Structures of New Friedelane- and Norfriedelane-Type Triterpenes and Polyacylated Eudesmane-Type Sesquiterpene from *Salacia chinensis* **LINN. (***S. prinoides* **DC., Hippocrateaceae) and Radical Scavenging Activities of Principal Constituents**

Akinobu KISHI, Toshio MORIKAWA, Hisashi MATSUDA, and Masayuki YOSHIKAWA*

Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received April 28, 2003; accepted June 19, 2003

> **Two new friedelane-type triterpenes, salasones D and E, a new norfriedelane-type triterpene, salaquinone B, and a new polyacylated eudesmane-type sesquiterpene, salasol B, were isolated from the stems of** *Salacia chinensis* **LINN. (***S. prinoides* **DC., Hippocrateaceae) collected in Thailand. Their stereostructures were elucidated on the basis of chemical and physicochemical evidence. Some norfriedelane-type triterpene, lignan, and catechin constituents were found to show radical scavenging activity.**

Key words salasone; salaquinone; salasol; antioxidant; *Salacia chinensis*; radical scavenger

Previously, we reported that the extracts of several *Salacia* species such as *Salacia reticulata*, $1-6$ *S. oblonga*,⁷ and *S. chinensis* (synonyms *S. prinoides*),^{8,9)} showed hypoglycemic effects in oral sucrose- and maltose-loaded rats, inhibitory activities against α -glucosidases (*e.g.* sucrase, maltase, and isomaltase) and rat lens aldose reductase, hepatoprotective effect on CCl_4 -induced liver injury, antioxidative activity, and anti-obese activity. As their active constituents, thiosugar sulfonium sulfates named salacinol and kotalanol, friedelanetype triterpenes, eudesmane-type sesquiterpenes, and phenolic compounds were isolated from the extracts. As a continuation of the characterization studies on bioactive constituents of *Salacia* species plants, we have isolated two friedelanetype triterpene, salasones D (**1**) and E (**2**), a norfriedelanetype triterpene, salaquinone B (**3**), and a eudesmane-type sesquiterpene, salasol B (**4**) from the stems of *S. chinensis* collected in Thailand. This paper deals with the isolation and structure elucidation of four new constituents (**1**—**4**) and radical scavenging activity of the principal constituents from *S. chinensis*.

The 80% aqueous methanolic extract from the stems of *S. chinensis* (collected in Phiphun district, Nakhon si thammarat province, Thailand) was partitioned into a mixture of ethyl acetate (EtOAc) and water to furnish the EtOAc-soluble fraction and $H₂O$ -soluble fraction. The EtOAc-soluble fraction was separated by silica gel and octadecyl silica gel (ODS) column chromatography and finally HPLC (ODS) to give salasones D (**1**, 0.0012% from the natural medicine) and E (**2**, 0.0010%), salaquinone B (**3**, 0.0003%), and salasol B (**4**, 0.0014%).

Structures of Salasons D (1) and E (2) Salasone D (**1**) was obtained as a white powder with negative optical rotation $([\alpha]_D^{22} - 19.6^\circ$, CHCl₃). The IR spectrum of 1 showed absorption bands at 3453 and 1717 cm^{-1} ascribable to hydroxyl and carbonyl functions. In the electron impact (EI)-MS of **1**, the molecular ion peak was observed at m/z 458 (M⁺) and the high resolution EI-MS analysis revealed the molecular formula of 1 to be $C_{30}H_{50}O_3$. The ¹H-NMR (pyridine- d_5) and 13 C-NMR (Table 1) spectra of **1**, which were assigned by various NMR experiments,¹⁰⁾ showed signals assignable to seven methyls $\lceil \delta \ 0.80, 1.00, 1.07, 1.09, 1.31, 1.57 \ (3H each, all s,$ 24, 30, 29, 27, 25, 28-H₃), 0.97 (3H, d, J=6.7 Hz, 23-H₃)], a methine and methylene bearing a hydroxyl group δ 4.22 (1H, d, J=7.3 Hz, 15-H), 4.24, 4.89 (1H each, both d, $J=11.6$ Hz, 26-H₂)], and a carbonyl group $[\delta_C 211.9 (3-C)]$ together with ten methylenes (1, 2, 6, 7, 11, 12, 16, 19, 21, 22-C), four methines (4, 8, 10, 18-C), and six quaternary carbons (5, 9, 13, 14, 17, 20-C). The proton and carbon signals in the ¹ H- and 13C-NMR spectra of **1** were superimposable on those of a known friedelane-type triterpene, kokoonol $(1a)$,¹¹⁾ which was isolated from *S. reticulata*, except for the signals due to the 15-hydroxyl group. The planar structure of **1** was elucidated on the basis of homo-correlation spectroscopy $(^1H-¹H COSY)$ and heteronuclear multiple bond connectivity (HMBC) experiments. Namely, the $\mathrm{^{1}H-^{1}H}$ COSY experiment on **1** indicated the presence of seven partial structures shown in bold lines in Fig. 1 (10–1–2-C, 4–23-C, 6–8-C, 11–12-C, 15–16-C, 18–19-C, and 21–22-C). In the HMBC experiment, long-range correlations were observed between the following proton and carbon pairs (4-H and 2, 3, 5, 23-C; 15-H and 14-

∗ To whom correspondence should be addressed. e-mail: shoyaku@mb.kyoto-phu.ac.jp © 2003 Pharmaceutical Society of Japan

Glc: β -D-glucopyranosyl

но

Chart 2

C; 23-H₃ and 3–5-C; 24-H₃ and 4–6, 10-C; 25-H₃ and 8–11-C; 26-H₃ and 8, 13–15-C; 27-H₃ and 12–14, 18-C; 28-H₃ and 16–18, 22-C; 29-H₃ and 19–21, 30-C; 30-H₃ and 19–21, 29-C) as shown in Fig. 1. The above evidence led us to clarify the connectivities of the quaternary carbons and the positions of the carbonyl and hydroxyl groups in **1**. The stereostructure of 1 including the 15α -hydroxyl group was confirmed by nuclear Overhauser enhancement spectroscopy (NOESY) experiment, which showed NOE correlations between the following proton pairs (15-H and 26-H₂, 28-H₃; 18-H and 28, 30-H₃; 23-H₃ and 24-H₃; 24-H₃ and 25-H₃; 25-H₃ and 26-H₂;

 $26-H$ ₂ and $28-H$ ₃; $28-H$ ₃ and $30-H$ ₃). Consequently, the stereostructure of 1 was determined as 3-oxofriedelane- $15\alpha,26$ diol.

Salasone E (**2**) was obtained as a white powder with negative optical rotation ($[\alpha]_D^{23}$ -18.5°, CHCl₃). The IR spectrum of **2** indicated the presence of hydroxyl and carboxyl functions at 3453 and 1734 cm^{-1} . The molecular formula $C_{30}H_{50}O_3$ of **2**, which was the same as that of **1**, was determined from the molecular ion peaks at m/z 458 (M⁺) in EI-MS and by high resolution EI-MS measurements. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra¹⁰ of **2** showed

signals assignable to seven methyls $[\delta\,0.81, 0.95, 0.97, 1.07,$ 1.11, 1.17 (3H each, all s, 24, 29, 30, 25, 27, 28-H₂), 0.91 (3H, d, $J=6.8$ Hz, 23-H₃)], a methylene and a methine bearing an oxygen function $[\delta 4.16 (2H, br s, 26-H_2), 4.29 (1H,$ ddd, $J=2.6$, 10.6, 10.6 Hz, 7-H)], and a carbonyl group δ_c 212.4 (3-C)] together with ten methylenes (1, 2, 6, 11, 12, 15, 16, 19, 21, 22-C), four methines (4, 8, 10, 18-C), and six

Table 1. ¹³C-NMR Data of Salasones D (1) and E (2), Salaquinone B (3), and Salasol B (**4**)

	1 ^(d)	$2^{b)}$	3 ^b		$\mathbf{A}^{(b)}$
$C-1$	22.8	35.6	107.7	$C-1$	69.3
$C-2$	42.7	41.1	141.6	$C-2$	73.9
$C-3$	211.9	212.4	139.5	$C-3$	31.2
$C-4$	57.8	58.1	120.9	$C-4$	33.3
$C-5$	42.4	42.5	125.7	$C-5$	89.3
$C-6$	41.7	50.4	27.8	$C-6$	78.3
$C-7$	22.7	69.2	126.0	$C-7$	48.9
$C-8$	54.4	58.2	139.0	$C-8$	34.4
$C-9$	38.0	38.8	36.2	$C-9$	69.4
$C-10$	59.8	59.3	140.0	$C-10$	54.5
$C-11$	37.1	36.0	33.0	$C-11$	82.6
$C-12$	31.6	29.9	29.4	$C-12$	30.3
$C-13$	41.0	40.3	43.5	$C-13$	26.0
$C-14$	46.8	44.2	58.0	$C-14$	65.7
$C-15$	75.5	27.0	211.4	$C-15$	18.2
$C-16$	48.4	35.5	47.5	$2-BzO-$	
$C-17$	30.9	30.1	49.4	$C-1'$	130.4
$C-18$	42.6	43.3	44.3	$C-2', 6'$	129.6
$C-19$	32.2	21.9	30.7	$C-3', 5'$	128.6
$C-20$	28.4	28.3	40.0	$C-4'$	133.1
$C-21$	36.2	32.4	212.4	$C-7'$	165.4
$C-22$	39.5	39.2	77.8	$9-BzO-$	
$C-23$	7.2	6.9	11.6	$C-1$ "	129.6
$C-24$	14.4	15.9		$C-2", 6"$	129.7
$C-25$	16.9	18.8	33.4	$C-3'', 5''$	128.6
$C-26$	65.8	64.2	25.6	$C-4"$	133.3
$C-27$	19.7	20.1	21.4	$C-7''$	167.0
$C-28$	32.7	31.2	24.6	$6-ACO-$	170.0
$C-29$	35.7	34.7			21.3
$C-30$	31.0	31.1	14.8	$14 - AcO-$	170.8
					21.2

Measured in *a*) pyridine- d_5 and *b*) CDCl₃ at 125 MHz.

quaternary carbons (5, 9, 13, 14, 17, 20-C). The proton and carbon signals in the ¹ H- and 13C-NMR spectra of **2** resembled those of **1a**, except for the signals ascribable to the 7-hydroxyl group. As shown in Fig. 1, the $\mathrm{^{1}H-^{1}H}$ COSY experiment on **2** showed the presence of the similar functional structures to those of **1**, except for the position of a secondary hydroxyl group. In the HMBC experiment of **2**, longrange correlations were observed between the following proton and carbon pairs (4-H and 2, 3, 5, 23-C; 23-H₃ and 3-5-C; 24-H₃ and 4–6, 10-C; 25-H₃ and 8–11-C; 26-H₃ and 8, 13–15-C; 27-H₃ and 12–14, 18-C; 28-H₃ and 16–18, 22-C; 29-H₃ and 19–21, 30-C; 30-H₃ and 19–21, 29-C) as shown in Fig. 1. The above evidence indicated the positions of the 3 carbonyl and 7-hydroxyl functions in the fridelane skeleton. Furthermore, the stereostructure of the 7α -hydroxyl group in **2** was determined by NOESY experiment, which showed the NOE correlations between the following proton pairs (7-H and 24, 25-H₃, 26-H₂; 18-H and 28, 30-H₃; 23-H₃ and 24-H₃; 24-H₃ and 25-H₃; 25-H₃ and 26-H₂; 26-H₂ and 28-H₃; 28-H₃ and $30-H_3$). On the basis of this evidence, the stereostructure of 2 was confirmed as 3-oxofriedelane-7 α , 26-diol.

Structure of Salaquinone B (3) Salaquinone B (**3**) was obtained as an amorphous powder with positive optical rotation $([\alpha]_D^{26} + 69.4^\circ$, CHCl₃). The IR spectrum of **3** showed absorption bands at 3432 and 1709 cm^{-1} ascribable to hydroxyl and carbonyl functions. In the UV spectrum of **3**, absorption maxima were observed at 223 nm ($log \varepsilon$ 3.9), 246 nm (3.7), and 416 nm (3.7). The molecular formula $C_{28}H_{36}O_5$ of 3 was characterized from the EI-MS and by high resolution EI-MS measurement. The 1 H-NMR (CDCl₃) and 13 C-NMR (Table 1) spectra¹⁰⁾ of **3** showed signals assignable to six methyls $\lceil \delta \rceil 1.01$, 1.05, 1.27, 1.69, 2.16 (3H each, all s, 27, 28, 25, 26, 23-H₃), 1.11 (3H, d, J=8.4 Hz, 30-H₃)], a methine bearing an oxygen function $[\delta 4.42$ (1H, br s, 22-H)], two olefins $[\delta 6.31 \text{ (1H, d, } J=5.1 \text{ Hz, } 7\text{-H}), 6.71 \text{ (1H, s, } 1\text{-}$ H)], and two carbonyl groups $\lceil \delta_C \rceil$ 211.4 (15-C), 212.4 (21-C)] together with five methylenes (6, 11, 12, 16, 19-C), two methines (18, 20-C), and ten quaternary carbons (2–5, 8–10, 13, 14, 17-C). The proton and carbon signals in the 1 H- and 13C-NMR spectra of **3** were very similar to those of a known

29-norfriedelane-type triterpene, regeol A (**20**), except for the signals due to the 15-carbonyl group. As shown in Fig. 1, the ${}^{1}H-{}^{1}H$ COSY experiment of 3 indicated the presence of three partial structures shown in bold lines (6–7-C, 11–12-C, 18–20–30-C). In the HMBC experiment of **3**, long-range correlations were observed between the following proton and carbon pairs (1-H and 3, 5, 9-C; 6-H₂ and 5, 7-C; 7-H and 5, 6, 9, 14-C; 16-H₂ and 15-C; 22-H and 21-C; 23-H₃ and 3-5-C; 25-H₃ and 8–11-C; 26-H₃ and 8, 13–15-C; 27-H₃ and 12–14, 18-C; 28-H₃ and 16–18, 22-C; 30-H₃ and 19–21-C), so that the positions of the carbonyl and olefin functions and quaternary carbons of **3** were clarified as shown in Fig. 2. The stereostructure of 3 including the 22β -hydroxyl group was confirmed by NOESY experiment. Namely, the NOE correlations of **3** were observed between the following proton pairs (1-H and 25-H₃; 16 α -H and 22-H; 16 β -H and 26-H₃; 18-H and 28, 30-H₃; 20-H and 22-H; 25-H₃ and 26-H₃). The above mentioned evidence led us to characterize the stereostructure of salaquinone B as **3**.

Structure of Salasol B (4) Salasol B (**4**) was isolated as a white powder with positive optical rotation ($[\alpha]_D^{26}$ +59.0°, CHCl₃). The molecular formula $C_{33}H_{38}O_{10}$ of 4 was determined from the molecular ion peak observed in the EI-MS and by high resolution EI-MS measurement. The IR spectrum of **4** showed absorption bands at 3475, 1744, 1719, 1368, 1244, and 1099 cm^{-1} ascribable to hydroxyl, carbonyl, and aromatic functions. In the UV spectrum of **4**, absorption maxima were observed at 230 nm (log ε 4.2) and 273 nm (3.4) suggestive of a benzoyl group. The $\mathrm{^{1}H\text{-}NMR}$ (CDCl₃) and 13 C-NMR (Table 1)¹⁰⁾ spectra of 4 indicated the presence of three methyls $\lceil \delta \ 1.21 \ (3H, d, J=7.4 \ Hz, 15-H_3), 1.45, 1.52 \}$ (3H each, both s, 12, 13-H₃)], two acetyl groups $\lceil \delta \rceil$ 2.07, 2.19 (3H each, both s, 6, 14-OAc)], a methylene and four methine bearing an oxygen function $[\delta 4.50, 5.18$ (1H each, both d, *J*=12.5 Hz, 14-H₂), 4.85 (1H, br s, 1-H), 5.52 (1H, d, *J*=7.4 Hz, 9-H), 5.61 (1H, br s, 2-H), 5.91 (1H, s, 6-H)], and two benzoyl groups $\lceil \delta \rceil$ 7.46, 7.47 (2H each, both dd-like, $3', 5', 3'', 5''$ -H), 7.56 (2H, t-like, 4', 4"-H), 8.08 (2H, d, *J*=7.1 Hz, 2', 6'-H), 8.09 (2H, d, *J*=7.3 Hz, 2", 6"-H)] together with two methylenes (3, 8-C), two methines (4, 7-C), and three quaternary carbons (5, 10, 11-C). The alkaline hydrolysis of **4** with 5% aqueous potasium hydroxide (KOH) in 1,4-dioxane yielded a known eudesmane-type sesquiterpene, 3,4-dideoxymaytol $(4a)$,¹²⁾ which was also obtained by the alkaline hydrolysis of celahin C $(22).^{9}$ The H ¹H $-$ ¹H COSY experiment on **4** indicated the presence of four partial structure written in bold lines, as shown in Fig. 2. The positions of acetyl and benzoyl groups in **4** were clarified by HMBC experiment. Namely, long-range correlations in the HMBC experiment were observed between the following protons and carbons of 4 (2-H and $7'$ -C; 6-H and 5 -C, 6-OAc; 9-H and 10, 7"-C; 12-H₃ and 7, 11, 13-C; 13-H₃ and 7, 11, 12-C; 14- $H₂$ and 1, 5, 9, 10-C, 14-OAc). Finally, comparison of the spectral data for **4** with those for the related sesquiterpenes led us to elucidate the stereostructure of **4**.

DPPH Radical Scavenging Activities of the Constituents from *S. chinensis* The DPPH radical, which is stable and shows an absorption at 517 nm, has been used as a convenient tool for the radical scavenge assay, and this assay is independent of any enzyme activity.^{13,14)} When this compound accepts an electron or hydrogen radical to become a

Table 2. DPPH Radical Scavenging Activity of Chemical Constituents from *Salacia chinensis*

	DPPH radical $SC_{50} (\mu M)^{a}$
Friedelane Type Triterpenes	
Maytenoic acid (5)	>40
Friedelane-3-one-29-ol (6)	>40
15α -Hydroxyfriedelane-3-one (7)	>40
Wilfolic acid $C(8)$	>40
Salaspermic acid (9)	>40
Orthosphenic acid (10)	>40
Oleanane Type Triterpenes	
$3\beta,22\beta$ -Dihydroxyolean-12-en-29-oic acid (11)	>40
Maytenfolic acid (12)	>40
β -Amyrin (13)	>40
22α -Hydroxy-3-oxoolean-12-en-29-oic acid (14)	>40
β -Amyrenone (15)	>40
Ursan Type Triterpenes	
Tripterygic acid A (16)	>40
Demethylregelin (17)	>40
Norfriedelane Type Triterpenes	
Tingenone (18)	13
Tingenine B (19)	8.5
Regeol A (20)	10
Triptocalline A (21)	>40
Agarofuran Type Sesquiterpenes	
Celahin C (22)	>40
Others	
Mangiferin (23)	5.9
$(+)$ -Lyoniresinol (24)	6.6
$(+)$ -Isolariciresinol (25)	12
$(+)$ -8-Methoxyisolariciresinol (26)	15
$(-)$ -Epigallocatechin (27)	2.5
$(-)$ -Epicatechin (28)	4.1
$(+)$ -Catechin (29)	5.9

a) Concentration required for 50% reduction of 40 μ M DPPH radical.

Fig. 2. H–H COSY and HMBC Correlations of **4**

more stable compound, the absorption vanishes. Previously, we reported the DPPH radical and/or superoxide anion radical $(°O₂)$ scavenging activities of several natural medicines, such as the fruit hulls of *Garcinia mangostana*,¹⁵⁾ the rhizomes of *Rheum undulatum*, 16) the whole plants of *Cyperus* longus,¹⁷⁾ and the flowers of *Prunus mume*.¹⁸⁾ In our continuing studies on antioxidative principles from natural medicines, DPPH radical scavenging activities of the aqueous methanolic extract of *S. chinensis* and isolated constituents were examined. As a result, the aqueous methanolic extract of *S. chinensis* $(SC_{50} = 13 \mu g/ml)$ and following ten constituents were found to show scavenging activities as shown in Table 2, norfriedelane-type triterpenes: tigenone (**18**, $SC_{50} = 13 \mu M$, tingenine B (19, 8.5 μ M), and regeol A (20, 10 μ m); xanthone: mangiferin (23, 5.9 μ m); lignans: (+)-lyoniresinol (24, 6.6 μ M), (+)-isolariciresinol (25, 12 μ M), and $(+)$ -8-methoxyisolariciresinol (26, 15 μ M); and flavan-3-ols: $(-)$ -epigallocatechin (27, 2.5 μ M), $(-)$ -epicatechin (28, 4.1) μ _M), and (+)-catechin (29, 5.9 μ _M).

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5$ cm); UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GCMATE mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz) spectrometer; ¹³C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; HPLC detector, Shimadzu RID-6A refractive index detector.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, pre-coated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reversed phase); reversed-phase HPTLC, pre-coated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); detection was achieved by spraying with 1% Ce(SO₄)₂–10% aqueous H₂SO₄ followed by heating.

Extraction and Isolation of Salasones D (1) and E (2), Salaquinone B (3), and Salasol B (4) from the Stems of *Salacia chinensis* **L.** The dried stems of *S. chinensis* (5 kg) were crushed and extracted three times with 80% aqueous methanol under reflux. Evaporation of the solvent under reduced pressure provided the 80% aqueous methanolic extract (551 g, 11.0%), and it (538 g) was partitioned into the EtOAc–H₂O $(1:1)$ mixture. Removal of the solvent under reduced pressure from the EtOAc- and watersoluble portion yielded $66.6 g$ (1.4%) and $471.4 g$ (9.6%) of residue, respectively. The EtOAc-soluble portion (58.7 g) was subjected to normal-phase silica gel column chromatography [1.8 kg, *n*-hexane–EtOAc (10 : 1→5:1→ $2:1\rightarrow 1:1$, v/v) \rightarrow CHCl₃–MeOH–H₂O (10:3:0.5, v/v) \rightarrow MeOH] to give nine fractions {Fr. 1 [squalene (596 mg, 0.014%)], Fr. 2 (1.2 g), Fr. 3 (3.6 g), Fr. 4 (3.4 g), Fr. 5 (4.5 g), Fr. 6 (2.8 g), Fr. 7 (6.3 g), Fr. 8 (17.6 g), Fr. 9 $(18.7 g)$. Fraction 5 $(3.0 g)$ was further separated by HPLC [YMC-Pack ODS-A (YMC Co., Ltd., 250×20 mm i.d.), MeOH-1% aqueous AcOH (95:5, v/v)] to give ten fractions [Fr. 5-1 (146 mg), Fr. 5-2 (318 mg), Fr. 5-3 (298 mg), Fr. 5-4 (273 mg), Fr. 5-5 (238 mg), Fr. 5-6 (206 mg), Fr. 5-7 (387 mg), Fr. 5-8 (173 mg), Fr. 5-9 (164 mg), Fr. 5-10 (157 mg)]. Fraction 5-2 (318 mg) was purified by HPLC [MeOH–H₂O $(75:25, v/v)$] to give salasol B $(4,$ 38 mg, 0.0014%). Fraction 5-8 (173 mg) was purified by normal-phase silica gel column chromatography [i) 17 g, CHCl₃–MeOH (100 : 1, v/v) \rightarrow MeOH, ii) 10 g, benzene–acetone (40 : 1→20 : 1→10 : 1, v/v) → MeOH] to give salasones D (**1**, 34 mg, 0.0012%) and E (2, 27 mg, 0.0010%) together with salasone B $(14 \text{ mg}, 0.0005\%)$.⁹⁾ Fraction 7 (6.0 g) was further separated by reversed-phase silica gel column chromatography [180 g, MeOH-H₂O $(40:60 \rightarrow 50:50 \rightarrow 70:30 \rightarrow 80:20 \rightarrow 90:10, v/v) \rightarrow MeOH$] to give five fractions [Fr. 7-1 (1.8 g), Fr. 7-2 (1.5 g), Fr. 7-3 (1.0 g), Fr. 7-4 (703 mg), Fr. 7-5 (924 mg)]. Fraction 7-2 (1.5 g) was purified by normal-phase silica gel column chromatography [75 g, CHCl₃–MeOH (100 : 1, v/v) \rightarrow MeOH] and HPLC [i) MeOH-1% aqueous AcOH (75 : 25, v/v), ii) CH₃CN-H₂O (55 : 45, v/v)] to give salaquinone B (**3**, 12 mg, 0.0003%) together with salaquinone A (24 mg, 0.0006%)⁹⁾ and salasol A (26 mg).⁹⁾

Salasone D (1): A white powder, $[\alpha]_D^{22} - 19.6^{\circ}$ (*c*=0.50, CHCl₃). Highresolution EI-MS: Calcd for $C_{30}H_{50}O_3$ (M⁺): 458.3760. Found: 458.3773. IR (KBr): 3453, 2930, 1717, 1458, 1391 cm⁻¹. ¹H-NMR (500 MHz, pyridine*d*5) d: 0.80, 1.00, 1.07, 1.09, 1.31, 1.57 (3H each, all s, 24, 30, 29, 27, 25, 28-H₃), 0.97 (3H, d, J=6.7 Hz, 23-H₃), 1.73 (1H, dd-like, 18-H), [1.80 (1H, br d, $J=ca$. 16 Hz), 2.22 (1H, dd, $J=7.3$, 15.5 Hz), 16-H₂], 2.25 (1H, m, 4-H), 4.22 (1H, d, J=7.3 Hz, 15-H), 4.24, 4.89 (1H each, both d, J=11.6 Hz, 26-H₂). ¹³C-NMR (pyridine- d_5) δ_c : given in Table 1. EI-MS: m/z 458 (M⁺, 7), 109 (100).

Salasone E (2): A white powder, $[\alpha]_D^{23} - 18.5^{\circ}$ (*c*=0.50, CHCl₃). Highresolution EI-MS: Calcd for $C_{30}H_{50}O_3$ (M⁺): 458.3760. Found: 458.3789. IR (KBr): 3453, 2924, 1734, 1458, 1390 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 0.81, 0.95, 0.97, 1.07, 1.11, 1.17 (3H each, all s, 24, 29, 30, 25, 27, 28-H₃), 0.91 (3H, d, J=6.8 Hz, 23-H₃), 1.42 (1H, m, 18-H), 2.31 (1H, q, J=6.8 Hz, 4-H), 4.16 (2H, br s, 26-H₂), 4.29 (1H, ddd, J=2.6, 10.6, 10.6 Hz, 7-H). ¹³C-NMR (CDCl₃) δ_c : given in Table 1. EI-MS: m/z 458 (M⁺, 8), 109 (100).

Salaquinone B (3): An amorphous powder, $[\alpha]_D^{26}$ +69.4° (*c*=0.20, CHCl₃). High-resolution EI-MS: Calcd for $C_{28}H_{36}O_5$ (M⁺): 452.2563. Found: 452.2547. UV [MeOH, nm ($log \epsilon$)]: 223 (3.9), 246 (3.7), 416 (3.7). IR (KBr): 3432, 2924, 1709, 1595, 1439, 1381 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 1.01, 1.05, 1.27, 1.69, 2.16 (3H each, all s, 27, 28, 25, 26, 23-H₃), 1.11 (3H, d, $J=8.4$ Hz, 30-H₃), 2.22 (1H, m, 18-H), 2.64 (1H, m, 20-H), 2.75, 2.87 (1H each, both d, $J=15.0$ Hz, 16-H₂), [3.00 (1H, br d, $J=ca$. 20 Hz), 3.41 (dd, J=5.1, 20.1 Hz), 6-H₂], 4.42 (1H, br s, 22-H), 6.31 (1H, d, $J=5.1$ Hz, 7-H), 6.71 (1H, s, 1-H). ¹³C-NMR (CDCl₃) δ_c : given in Table 1. EI-MS: m/z 452 (M⁺, 27), 57 (100).

Salasol B (4): A white powder, $[\alpha]_D^{26} + 59.0^{\circ}$ (*c*=0.10, CHCl₃). High-resolution EI-MS: Calcd for $C_{33}H_{38}O_{10}$ (M⁺): 594.2464. Found: 594.2468. UV [MeOH, nm $(\log \varepsilon)$]: 230 (4.2), 273 (3.4). IR (KBr): 3475, 3025, 2930, 1744, 1719, 1368, 1271, 1244, 1099, 712 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 1.21 (3H, d, J=7.4 Hz, 15-H₃), 1.45, 1.52 (3H each, both s, 12, 13-H₃), $[1.99 \text{ (1H, brd, } J=ca. 15 \text{ Hz})$, 2.46 (1H, ddd-like), 3-H₂], 2.07, 2.19 (3H) each, both s, 6, 14-OAc), 2.27 (1H, ddd-like, 7-H), [2.32 (1H, dd, J=3.1, 16.2 Hz), 2.58 (1H, ddd, J=3.6, 7.4, 16.2 Hz), 8-H₂], 2.40 (1H, m, 4-H), 4.50, 5.18 (1H each, both d, $J=12.5$ Hz, $14-H₂$), 4.85 (1H, br s, 1-H), 5.52 (1H, d, J = 7.4 Hz, 9-H), 5.61 (1H, br s, 2-H), 5.91 (1H, s, 6-H), 7.46, 7.47 (2H each, both dd-like, 3', 5'-, 3", 5"-H), 7.56 (2H, t-like, 4', 4"-H), 8.08 (2H, d, J=7.1 Hz, 2', 6'-H), 8.09 (2H, d, J=7.3 Hz, 2", 6"-H). ¹³C-NMR (CDCl₃) δ_c : given in Table 1. EI-MS: m/z 594 (M⁺, 2), 105 (100).

Alkaline Hydrolysis of Salasol B (4) A solution of **4** (4.9 mg) in 5% aqueous KOH–1,4-dioxane (2 : 1, v/v, 1.5 ml) was stirred at room temperature (25 °C) for 4 h. The reaction mixture was neutralized with Dowex HCR $W2$ (H⁺ form) and the resin was removed by filtration. After removal of the solvent from the filtrate *in vacuo*, the residue was separated by normal-phase silica gel column chromatography [500 mg, CHCl₃–MeOH–H₂O (30 : 3 : 1, lower layer, v/v)] to give 3,4-dideoxymaytol (**4a**, 2.3 mg, 92%). Compound **4a** was identified by comparison of physical data $([\alpha]_D$, IR, ¹H-NMR, MS) with reported values.^{9,12)}

Bioassay. DPPH Radical Scavenging Activity The free radical scavenging activity of the constituents was assessed using the DPPH radical.^{13,14)} An ethanol solution of DPPH (100 μ M, 1.0 ml) was mixed with different concentrations of each test compound $(0-200 \mu)$, 0.5 ml) and 0.1 M acetate buffer (pH 5.5, 1.0 ml), and the absorbance change at 517 nm was measured 30 min later. The reaction solution without DPPH was used as a blank test. Measurements were performed in duplicate, and the concentration required for a 50% reduction (50% scavenging concentration, SC_{50}) of 40 μ M DPPH radical solution was determined graphically.

References and Notes

- 1) Yoshikawa M., Murakami T., Shimada H., Matsuda H., Yamahara J., Tanabe G., Muraoka O., *Tetrahedron Lett.*, **38**, 8367—8370 (1997).
- 2) Yoshikawa M., Murakami T., Yashiro K., Matsuda H., *Chem. Pharm. Bull.*, **46**, 1339—1340 (1998).
- 3) Yoshikawa M., Nishida N., Shimoda H., Takada M., Kawahara Y., Matsuda H., *Yakugaku Zasshi*, **121**, 371—378 (2001).
- 4) Yoshikawa M., Ninomiya K., Shimoda H., Nishida N., Matsuda H., *Biol. Pharm. Bull.*, **25**, 72—76 (2002).
- 5) Yoshikawa M., Shimoda H., Nishida N., Takada M., Matsuda H., *J. Nutr.*, **132**, 1819—1824 (2002).
- 6) Yoshikawa M., Morikawa T., Matsuda H., Tanabe G., Muraoka O., *Bioorg. Med. Chem.*, **10**, 1547—1554 (2002).
- 7) Matsuda H., Murakami T., Yashiro K., Yamahara J., Yoshikawa M., *Chem. Pharm. Bull.*, **47**, 1725—1729 (1999).
- 8) Yoshikawa M., Pongpiriyadacha Y., Kishi A., Kageura T., Wang T., Morikawa T., Matsuda H., *Yakugaku Zasshi*, **123** (2003), in press.
- 9) Morikawa T., Kishi A., Pongpiriyadacha Y., Matsuda H., Yoshikawa M., *J. Nat. Prod.*, **66** (2003), in press.
- 10) The ¹ H- and 13C-NMR spectra of **1**—**4** were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homoand hetero-correlation spectroscopy $(^1H-^1H, ^{-13}C-^1H$ COSY), and HMBC experiments.
- 11) Gunatilaka A. A. L., Dhanabalasingham B., Karunaratne V., Kikuchi T., Tezuka Y., *Tetrahedron*, **49**, 10397—10404 (1993).
- 12) White J. D., Shin H., Kim T.-S., Cutshall N. S., *J. Am. Chem. Soc.*, **119**, 2404—2419 (1997).
- 13) Blois M. S., *Nature* (London), **181**, 1199—1200 (1958).
- 14) Uchiyama M., Suzuki Y., Fukuzawa K., *Yakugaku Zasshi*, **88**, 678— 683 (1968).
- 15) Yoshikawa M., Harada E., Miki A., Tsukamoto K., Liang S. Q., Yamahara J., Murakami N., *Yakugaku Zasshi*, **114**, 129—133 (1994).
- 16) Matsuda H., Morikawa T., Toguchida I., Park J.-Y., Harima S., Yoshikawa M., *Bioorg. Med. Chem.*, **9**, 41—50 (2001).
- 17) Morikawa T., Xu F., Matsuda H., Yoshikawa M., *Heterocycles*, **57**, 1983—1988 (2002).
- 18) Matsuda H., Morikawa T., Ishiwada T., Managi H., Kagawa M., Higashi Y., Yoshikawa M., *Chem. Pharm. Bull.*, **51**, 440—443 (2003).