Structures of New Friedelane- and Norfriedelane-Type Triterpenes and Polyacylated Eudesmane-Type Sesquiterpene from *Salacia chinensis* LINN. (*S. prinoides* DC., Hippocrateaceae) and Radical Scavenging Activities of Principal Constituents

Akinobu Kishi, Toshio Morikawa, Hisashi Matsuda, and Masayuki Yoshikawa*

Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received April 28, 2003; accepted June 19, 2003

Two new friedelane-type triterpenes, salasones D and E, a new norfriedelane-type triterpene, salaquinone B, and a new polyacylated eudesmane-type sesquiterpene, salasol B, were isolated from the stems of *Salacia chinensis* LINN. (*S. prinoides* DC., Hippocrateaceae) collected in Thailand. Their stereostructures were elucidated on the basis of chemical and physicochemical evidence. Some norfriedelane-type triterpene, lignan, and catechin constituents were found to show radical scavenging activity.

Key words salasone; salaquinone; salasol; antioxidant; Salacia chinensis; radical scavenger

Previously, we reported that the extracts of several Salacia species such as Salacia reticulata, 1-6 S. oblonga, 7 and S. chinensis (synonyms S. prinoides),^{8,9)} showed hypoglycemic effects in oral sucrose- and maltose-loaded rats, inhibitory activities against α -glucosidases (e.g. sucrase, maltase, and isomaltase) and rat lens aldose reductase, hepatoprotective effect on CCl₄-induced liver injury, antioxidative activity, and anti-obese activity. As their active constituents, thiosugar sulfonium sulfates named salacinol and kotalanol, friedelanetype triterpenes, eudesmane-type sesquiterpenes, and phenolic compounds were isolated from the extracts. As a continuation of the characterization studies on bioactive constituents of Salacia species plants, we have isolated two friedelanetype triterpene, salasones D (1) and E (2), a norfriedelanetype triterpene, salaquinone B (3), and a eudesmane-type sesquiterpene, salasol B (4) from the stems of S. chinensis collected in Thailand. This paper deals with the isolation and structure elucidation of four new constituents (1-4) and radical scavenging activity of the principal constituents from S. chinensis.

The 80% aqueous methanolic extract from the stems of *S. chinensis* (collected in Phiphun district, Nakhon si thammarat province, Thailand) was partitioned into a mixture of ethyl acetate (EtOAc) and water to furnish the EtOAc-soluble fraction and H₂O-soluble fraction. The EtOAc-soluble fraction was separated by silica gel and octadecyl silica gel (ODS) column chromatography and finally HPLC (ODS) to give salasones D (1, 0.0012% from the natural medicine) and E (2, 0.0010%), salaquinone B (3, 0.0003%), and salasol B (4, 0.0014%).

Structures of Salasons D (1) and E (2) Salasone D (1) was obtained as a white powder with negative optical rotation $([\alpha]_{D}^{22} - 19.6^{\circ}, \text{ CHCl}_{3})$. The IR spectrum of 1 showed absorption bands at 3453 and 1717 cm⁻¹ ascribable to hydroxyl and carbonyl functions. In the electron impact (EI)-MS of 1, the molecular ion peak was observed at m/z 458 (M⁺) and the high resolution EI-MS analysis revealed the molecular formula of 1 to be $C_{30}H_{50}O_3$. The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of 1, which were assigned by various NMR experiments,¹⁰⁾ showed signals assignable to seven methyls [δ 0.80, 1.00, 1.07, 1.09, 1.31, 1.57 (3H each, all s, 24, 30, 29, 27, 25, 28-H₂), 0.97 (3H, d, J=6.7 Hz, 23-H₂)], a methine and methylene bearing a hydroxyl group [δ 4.22 (1H, d, J=7.3 Hz, 15-H), 4.24, 4.89 (1H each, both d, J=11.6 Hz, 26-H₂)], and a carbonyl group [$\delta_{\rm C}$ 211.9 (3-C)] together with ten methylenes (1, 2, 6, 7, 11, 12, 16, 19, 21, 22-C), four methines (4, 8, 10, 18-C), and six quaternary carbons (5, 9, 13, 14, 17, 20-C). The proton and carbon signals in the ¹H- and ¹³C-NMR spectra of **1** were superimposable on those of a known friedelane-type triterpene, kokoonol (1a),¹¹⁾ which was isolated from S. reticulata, except for the signals due to the 15-hydroxyl group. The planar structure of 1 was elucidated on the basis of homo-correlation spectroscopy $(^{1}H-^{1}H COSY)$ and heteronuclear multiple bond connectivity (HMBC) experiments. Namely, the ¹H–¹H COSY experiment on 1 indicated the presence of seven partial structures shown in bold lines in Fig. 1 (10-1-2-C, 4-23-C, 6-8-C, 11-12-C, 15-16-C, 18-19-C, and 21-22-C). In the HMBC experiment, long-range correlations were observed between the following proton and carbon pairs (4-H and 2, 3, 5, 23-C; 15-H and 14-

* To whom correspondence should be addressed. e-mail: shoyaku@mb.kyoto-phu.ac.jp

Chart 2

C; 23-H₃ and 3–5-C; 24-H₃ and 4–6, 10-C; 25-H₃ and 8–11-C; 26-H₃ and 8, 13–15-C; 27-H₃ and 12–14, 18-C; 28-H₃ and 16–18, 22-C; 29-H₃ and 19–21, 30-C; 30-H₃ and 19–21, 29-C) as shown in Fig. 1. The above evidence led us to clarify the connectivities of the quaternary carbons and the positions of the carbonyl and hydroxyl groups in **1**. The stereostructure of **1** including the 15 α -hydroxyl group was confirmed by nuclear Overhauser enhancement spectroscopy (NOESY) experiment, which showed NOE correlations between the following proton pairs (15-H and 26-H₂, 28-H₃; 18-H and 28, 30-H₃; 23-H₃ and 24-H₃; 24-H₃ and 25-H₃; 25-H₃ and 26-H₂;

26-H₂ and 28-H₃; 28-H₃ and 30-H₃). Consequently, the stereostructure of 1 was determined as 3-oxofriedelane-15 α ,26diol.

Salasone E (2) was obtained as a white powder with negative optical rotation ($[\alpha]_D^{23} - 18.5^\circ$, CHCl₃). The IR spectrum of 2 indicated the presence of hydroxyl and carboxyl functions at 3453 and 1734 cm⁻¹. The molecular formula $C_{30}H_{50}O_3$ of 2, which was the same as that of 1, was determined from the molecular ion peaks at m/z 458 (M⁺) in EI-MS and by high resolution EI-MS measurements. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra¹⁰) of 2 showed signals assignable to seven methyls [δ 0.81, 0.95, 0.97, 1.07, 1.11, 1.17 (3H each, all s, 24, 29, 30, 25, 27, 28-H₃), 0.91 (3H, d, *J*=6.8 Hz, 23-H₃)], a methylene and a methine bearing an oxygen function [δ 4.16 (2H, br s, 26-H₂), 4.29 (1H, ddd, *J*=2.6, 10.6, 10.6 Hz, 7-H)], and a carbonyl group [$\delta_{\rm C}$ 212.4 (3-C)] together with ten methylenes (1, 2, 6, 11, 12, 15, 16, 19, 21, 22-C), four methines (4, 8, 10, 18-C), and six

Table 1. $^{13}\mathrm{C}\text{-NMR}$ Data of Salasones D (1) and E (2), Salaquinone B (3), and Salasol B (4)

	1 ^{<i>a</i>)}	2 ^{b)}	3 ^{b)}		4 ^{b)}
C-1	22.8	35.6	107.7	C-1	69.3
C-2	42.7	41.1	141.6	C-2	73.9
C-3	211.9	212.4	139.5	C-3	31.2
C-4	57.8	58.1	120.9	C-4	33.3
C-5	42.4	42.5	125.7	C-5	89.3
C-6	41.7	50.4	27.8	C-6	78.3
C-7	22.7	69.2	126.0	C-7	48.9
C-8	54.4	58.2	139.0	C-8	34.4
C-9	38.0	38.8	36.2	C-9	69.4
C-10	59.8	59.3	140.0	C-10	54.5
C-11	37.1	36.0	33.0	C-11	82.6
C-12	31.6	29.9	29.4	C-12	30.3
C-13	41.0	40.3	43.5	C-13	26.0
C-14	46.8	44.2	58.0	C-14	65.7
C-15	75.5	27.0	211.4	C-15	18.2
C-16	48.4	35.5	47.5	2-BzO-	
C-17	30.9	30.1	49.4	C-1'	130.4
C-18	42.6	43.3	44.3	C-2',6'	129.6
C-19	32.2	21.9	30.7	C-3',5'	128.6
C-20	28.4	28.3	40.0	C-4'	133.1
C-21	36.2	32.4	212.4	C-7′	165.4
C-22	39.5	39.2	77.8	9-BzO-	
C-23	7.2	6.9	11.6	C-1″	129.6
C-24	14.4	15.9		C-2",6"	129.7
C-25	16.9	18.8	33.4	C-3",5"	128.6
C-26	65.8	64.2	25.6	C-4"	133.3
C-27	19.7	20.1	21.4	C-7"	167.0
C-28	32.7	31.2	24.6	6-AcO-	170.0
C-29	35.7	34.7			21.3
C-30	31.0	31.1	14.8	14-AcO-	170.8
					21.2

Measured in a) pyridine-d₅ and b) CDCl₃ at 125 MHz.

1053 he proton and

quaternary carbons (5, 9, 13, 14, 17, 20-C). The proton and carbon signals in the ¹H- and ¹³C-NMR spectra of 2 resembled those of 1a, except for the signals ascribable to the 7-hydroxyl group. As shown in Fig. 1, the ¹H–¹H COSY experiment on 2 showed the presence of the similar functional structures to those of 1, except for the position of a secondary hydroxyl group. In the HMBC experiment of 2, longrange correlations were observed between the following proton and carbon pairs (4-H and 2, 3, 5, 23-C; 23-H₃ and 3-5-C; 24-H₃ and 4-6, 10-C; 25-H₃ and 8-11-C; 26-H₃ and 8, 13-15-C; 27-H₃ and 12-14, 18-C; 28-H₃ and 16-18, 22-C; 29-H₃ and 19-21, 30-C; 30-H₃ and 19-21, 29-C) as shown in Fig. 1. The above evidence indicated the positions of the 3carbonyl and 7-hydroxyl functions in the fridelane skeleton. Furthermore, the stereostructure of the 7α -hydroxyl group in 2 was determined by NOESY experiment, which showed the NOE correlations between the following proton pairs (7-H and 24, 25-H₃, 26-H₂; 18-H and 28, 30-H₃; 23-H₃ and 24-H₃; 24-H₃ and 25-H₃; 25-H₃ and 26-H₂; 26-H₂ and 28-H₃; 28-H₃ and 30-H₃). On the basis of this evidence, the stereostructure of **2** was confirmed as 3-oxofriedelane- 7α ,26-diol.

Structure of Salaguinone B (3) Salaguinone B (3) was obtained as an amorphous powder with positive optical rotation ($[\alpha]_{D}^{26}$ +69.4°, CHCl₃). The IR spectrum of **3** showed absorption bands at 3432 and 1709 cm⁻¹ ascribable to hydroxyl and carbonyl functions. In the UV spectrum of 3, absorption maxima were observed at 223 nm (log ε 3.9), 246 nm (3.7), and 416 nm (3.7). The molecular formula $C_{28}H_{36}O_5$ of **3** was characterized from the EI-MS and by high resolution EI-MS measurement. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra¹⁰ of **3** showed signals assignable to six methyls [δ 1.01, 1.05, 1.27, 1.69, 2.16 (3H each, all s, 27, 28, 25, 26, 23- H_3), 1.11 (3H, d, J=8.4 Hz, 30- H_3)], a methine bearing an oxygen function [δ 4.42 (1H, br s, 22-H)], two olefins [δ 6.31 (1H, d, J=5.1 Hz, 7-H), 6.71 (1H, s, 1-H)], and two carbonyl groups [$\delta_{\rm C}$ 211.4 (15-C), 212.4 (21-C)] together with five methylenes (6, 11, 12, 16, 19-C), two methines (18, 20-C), and ten quaternary carbons (2-5, 8-10, 13, 14, 17-C). The proton and carbon signals in the ¹H- and ¹³C-NMR spectra of **3** were very similar to those of a known

Fig. 1. H-H COSY, HMBC, and NOE Correlations of 1-3

29-norfriedelane-type triterpene, regeol A (20), except for the signals due to the 15-carbonyl group. As shown in Fig. 1, the ¹H–¹H COSY experiment of **3** indicated the presence of three partial structures shown in bold lines (6–7-C, 11–12-C, 18-20-30-C). In the HMBC experiment of 3, long-range correlations were observed between the following proton and carbon pairs (1-H and 3, 5, 9-C; 6-H₂ and 5, 7-C; 7-H and 5, 6, 9, 14-C; 16-H₂ and 15-C; 22-H and 21-C; 23-H₃ and 3-5-C; 25-H₃ and 8-11-C; 26-H₃ and 8, 13-15-C; 27-H₃ and 12-14, 18-C; 28-H₃ and 16-18, 22-C; 30-H₃ and 19-21-C), so that the positions of the carbonyl and olefin functions and quaternary carbons of 3 were clarified as shown in Fig. 2. The stereostructure of **3** including the 22β -hydroxyl group was confirmed by NOESY experiment. Namely, the NOE correlations of 3 were observed between the following proton pairs (1-H and 25-H₃; 16α -H and 22-H; 16β -H and 26-H₃; 18-H and 28, 30-H₃; 20-H and 22-H; 25-H₃ and 26-H₃). The above mentioned evidence led us to characterize the stereostructure of salaquinone B as 3.

Structure of Salasol B (4) Salasol B (4) was isolated as a white powder with positive optical rotation ($[\alpha]_{\rm D}^{26}$ +59.0°, CHCl₃). The molecular formula $C_{33}H_{38}O_{10}$ of 4 was determined from the molecular ion peak observed in the EI-MS and by high resolution EI-MS measurement. The IR spectrum of 4 showed absorption bands at 3475, 1744, 1719, 1368, 1244, and 1099 cm⁻¹ ascribable to hydroxyl, carbonyl, and aromatic functions. In the UV spectrum of 4, absorption maxima were observed at 230 nm (log ε 4.2) and 273 nm (3.4) suggestive of a benzovl group. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1)¹⁰ spectra of 4 indicated the presence of three methyls [δ 1.21 (3H, d, J=7.4 Hz, 15-H₃), 1.45, 1.52 (3H each, both s, 12, 13-H₃)], two acetyl groups [δ 2.07, 2.19 (3H each, both s, 6, 14-OAc)], a methylene and four methine bearing an oxygen function [δ 4.50, 5.18 (1H each, both d, J=12.5 Hz, 14-H₂), 4.85 (1H, br s, 1-H), 5.52 (1H, d, J=7.4 Hz, 9-H), 5.61 (1H, br s, 2-H), 5.91 (1H, s, 6-H)], and two benzoyl groups [δ 7.46, 7.47 (2H each, both dd-like, 3', 5'-, 3", 5"-H), 7.56 (2H, t-like, 4', 4"-H), 8.08 (2H, d, J=7.1 Hz, 2', 6'-H), 8.09 (2H, d, J=7.3 Hz, 2", 6"-H)] together with two methylenes (3, 8-C), two methines (4, 7-C), and three quaternary carbons (5, 10, 11-C). The alkaline hydrolysis of 4 with 5% aqueous potasium hydroxide (KOH) in 1,4-dioxane yielded a known eudesmane-type sesquiterpene, 3,4-dideoxymaytol (4a),¹²⁾ which was also obtained by the alkaline hydrolysis of celahin C (22).⁹⁾ The ¹H-¹H COSY experiment on 4 indicated the presence of four partial structure written in bold lines, as shown in Fig. 2. The positions of acetyl and benzoyl groups in 4 were clarified by HMBC experiment. Namely, long-range correlations in the HMBC experiment were observed between the following protons and carbons of 4 (2-H and 7'-C; 6-H and 5-C, 6-OAc; 9-H and 10, 7"-C; 12-H₃ and 7, 11, 13-C; 13-H₃ and 7, 11, 12-C; 14-H₂ and 1, 5, 9, 10-C, 14-OAc). Finally, comparison of the spectral data for 4 with those for the related sesquiterpenes led us to elucidate the stereostructure of 4.

DPPH Radical Scavenging Activities of the Constituents from *S. chinensis* The DPPH radical, which is stable and shows an absorption at 517 nm, has been used as a convenient tool for the radical scavenge assay, and this assay is independent of any enzyme activity.^{13,14} When this compound accepts an electron or hydrogen radical to become a

Table 2. DPPH Radical Scavenging Activity of Chemical Constituents from *Salacia chinensis*

	DPPH radical $SC_{50} (\mu M)^{a}$
Friedelane Type Triterpenes	
Maytenoic acid (5)	>40
Friedelane-3-one-29-ol (6)	>40
15α -Hydroxyfriedelane-3-one (7)	>40
Wilfolic acid C (8)	>40
Salaspermic acid (9)	>40
Orthosphenic acid (10)	>40
Oleanane Type Triterpenes	
3β ,22 β -Dihydroxyolean-12-en-29-oic acid (11)	>40
Maytenfolic acid (12)	>40
β -Amyrin (13)	>40
22α -Hydroxy-3-oxoolean-12-en-29-oic acid (14)	>40
β -Amyrenone (15)	>40
Ursan Type Triterpenes	
Tripterygic acid A (16)	>40
Demethylregelin (17)	>40
Norfriedelane Type Triterpenes	
Tingenone (18)	13
Tingenine B (19)	8.5
Regeol A (20)	10
Triptocalline A (21)	>40
Agarofuran Type Sesquiterpenes	
Celahin C (22)	>40
Others	
Mangiferin (23)	5.9
(+)-Lyoniresinol (24)	6.6
(+)-Isolariciresinol (25)	12
(+)-8-Methoxyisolariciresinol (26)	15
(-)-Epigallocatechin (27)	2.5
(-)-Epicatechin (28)	4.1
(+)-Catechin (29)	5.9

a) Concentration required for 50% reduction of 40 μ M DPPH radical.

Fig. 2. H-H COSY and HMBC Correlations of 4

more stable compound, the absorption vanishes. Previously, we reported the DPPH radical and/or superoxide anion radical (O_2) scavenging activities of several natural medicines, such as the fruit hulls of Garcinia mangostana,¹⁵⁾ the rhizomes of *Rheum undulatum*,¹⁶⁾ the whole plants of *Cyperus* longus,¹⁷⁾ and the flowers of Prunus mume.¹⁸⁾ In our continuing studies on antioxidative principles from natural medicines, DPPH radical scavenging activities of the aqueous methanolic extract of S. chinensis and isolated constituents were examined. As a result, the aqueous methanolic extract of S. chinensis (SC₅₀=13 μ g/ml) and following ten constituents were found to show scavenging activities as shown in Table 2, norfriedelane-type triterpenes: tigenone (18, $SC_{50}=13 \,\mu\text{M}$), tingenine B (19, 8.5 μ M), and regeol A (20, 10 μ M); xanthone: mangiferin (23, 5.9 μ M); lignans: (+)-lyoniresinol (24, 6.6 μ M), (+)-isolariciresinol (25, 12 μ M), and (+)-8-methoxyisolariciresinol (26, 15μ M); and flavan-3-ols: (-)-epigallocatechin (27, 2.5 μ M), (-)-epicatechin (28, 4.1 μ M), and (+)-catechin (29, 5.9 μ M).

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (l=5 cm); UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GCMATE mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz) spectrometer; ¹³C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; HPLC detector, Shimadzu RID-6A refractive index detector.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, pre-coated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{2548} (Merck, 0.25 mm) (reversed phase); reversed-phase HPTLC, pre-coated TLC plates with Silica gel RP-18 WF₂₅₄₈ (Merck, 0.25 mm); detection was achieved by spraying with 1% Ce(SO₄)₂–10% aqueous H₂SO₄ followed by heating.

Extraction and Isolation of Salasones D (1) and E (2), Salaquinone B (3), and Salasol B (4) from the Stems of Salacia chinensis L. The dried stems of S. chinensis (5 kg) were crushed and extracted three times with 80% aqueous methanol under reflux. Evaporation of the solvent under reduced pressure provided the 80% aqueous methanolic extract (551 g, 11.0%), and it (538 g) was partitioned into the EtOAc-H₂O (1:1) mixture. Removal of the solvent under reduced pressure from the EtOAc- and watersoluble portion yielded 66.6 g (1.4%) and 471.4 g (9.6%) of residue, respectively. The EtOAc-soluble portion (58.7g) was subjected to normal-phase silica gel column chromatography [1.8 kg, *n*-hexane–EtOAc (10:1 \rightarrow 5:1 \rightarrow $2:1 \rightarrow 1:1, v/v) \rightarrow CHCl_3-MeOH-H_2O$ (10:3:0.5, v/v) $\rightarrow MeOH$] to give nine fractions {Fr. 1 [squalene (596 mg, 0.014%)], Fr. 2 (1.2 g), Fr. 3 (3.6 g), Fr. 4 (3.4 g), Fr. 5 (4.5 g), Fr. 6 (2.8 g), Fr. 7 (6.3 g), Fr. 8 (17.6 g), Fr. 9 (18.7 g)}. Fraction 5 (3.0 g) was further separated by HPLC [YMC-Pack ODS-A (YMC Co., Ltd., 250×20 mm i.d.), MeOH-1% aqueous AcOH (95:5, v/v)] to give ten fractions [Fr. 5-1 (146 mg), Fr. 5-2 (318 mg), Fr. 5-3 (298 mg), Fr. 5-4 (273 mg), Fr. 5-5 (238 mg), Fr. 5-6 (206 mg), Fr. 5-7 (387 mg), Fr. 5-8 (173 mg), Fr. 5-9 (164 mg), Fr. 5-10 (157 mg)]. Fraction 5-2 (318 mg) was purified by HPLC [MeOH-H₂O (75:25, v/v)] to give salasol B (4, 38 mg, 0.0014%). Fraction 5-8 (173 mg) was purified by normal-phase silica gel column chromatography [i) 17 g, CHCl₃–MeOH (100:1, v/v) \rightarrow MeOH, ii) 10 g, benzene-acetone $(40:1\rightarrow 20:1\rightarrow 10:1, v/v) \rightarrow MeOH]$ to give salasones D (1, 34 mg, 0.0012%) and E (2, 27 mg, 0.0010%) together with salasone B (14 mg, 0.0005%).⁹⁾ Fraction 7 (6.0 g) was further separated by reversed-phase silica gel column chromatography [180 g, MeOH-H2O $(40:60\rightarrow 50:50\rightarrow 70:30\rightarrow 80:20\rightarrow 90:10, v/v)\rightarrow MeOH]$ to give five fractions [Fr. 7-1 (1.8 g), Fr. 7-2 (1.5 g), Fr. 7-3 (1.0 g), Fr. 7-4 (703 mg), Fr. 7-5 (924 mg)]. Fraction 7-2 (1.5 g) was purified by normal-phase silica gel column chromatography [75 g, CHCl₃–MeOH (100:1, v/v) \rightarrow MeOH] and HPLC [i) MeOH-1% aqueous AcOH (75:25, v/v), ii) CH₃CN-H₂O (55:45, v/v)] to give salaquinone B (3, 12 mg, 0.0003%) together with salaquinone A (24 mg, 0.0006%)⁹⁾ and salasol A (26 mg).⁹⁾

Salasone D (1): A white powder, $[\alpha]_{2}^{2^{-}} - 19.6^{\circ} (c=0.50, \text{ CHCl}_3)$. High-resolution EI-MS: Calcd for $C_{30}H_{50}O_3$ (M⁺): 458.3760. Found: 458.3773. IR (KBr): 3453, 2930, 1717, 1458, 1391 cm⁻¹. ¹H-NMR (500 MHz, pyridine- d_5) & 0.80, 1.00, 1.07, 1.09, 1.31, 1.57 (3H each, all s, 24, 30, 29, 27, 25, 28-H₃), 0.97 (3H, d, J=6.7 Hz, 23-H₃), 1.73 (1H, dd-like, 18-H), [1.80 (1H, br d, J=ca. 16 Hz), 2.22 (1H, dd, J=7.3, 15.5 Hz), 16-H₂], 2.25 (1H, m, 4-H), 4.22 (1H, d, J=7.3 Hz, 15-H), 4.24, 4.89 (1H each, both d, J=11.6 Hz, 26-H₂). ¹³C-NMR (pyridine- d_5) δ_C : given in Table 1. EI-MS: m/z 458 (M⁺, 7), 109 (100).

Salasone E (2): A white powder, $[\alpha]_D^{23} - 18.5^{\circ}$ (*c*=0.50, CHCl₃). Highresolution EI-MS: Calcd for $C_{30}H_{50}O_3$ (M⁺): 458.3760. Found: 458.3789. IR (KBr): 3453, 2924, 1734, 1458, 1390 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 0.81, 0.95, 0.97, 1.07, 1.11, 1.17 (3H each, all s, 24, 29, 30, 25, 27, 28-H₃), 0.91 (3H, d, *J*=6.8 Hz, 23-H₃), 1.42 (1H, m, 18-H), 2.31 (1H, q, *J*=6.8 Hz, 4-H), 4.16 (2H, br s, 26-H₂), 4.29 (1H, ddd, *J*=2.6, 10.6, 10.6 Hz, 7-H). ¹³C-NMR (CDCl₃) δ_C : given in Table 1. EI-MS: *m/z* 458 (M⁺, 8), 109 (100).

Salaquinone B (3): An amorphous powder, $[\alpha]_D^{26} + 69.4^{\circ}$ (*c*=0.20, CHCl₃). High-resolution EI-MS: Calcd for C₂₈H₃₆O₅ (M⁺): 452.2563. Found: 452.2547. UV [MeOH, nm (log ε)]: 223 (3.9), 246 (3.7), 416 (3.7). IR (KBr): 3432, 2924, 1709, 1595, 1439, 1381 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 1.01, 1.05, 1.27, 1.69, 2.16 (3H each, all s, 27, 28, 25, 26, 23-H₃), Salasol B (4): A white powder, $[\alpha]_D^{26} + 59.0^{\circ} (c=0.10, \text{CHCl}_3)$. High-resolution EI-MS: Calcd for $C_{33}H_{38}O_{10} (M^+)$: 594.2464. Found: 594.2468. UV [MeOH, nm (log ε)]: 230 (4.2), 273 (3.4). IR (KBr): 3475, 3025, 2930, 1744, 1719, 1368, 1271, 1244, 1099, 712 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 1.21 (3H, d, J=7.4 Hz, 15-H₃), 1.45, 1.52 (3H each, both s, 12, 13-H₃), [1.99 (1H, brd, J=ca. 15 Hz), 2.46 (1H, ddd-like), 3-H₂], 2.07, 2.19 (3H each, both s, 6, 14-OAc), 2.27 (1H, ddd-like, 7-H), [2.32 (1H, dd, J=3.1, 16.2 Hz), 2.58 (1H, ddd, J=3.6, 7.4, 16.2 Hz), 8-H₂], 2.40 (1H, m, 4-H), 4.50, 5.18 (1H each, both d, J=12.5 Hz, 14-H₂), 4.85 (1H, brs, 1-H), 5.52 (1H, dJ, J=7.4 Hz, 9-H), 5.61 (1H, brs, 2-H), 5.91 (1H, s, 6-H), 7.46, 7.47 (2H each, both dd-like, 3', 5'-, 3", 5"-H), 7.56 (2H, t-like, 4', 4"-H), 8.08 (2H, d, J=7.1 Hz, 2', 6'-H), 8.09 (2H, d, J=7.3 Hz, 2", 6"-H). ¹³C-NMR (CDCl₃) δ_C : given in Table 1. EI-MS: m/z 594 (M⁺, 2), 105 (100).

Alkaline Hydrolysis of Salasol B (4) A solution of 4 (4.9 mg) in 5% aqueous KOH–1,4-dioxane (2:1, v/v, 1.5 ml) was stirred at room temperature (25 °C) for 4 h. The reaction mixture was neutralized with Dowex HCR W2 (H⁺ form) and the resin was removed by filtration. After removal of the solvent from the filtrate *in vacuo*, the residue was separated by normal-phase silica gel column chromatography [500 mg, CHCl₃–MeOH–H₂O (30:3:1, lower layer, v/v)] to give 3,4-dideoxymaytol (4a, 2.3 mg, 92%). Compound 4a was identified by comparison of physical data ([α]_D, IR, ¹H-NMR, MS) with reported values.^{9,12}

Bioassay. DPPH Radical Scavenging Activity The free radical scavenging activity of the constituents was assessed using the DPPH radical.^{13,14)} An ethanol solution of DPPH ($100 \,\mu$ M, $1.0 \,\text{ml}$) was mixed with different concentrations of each test compound ($0-200 \,\mu$ M, $0.5 \,\text{ml}$) and $0.1 \,\text{M}$ acetate buffer (pH 5.5, $1.0 \,\text{ml}$), and the absorbance change at 517 nm was measured 30 min later. The reaction solution without DPPH was used as a blank test. Measurements were performed in duplicate, and the concentration required for a 50% reduction (50% scavenging concentration, SC_{50}) of 40 μ M DPPH radical solution was determined graphically.

References and Notes

- Yoshikawa M., Murakami T., Shimada H., Matsuda H., Yamahara J., Tanabe G., Muraoka O., *Tetrahedron Lett.*, 38, 8367–8370 (1997).
- Yoshikawa M., Murakami T., Yashiro K., Matsuda H., Chem. Pharm. Bull., 46, 1339–1340 (1998).
- Yoshikawa M., Nishida N., Shimoda H., Takada M., Kawahara Y., Matsuda H., Yakugaku Zasshi, 121, 371–378 (2001).
- Yoshikawa M., Ninomiya K., Shimoda H., Nishida N., Matsuda H., Biol. Pharm. Bull., 25, 72–76 (2002).
- Yoshikawa M., Shimoda H., Nishida N., Takada M., Matsuda H., J. Nutr., 132, 1819–1824 (2002).
- Yoshikawa M., Morikawa T., Matsuda H., Tanabe G., Muraoka O., Bioorg. Med. Chem., 10, 1547—1554 (2002).
- Matsuda H., Murakami T., Yashiro K., Yamahara J., Yoshikawa M., Chem. Pharm. Bull., 47, 1725—1729 (1999).
- 8) Yoshikawa M., Pongpiriyadacha Y., Kishi A., Kageura T., Wang T., Morikawa T., Matsuda H., *Yakugaku Zasshi*, **123** (2003), in press.
- Morikawa T., Kishi A., Pongpiriyadacha Y., Matsuda H., Yoshikawa M., J. Nat. Prod., 66 (2003), in press.
- 10) The ¹H- and ¹³C-NMR spectra of 1—4 were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homoand hetero-correlation spectroscopy (¹H–¹H, ¹³C–¹H COSY), and HMBC experiments.
- Gunatilaka A. A. L., Dhanabalasingham B., Karunaratne V., Kikuchi T., Tezuka Y., *Tetrahedron*, 49, 10397–10404 (1993).
- White J. D., Shin H., Kim T.-S., Cutshall N. S., J. Am. Chem. Soc., 119, 2404—2419 (1997).
- 13) Blois M. S., Nature (London), 181, 1199-1200 (1958).
- 14) Uchiyama M., Suzuki Y., Fukuzawa K., Yakugaku Zasshi, 88, 678– 683 (1968).
- Yoshikawa M., Harada E., Miki A., Tsukamoto K., Liang S. Q., Yamahara J., Murakami N., Yakugaku Zasshi, 114, 129–133 (1994).
- Matsuda H., Morikawa T., Toguchida I., Park J.-Y., Harima S., Yoshikawa M., *Bioorg. Med. Chem.*, 9, 41–50 (2001).
- 17) Morikawa T., Xu F., Matsuda H., Yoshikawa M., *Heterocycles*, **57**, 1983—1988 (2002).
- Matsuda H., Morikawa T., Ishiwada T., Managi H., Kagawa M., Higashi Y., Yoshikawa M., Chem. Pharm. Bull., 51, 440–443 (2003).