Curtisians M—Q: Five Novel *p*-Terphenyl Derivatives from the Mushroom *Paxillus curtisii*

Dang Ngoc Quang,^{*a*} Toshihiro Hashimoto,^{*a*} Makiko Nukada,^{*b*} Isao Yamamoto,^{*b*} Masami Tanaka,^{*a*} and Yoshinori Asakawa^{*,*a*}

^a Faculty of Pharmaceutical Sciences, Tokushima Bunri University; Yamashiro-cho, Tokushima 770–8514, Japan: and ^b Faculty of Food Culture, Kurashiki Sakuyo University; Kurashiki 710–0290, Japan.

Received May 19, 2003; accepted June 23, 2003

Five novel *p*-terphenyl derivatives called curtisians M—Q (1—5) were isolated from the methanolic extract of fruit bodies of the Basidiomycete *Paxillus curtisii*. Their structures were elucidated by two dimensional (2D) NMR, MS, IR, and UV spectroscopy, and chemical reaction. Their antioxidative activities were also investigated.

Key words Paxillus curtisii; curtisian; p-terphenyl

We have been studying the chemical constituents of some Japanese inedible mushrooms and isolated interesting biologically active compounds such as cryptoporic acids A-G from the fungus Cryptoporus volvatus, spiromentins from Paxillus atrotomentosus, etc.^{1,2)} Recently, we have investigated the chemical constituents of some Basidiomycete fungi and isolated *p*-terphenyl derivative series such as thelephantins A— C^{3} and D— H^{4} from *Thelephora aurantiotincta*, curtisians E— H^{5} and I— L^{6} from *Paxillus curtisii* and characterized their structures. Further fractionation of the methanolic extract of the fruit bodies of *P. curtisii* resulted in the isolation of five novel curtisians M-O (1-5). Previously, curtisians A-D with antioxidative activity were also reported from Korean P. curtisii without determination of the stereochemistry of the side chains.⁷⁾ This paper describes the isolation and structural elucidation of the newly isolated terphenyl derivatives (1-5) and their radical-scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH).

Results and Discussion

The methanolic extract of Japanese *P. curtisii* was subjected to Sephadex LH-20 and reverse-phase (C-18) column chromatography, followed by reverse-phase preparative HPLC to afford the five curtisians M-Q (1-5) as described in the Experimental section.

Curtisian M (1) showed a molecular ion peak at m/z 605 corresponding to C₃₀H₃₀O₁₂Na by high resolution (HR)-FAB-MS. Its IR and UV spectra showed the absorption of a hydroxyl (3386 cm^{-1}) , an ester carbonyl (1740 cm^{-1}) , and an aromatic (1612, 1525 cm⁻¹; 263 nm) group. The ¹H-NMR of 1 (Table 1) showed the presence of ortho-coupling aromatic proton signals at δ 6.83 and 7.17 (d, J=8.8 Hz), one methyl signal at δ 1.08 (d, J=6.3 Hz), one methylene, and one methine group. The ¹³C-NMR of 1 (Table 2) exhibited 13 carbon resonances including one acetyl (δ 172.0, 21.1), ester carbonyl (δ 169.9), and phenolic carbons (158.2, 142.7). The signals observed in the ¹³C-NMR spectrum of 1 (Table 2) showed exact overlapping on the basis of free rotation of two phenyl groups, suggesting that this compound has a symmetrical structure.⁷⁾ The correlations between H-3a,b/H-2a,b and H-4a,b in ¹H–¹H correlation spectroscopy (COSY) and longrange correlations between 1) C-1a,b/H-2a,b and H-3a,b; and 2) CH₃CO-/H-3a,b in the heteronuclear multiple bond connectivity (HMBC) spectrum suggest the presence of two 3-

acetoxybutyryl groups in **1**. Comparison of the ¹H–¹H COSY, nuclear Overhauser effect spectroscopy (NOESY), and HMBC spectra of 1 with those of thelephantins $A-H^{3,4}$ indicates the presence of a *p*-terphenyl derivative with two para-substitution groups located at the central aromatic ring. To determine the positions of two 3-acetoxybutyryl groups, 1 was oxidized by di-ammonium cerium(IV) nitrate in acetonitrile to give *para*-benzoquinone 6. The ¹H- and ¹³C-NMR data (Tables 1, 2) of 6 were similar to those of 1 except for the presence of a signal at 179.1 ppm instead of the phenolic carbon at 142.7 ppm and the low-field shift position of H-2a,b (Table 1). The IR and UV spectra of 6 showed absorption at 1671 cm^{-1} and 492 nm, respectively indicating the presence of *para*-benzoquinone in $6^{.6}$ Therefore the locations of two 3-acetoxybutyryl units at the central aromatic ring were determined at C-2' and C-5'. Consequently, the structure of curtisian M (1) was established to be di(3-acetoxybutyric acid), 3',4,4",6'-tetrahydroxy-[1,1':4',1"-terphenyl]-2',5'-diyl ester, as shown in Chart 1.

Curtisian N (2) displayed a molecular ion peak at m/z 519, corresponding to $C_{26}H_{24}O_{10}Na$ by HR-FAB-MS. The ¹H- and ¹³C-NMR spectra data (Tables 1, 2) of 2 resembled those of curtisian M (1), indicating that 2 is also a *p*-terphenyl except for the presence of an acetoxy group ($\delta_{\rm H}$ 1.93; $\delta_{\rm C}$ 20.3, 170.6) in the place of the 3-acetoxybutyryl group at C-5' of central aromatic ring. Thus the structure of curtisian N (2) was determined by two dimensional (2D) NMR (HMBC, NOESY, *etc.*) to be acetic acid, 3',4,4",6'-tetrahydroxy-2'-(3-acetoxy-1-oxobutoxy)-[1,1':4',1"-terphenyl]-5'-yl ester, as shown in Chart 1.

The absolute configuration of the side chains at C-3a,b of both curtisians M (1) and N (2) was established to be *S* by chemical reactions (hydrolysis, methylation, and acetylation of the crude extract) and comparison of the retention times of the reaction product on gas chromatography-mass spectroscopy (GC-MS) equipped with chiral column with authentic (*R*)- and (*S*)-3-acetoxybutyric acid methyl ester.⁶

The molecular formula of curtisian O (3) was determined to be $C_{24}H_{22}O_8$ by HR-FAB-MS. The ¹H- and ¹³C-NMR data of **3** also resembled those of **2** and thelephantin A,³⁾ revealing that **2** was a *p*-terphenyl structure, except for the presence of an *n*-butyryl group instead of the 3-acetoxybutyryl group. NOESY investigation of **3** (Chart 1) showed NOE correlations between 1) H-2, H-6/H-2a and H-4a; 2) H-3, H-5/H-3a;

Chart 1. Important NOE Correlations of Compounds 1-6

and 3) H-2b/ H-2", H-3", H-5", and H-6", indicating that the substitution pattern of *n*-butyryl and acetoxy group was attached to C-2' and C-5' at the central aromatic ring, respectively. Consequently, curtisian O (**3**) was found to be acetic acid, 3',4,4'',6'-tetrahydroxy-2'-(1-oxobutoxy)-[1,1':4',1"terphenyl]-5'-yl ester, as shown in Chart 1.

Curtisian P (4) was related to curtisian O (3) in its spectral data, suggesting that it was also a *p*-terphenyl with the molecular formula $C_{29}H_{24}O_8$. The ¹H-NMR spectrum of 4 (Table 2) showed signals due to two *ortho*-coupling aromatic protons, two methylenes, one acetyl, and one phenyl group. Its ¹H-NMR data were similar to those of **3**, with a notable difference being the presence of a phenylpropionyl group in the place of the butyryl group as evidenced by ¹H–¹H COSY and HMBC spectra. Thus curtisian P (4) was deduced to be phenylpropionic acid, 3',4,4",6'-tetrahydroxy-5'-(acetoxy)[1,1':4',1"-terphenyl]-2'-yl ester, as shown in Chart 1.

Curtisian Q (5) was assigned to have the molecular formula $C_{34}H_{26}O_8$ based on HR-FAB-MS. Examination of ¹H–¹H COSY and HMBC spectra of 5 revealed the presence of a phenylpropionyl group and a benzoyl group in 5. The positions of these functional groups were determined to be C-2' and C-5' at the central aromatic ring, respectively, based on the NOE correlations between 1) H-2a/H-2 and H-6; 2) H-3b, 7b/H-2", H-6", H-3" and H-5" in the NOESY spectrum (Chart 1). Therefore curtisian Q (5) was determined to be phenylpropionic acid, 3',4,4",6'-tetrahydroxy-5'-(benzoyloxy)[1,1':4',1"-terphenyl]-2'-yl ester as, shown in Chart 1.

The free radical-scavenging activity of curtisians M-Q (1-5) was evaluated against the stable free radical DPPH.

Table 1. ¹H-NMR Spectral Data for Compounds **1**—**6** (CD₃OD, 600 MHz)

Position	1	2	3	4	5	6
2,6	7.17 d (8.8)	7.16 d (8.5)	7.17 d (8.8)	7.15 d (8.8)	7.18 d (8.8)	7.15 d (8.8)
3,5	6.83 d (8.8)	6.83 d (8.5)	6.83 d (8.8)	6.82 d (8.8)	6.83 d (8.8)	6.82 d (8.8)
2", 6"	7.17 d (8.8)	7.16 d (8.5)	7.15 d (8.8)	7.15 d (8.8)	7.23 d (8.8)	7.15 d (8.8)
3", 5"	6.83 d (8.8)	6.83 d (8.5)	6.82 d (8.8)	6.82 d (8.8)	6.73 d (8.8)	6.82 d (8.8)
2a	2.62 dd (7.1, 16.5)	2.59 dd (7.1, 16.5)	2.19t (7.1)	2.52 t (7.4)	2.31 t (7.7)	2.82 dd (8.0, 17.3)
	2.45 dd (5.8, 16.5)	2.44 dd (6.0, 16.5)				2.70 dd (5.5, 17.3)
3a	5.03 m	5.03 m	1.46 m	2.71 t (7.4)	2.54t (7.7)	5.09 m
4a	1.08 d (6.3)	1.10 d (6.3)	0.78 t (7.4)	× /	· · · ·	1.15 d (6.3)
5a, 9a	· /			7.08 d (7.1)	6.86 d (8.2)	
6a, 8a				7.23 t (7.4)	7.10t (7.4)	
7a				7.15 overlap	7.07 t (7.4)	
2b	2.62 dd (7.1, 16.5)	1.93 s	1.90 s	1.76 s	· · · ·	2.82 dd (8.0, 17.3)
	2.45 dd (5.8, 16.5)					2.70 dd (5.5, 17.3)
3b	5.03 m				7.86 d (8.5)	5.09 m
4b	1.08 d (6.3)				7.44 t (7.4)	1.15 d (6.3)
5b	· /				7.60t (7.4)	
6b					7.44 t (7.4)	
7b					7.86 d (8.5)	
3a-Ac	1.93 s	1.94 s				1.91 s
3b-Ac	1.93 s					1.91 s

Table 2. ¹³C-NMR Spectral Data for Compounds 1-6 (CD₃OD, 150 MHz)

Position	1	2	3	4	5	6
1, 1″	124.9	124.9	125.0	125.0	124.9	121.7
2,6	132.7	132.6	132.6	132.7	132.7	132.5
3, 5	116.1	116.1	116.0	116.0	116.1	116.1
4, 4″	158.2	158.2	158.2	158.2	158.1	159.6
1', 4'	123.9	123.9	123.8	123.8	124.0	131.7
2', 5'	134.5	134.6	134.8	134.9	134.9	151.3
3', 6'	142.7	142.6	142.6	142.5	142.6	179.1
2", 6"	132.7	132.6	132.6	132.7	132.6	132.5
3", 5"	116.1	116.1	116.0	116.0	116.0	116.1
1a	169.9	169.9	173.1	172.5	172.6	168.2
2a	40.5	40.5	36.4	36.0	36.0	40.4
3a	68.2	68.3	19.2	31.3	31.3	67.9
4a	19.7	19.6	13.8	141.7	141.4	19.6
5a, 9a				129.3	129.0	
6a, 8a				129.5	129.4	
7a				127.3	127.1	
1b	169.9	170.6	170.6	170.6	166.2	168.2
2b	40.5	20.3	20.2	20.1	130.2	40.4
3b	68.2				130.9	67.9
4b	19.7				129.8	19.6
5b					134.9	
6b					129.8	
7b					130.9	
3a-Ac	21.1,	21.1,				21.0,
	172.0	172.1				171.9
3b-Ac	21.1,					21.0,
	172.0					171.9

Their antioxidant activities were defined as the amount of antioxidant necessary to decrease the initial DPPH radical concentration by 50% [IC₅₀ (μ M)] and compared with those of the known antioxidants ascorbic acid, *d*,*l*- α -tocopherol, and BHA. The antioxidative activities of curtisians M—Q (1—5) were almost similar to each other and about two times weaker than that of *d*,*l*- α -tocopherol, as shown in Table 3.

Experimental

General Column chromatography was carried out on silica gel 60 (0.2–0.5 mm, 0.04–0.063 mm, Merck) and Sephadex LH-20 (Amersham

Table 3. Free DPPH Radical-scavenging Activity of Curtisians M—Q (1-5)

Sample	IC ₅₀ (µм)	Authentic sample	$\mathrm{IC}_{50}\left(\mu\mathrm{M} ight)$
Curtisian M (1)	45.9	Ascorbic acid	16.5
Curtisian N (2)	48.8	α -Tocopherol	22.8
Curtisian O (3)	58.7	BHA	31.6
Curtisian P (4)	44.0		
Curtisian Q (5)	43.4		

Pharmacia Biotech, CHCl₃–MeOH, 1:1). Preparative medium-pressure liquid chromatography (MPLC) was performed with a Work-21 pump (Lab-Quatec Co., Ltd., Japan) and a Lobar column (Merck). Preparative HPLC was performed on a Shimadzu liquid chromatograph LC-10AS with RID-6A and SPD-10A detectors using a Waters 5C 18-AR-II column. UV spectra were obtained on a Shimadzu UV-1650PC instrument in MeOH. IR spectra were measured on a JASCO FT/IR-5300 spectrophotometer. Optical rotations were measured on a JASCO DIP-1000 polarimeter with MeOH as solvent. The ¹H- and ¹³C-NMR spectra were recorded on a Varian Unity 600 NMR spectrometer (600 MHz for ¹H and 150 MHz for ¹³C), using CD₃OD as solvent. Chemical shifts are given relative to TMS δ 0.00 as an internal standard (¹H) and δ 49.0 ppm from CD₃OD as standards (¹³C). Mass spectra including HR-MS were recorded on a JEOL JMS AX-500 spectrometer.

Fungal Material Fruit bodies of *P. curtisii* were collected in November 1995 in Kyoto, Japan, and then identified by M. N. A voucher specimen (KSU95111) has been deposited in the Faculty of Food Culture, Kurashiki Sakuyo University, Kurashiki, Japan.

Extraction and Isolation The MeOH extract (1.83 g) of fruit bodies of *P. curtisii* was divided into 5 fractions (fr. 1—5) by Sephadex LH-20 column chromatography. Fraction 2 (550.6 mg) was chromatographed on SiO₂ column using CHCl₃-MeOH-H₂O (25:2.5:0.1) to give four subfractions. Subfraction 2-2 (158.3 mg) was purified by reverse-phase MPLC with the solvent system CH₃CN : H₂O (1:1) and then reverse-phase preparative HPLC with the same solvent system to give curtisian M (1) (4.3 mg), curtisian N (2) (3.7 mg), curtisian O (3) (3.5 mg), curtisian P (4) (8.8 mg), and curtisian Q (5) (5.5 mg).

Curtisian M (1): Grayish solid, $[\alpha]_D^{20} - 8.7^{\circ}$ (c=0.75, CH₃OH). UV λ_{max} (MeOH) (log ε): 212 (4.3), 225 (4.3), 263 (4.2). IR (KBr) cm⁻¹: 3386, 1740, 1612, 1525, 1457, 1376, 1267, 1102, 984. ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. HR-MS (FAB) *m/z*: 605.1622 ([M+Na]⁺, Calcd for C₃₀H₃₀O₁₂Na: 605.1635).

Curtisian N (**2**): Grayish solid, $[\alpha]_D^{20} - 16.2^{\circ}$ (*c*=0.51, CH₃OH). UV λ_{max} (MeOH) (log ε): 210 (4.5), 225 (4.4), 263 (3.3). IR (KBr) cm⁻¹: 3397, 1757, 1612, 1526, 1457, 1373, 1220, 1102, 980. ¹H- and ¹³C-NMR (CD₃OD): see

Tables 1 and 2. HR-MS (FAB) m/z: 519.1242 ([M+Na]⁺, Calcd for $C_{26}H_{24}O_{10}Na$: 519.1267).

Curtisian O (3): Grayish solid, UV λ_{max} (MeOH) (log ε): 208 (4.3), 224 (4.1), 263 (4.0). IR (KBr) cm⁻¹: 3394, 1749, 1613, 1525, 1467, 1369, 1216, 1175, 1105, 980. ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. HR-MS (FAB) *m/z*: 461.1187 ([M+Na]⁺, Calcd for C₂₄H₂₂O₈Na: 461.1212).

Curtisian P (4): Light red-brown solid, UV λ_{max} (MeOH) (log ε): 212 (4.5), 262 (4.3). IR (KBr) cm⁻¹: 3412, 1753, 1612, 1526, 1497, 1456, 1369, 1216, 1110, 980. ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. HR-MS (FAB) *m/z*: 500.1445 (M⁺, Calcd for C₂₉H₂₄O₈: 500.1471).

Curtisian Q (5): Light red-brown solid, UV λ_{max} (MeOH) (log ε): 213 (4.5), 229 (4.5), 262 (4.3). IR (KBr) cm⁻¹: 3430, 1743, 1611, 1525, 1496, 1264, 1174, 1108, 1061, 974. ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. HR-MS (FAB) *m/z*: 562.1664 (M⁺, Calcd for C₃₄H₂₆O₈: 562.1628).

Oxidation of curtisian M (**6**). To a solution of curtisian M (**1**) (3.1 mg) in acatonitrile (2 ml) was added di-ammonium cerium(IV) nitrate (3.6 mg). The reaction mixture was stirred at 5 °C for 20 min and then partitioned between EtOAc and water. The EtOAc layer was evaporated and then subjected to SiO₂ column chromatography using EtOAc as eluent to give compound **6** (2.8 mg). UV λ_{max} (MeOH) (log ε): 210 (4.1), 256 (4.1), 262 (4.1), 492 (3.2). IR (KBr) cm⁻¹: 3340, 1772, 1735, 1671, 1608, 1514, 1441, 1269, 1175, 978. ¹H- and ¹³C-NMR (CD₃OD): see Tables 1 and 2. HR-MS (FAB) *m/z*: 621.1392 ([M+2+K]⁺, Calcd for C₃₀H₃₀O₁₂K: 621.1374).

DPPH free radical-scavenging activity. The free radical-scavenging activity of curtisians M—Q (1—5) was measured using the DPPH method.⁸⁾ Curtisians, BHA, α -tocopherol, and ascorbic acid were dissolved in ethanol at different concentrations (100, 50, 10, 5, 1 μ g/ml) and mixed with DPPH (180 μ l). After incubation at room temperature for 20 min, absorbance at 517 nm was measured with a Spectra Max 340 PC and the IC₅₀ values were calculated.

Acknowledgements The authors thank Miss Y. Okamoto (TBU, Japan) for measurement of mass spectra.

References

- Steven M. C., Russell J. M., "Bioactive Natural Products," CRC Press, Boca Raton, FL, 1993, pp. 333—347.
- 2) Hashimoto T., Asakawa Y., Heterocycles, 47, 1067-1110 (1998).
- Quang D. N., Hashimoto T., Nukada M., Yamamoto Y., Hitaka Y., Tanaka M., Asakawa Y., *Phytochemistry*, 62, 109–113 (2003).
- Quang D. N., Hashimoto T., Nukada M., Yamamoto Y., Hitaka Y., Tanaka M., Asakawa Y., *Phytochemistry*, 63, 919–924 (2003).
- 5) Quang D. N., Hashimoto T., Nukada M., Yamamoto Y., Tanaka M., Asakawa Y., *Phytochemistry*, (2003) in press.
- Quang D. N., Hashimoto T., Nukada M., Yamamoto Y., Tanaka M., Asakawa Y., *Planta Med.*, (2003) in press.
- 7) Yun B. S., Lee I. K., Kim J. P., Yoo I. D., *J. Antibiot.*, **53**, 114–122 (2000).
- 8) Blois M. S., Nature (London), 181, 1191-1200 (1958).