett.*, 739—742 (1985).
- 9) Blois M. S., *Nature* (London), **181**, 1199—1200 (1958).