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Two new tetranor-cycloartane glycosides (1, 2) were isolated
from Cimicifuga Rhizome. Their structures were determined by
spectroscopic analysis. These compounds suggested the exis-
tence of a biogenetic pathway into C-23 lactone-type cycloar-
tane glycosides.
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Our study of the chemical constituents in Ranunculaceous
plants resulted in the isolation of two new tetranor-cycloar-
tane glycosides (1, 2), together with cimicifugoside (0.085%)1)

and actein (0.008%)1) from Cimicifuga Rhizome. This paper
describes the structural elucidation of the tetranor-cycloar-
tanes based on two dimensional (2D) NMR spectroscopic
analysis and hydrolysis, and the biogenetic pathway into C-
23 lactone-type cycloartane glycosides from cimicifugoside
and actein. The CHCl3 fraction of the MeOH extract was
separated by MCI gel CHP20P, Sephadex-LH20 and silica
gel column chromatographies and, finally, HPLC to give two
compounds 1 (0.0004%) and 2 (0.0002%).

Compound (1) was obtained as a white powder, [a]D

275.0° (MeOH). The molecular formula of 1 was deter-
mined as C33H50O9 by high resolution (HR)-FAB-MS show-
ing a [C33H50O9Na]1 ion peak at m/z 613.3348. One cyclo-
propane methylene at d 0.21 (d, J54.3 Hz) and 0.58 (d,
J54.3 Hz), four quaternary methyls at d 0.86, 1.02, 1.25 and
1.33, a secondary methyl at d 0.98 (J56.1 Hz), an acetyl
methyl at d 2.14 and an anomeric proton at d 4.86 (d,
J57.3 Hz) on the 1H-NMR spectrum of 1 were very similar
to those of actein except for the side chain. A comparative
study of the 13C-NMR spectrum of 1 with that of actein indi-
cated that 1 was a tetranor-cycloartan 3-O-b-D-xyloside with
an acetoxyl group at C-12, resulting from a loss of four car-
bons, C-24, C-25, C-26 and C-27 of actein. On acid hydroly-
sis (refluxed with 2 N hydrochloric acid for 1 h), 1 afforded D-
xylose, the structure of which was confirmed by the 1H-NMR
coupling pattern and optical rotation using chiral detection in

the HPLC analysis, together with several unidentified artifi-
cial sapogenols. The structural assignment was achieved by
1H–1H correlation spectroscopy (COSY), 1H-detected het-
eronuclear multiple quantum coherence (HMQC) and het-
eronuclear multiple bond connectivity (HMBC) experiments.
The 1H–1H COSY and HMBC led us to the plane structure of
1 as an 12-acetoxy-tetranor-cycloartan 3-O-xyloside. The
long-range correlation cross-peaks between an acetyl methyl
proton (d 2.14) and an acetyl carbon (d 170.5); H-12 (d
5.08) and an acetyl carbon (d 170.5); H-16 (d 4.81) and C-
23 (d 173.5) resulted in the acetoxyl group at C-12 and the
six-membered lactone ring between C-23 and C-16. The nu-
clear Overhauser effect (NOE) correlations, H-29/H-3 and
H-5, H-30/H-19, H-19/H-8 and H-18, H-18/H-8, H-15b and
H-20, H-17/H-12 and H-16, H-21/H-17 and H-22a , H-28/H-
12, H-15a and H-17 and H-15a /H-16 in the NOESY and
NOEDS spectrum, suggested 3S, 12R and 16S configura-
tions. From the above evidence, the structure of 1 was deter-
mined to be 12b-acetoxy-3b-hydroxy-24,25,26,27-tetranor-
cycloartan-23,16b-olide 3-O-b-D-xylopyranoside.

Compound (2) was obtained as a white powder, [a]D

2134.9° (MeOH). The molecular formula of 2 was deter-
mined as C33H48O9 by HR-FAB-MS showing a [C33H48O9Na]1

ion peak at m/z 611.3188. The 1H-NMR spectrum of 2 and 1
were almost identical, with the appearance of an olefinic pro-
ton signal at d 5.12. In the 13C-NMR data of 2, signals due to
the aglycon moiety, except for the signals of the A, B and C
rings, and the sugar moiety were in good agreement with
those of 1. The above evidence indicated that 2 was a 7-en
analogous of 1. Furthermore, in the HMBC, the methyl pro-
ton signal at d 1.06 (H-28) showed long-range correlation
with d 147.2 (C-8). The coupling patterns and constants of
the H-3 (dd, J54.0, 11.6 Hz), the H-12 (dd, J53.8, 9.2 Hz)
and the H-16 (ddd, J53.9, 8.1, 8.5 Hz) suggested 3S, 12R
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and 16S configurations, respectively. Consequently, the struc-
ture of 2 was determined to be 12b-acetoxy-3b-hydroxy-
24,25,26,27-tetranor-cycloart-7-en-23,16b-olide 3-O-b-D-xy-
lopyranoside.

Actein and cimicifugoside were stable in MeOH at 50 °C
for 1 h, which had nothing to form artifacts. Firstly, MCI gel
CHP20P column chromatography with MeOH–H2O of the
CHCl3 fraction furnished tetranor-cycloartan-type glycosides
(1, 2) and 24,26-oxygenated cycloartan-type glycosides
(actein and cimicifugoside) in the separate fractions. Com-
pounds 1 and 2 were obtained on treatment of actein and
cimicifugoside with 1% hydrochloric acid, together with sev-
eral unidentified artificial sapogenols, respectively. Accord-
ingly, compounds 1 and 2 might be biosynthetically derived
from genuine glycosides of the 24,26-oxygenated cycloartan-
type such as actein and cimicifugoside through Chart 1. 
A similar biogenetic pathway from 23,26-oxygenated
spirostane-type glycosides to C-22 lactone-type glycosides
has been proposed by Nafady et al.4)
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