Prenylated Xanthones from Garcinia xanthochymus

Wisinee Chanmahasathien,^{*a*} Yushan Li,^{*a*} Masayuki Satake,^{*b*} Yasukatsu Oshima,^{*b*} Masami Ishibashi,^{*c*} Nijsiri Ruangrungsi,^{*d*} and Yasushi Ohizumi^{*,*a*}

^a Graduate School of Pharmaceutical Sciences, Tohoku University; Aoba, Aramaki, Aoba-ku, Sendai 980–8578, Japan: ^b Graduate School of Life Sciences, Tohoku University; 1–1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981–8555, Japan: ^c Graduate School of Pharmaceutical Sciences, Chiba University; Yayoi-cho, Inage-ku, Chiba 263–8522, Japan: and ^d Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University; Bangkok 10330, Thailand. Received June 30, 2003; accepted August 13, 2003

A new prenylated xanthone, 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (1), was isolated from the wood of *Garcinia xanthochymus* together with a known xanthone, garciniaxanthone E (2). Their structures were determined by spectroscopic analysis. Compounds 1 (3 μ M) and 2 (10 μ M) elicited marked enhancement of nerve growth factor-mediated neurite outgrowth in PC12D cells.

Key words Garcinia xanthochymus; Guttiferae; xanthone; nerve growth factor (NGF)-potentiating activity; PC12D cell

The medicinal plants of the genus Garcinia, which belongs to the family Guttiferae, are known to be rich in prenylated xanthones.¹⁾ Xanthone constituents have been reported to possess several biological activities, such as antibacterial activity,²⁾ antimalarial activity,³⁾ cytotoxicity,⁴⁾ and inhibition of cyclooxygenase and prostaglandin E2.5 As part of our search for natural products that possess nerve growth factor (NGF)-potentiating activity or neurotrophic activity from medicinal plants, 6-8) we found that the methanol extract of G. xanthochymus significantly enhanced NGF-mediated neurite outgrowth in PC12D cells. The extract was partitioned into EtOAc, n-BuOH, and H₂O fractions. The EtOAc-soluble residue was chromatographed by a series of bioassay-directed chromatographic separations including silica gel and Sephadex LH-20 column chromatography, and reverse-phase semipreparative HPLC to yield 1,3,5,6-tetrahydroxy-4,7,8tri(3-methyl-2-butenyl)xanthone (1, 0.0016%) and garciniaxanthone E (2, 0.0025%).

Compound 1 was shown to have the molecular formula $C_{28}H_{32}O_6$ by high-resolution electron impact mass spectrometry (HR-EI-MS) measurement (m/z 464.2176, [M⁺], Δ -2.3 mmu). The IR spectrum exhibited strong bands due to the phenolic hydroxyl $(3450 \,\mathrm{cm}^{-1})$ and chelated carbonyl (1645 cm⁻¹) group. The UV absorptions (MeOH) at λ_{max} 256 and 331 nm indicated 1 to be a hydroxyl xanthone derivative. ¹H- and ¹³C-NMR data (Table 1), aided by distortionless enhancement by polarization transfer (DEPT) and ¹H-detected heteronuclear multiple quantum coherence (HMQC) experiments, disclosed the presence of a carbonyl, $14 sp^2$ quaternary carbons (six of which were oxygen bearing), four sp^2 methine, three sp^3 methylene, and six methyl groups. The initial analysis of the NMR spectral data of 1 indicated that the molecule consisted of a xanthone skeleton and three prenyl moieties.

The ¹H-NMR spectrum of **1** revealed the proton signals of three prenyl moieties, the first one of which has a pair of *gem*-dimethyl signals at δ 1.83 (3H, s, H₃-5') and 1.66 (3H, s, H₃-4'), a methine signal at δ 5.32 (1H, t, J=7.2 Hz, H-2'), and a methylene signal at δ 3.56 (2H, d, J=7.2 Hz, H₂-1'); the second one of which has a pair of *gem*-dimethyl signals at δ 1.77 (3H, s, H₃-5") and 1.68 (3H, s, H₃-4"), a methine signal at δ 5.05 (1H, t, J=6.0 Hz, H-2"), and a methylene signal at δ 3.41 (2H, d, J=6.0 Hz, H₂-1"); the third one

of which has a pair of gem-dimethyl signals at δ 1.77 (3H, s, H₃-5"") and 1.68 (3H, s, H₃-4""), a methine signal at δ 5.05 (1H, t, J=5.4 Hz, H-2""), and a methylene signal at δ 4.03 (2H, d, J=5.4 Hz, H₂-1""). The locations of three prenyl moieties were placed at the C-4 ($\delta_{\rm C}$ 108.1), C-7 ($\delta_{\rm C}$ 127.3), and C-8 ($\delta_{\rm C}$ 136.8) positions base on the correlations of H₂-1'/C-3 ($\delta_{\rm C}$ 164.3), H₂-1'/C-4, and H₂-1'/C-4a ($\delta_{\rm C}$ 155.8); H₂-1"/C-6 ($\delta_{\rm C}$ 153.0), H₂-1"/C-7 and H₂-1"/C-8; and H₂-1"/C-7, H₂-1"'/C-8 and H₂-1"/C-8a ($\delta_{\rm C}$ 112.9) in the heteronuclear multiple bond connectivity (HMBC) spectrum of **1** (Fig. 2), respectively. Furthermore, an aromatic proton at $\delta_{\rm H}$ 6.16 (1H, s, H-2) showed a definite cross peak to the carbon signal at

Table 1. NMR Spectral Data of $1^{\it a)}$ (CD₃OD, ¹H-NMR 600 MHz, ¹³C-NMR 150 MHz)

Position	$\delta_{ m C}$	$\delta_{\mathrm{H}} \left(J = \mathrm{Hz} \right)$
1	163.3 (s)	
2	99.0 (d)	6.16 (1H, s)
3	164.3 (s)	
4	108.1 (s)	
4a	155.8 (s)	
4b	149.5 (s)	
5	131.9 (s)	
6	153.0 (s)	
7	127.3 (s)	
8	136.8 (s)	
8a	112.9 (s)	
9	184.9 (s)	
9a	104.8 (s)	
1'	23.0 (t)	3.56 (2H, d, 7.2)
2'	125.0 (d)	5.32 (1H, t, 7.2)
3'	132.7 (s)	
4'	26.8 (q)	1.66 (3H, s)
5'	19.2 (q)	1.83 (3H, s)
1″	26.4 (t)	3.41 (2H, d, 6.0)
2″	125.1 (d)	5.05 (1H, t, 6.0)
3″	133.0 (s)	
4″	26.7 (q)	1.68 (3H, s)
5″	18.9 (q)	1.77 (3H, s)
1‴	30.2 (t)	4.03 (2H, d, 5.4)
2‴	126.6 (d)	5.05 (1H, t, 5.4)
3‴	131.6 (s)	
4‴	26.7 (q)	1.68 (3H, s)
5‴	19.0 (q)	1.77 (3H, s)

a) $^{1}\mathrm{H-}$ and $^{13}\mathrm{C}\text{-NMR}$ signals were assigned by $^{1}\mathrm{H-}^{1}\mathrm{H}$ COSY, DEPT, HMQC, and HMBC experiments.

Fig. 1. Chemical Structures of 1 and 2

Fig. 2. Selected HMBC Correlations of 1

 $\delta_{\rm C}$ 99.0 (C-2) in the HMQC spectrum, which was supported by the HMBC correlations of H-2/C-1 ($\delta_{\rm C}$ 163.3), H-2/C-3, H-2/C-4, and H-2/C-9a ($\delta_{\rm C}$ 104.8). Comparing the ¹H- and ¹³C-NMR data of **1** with those of the known xanthones having the same partial structure, the substituted pattern of ring A was similar to that of 1,3,6-trihydroxy-5-methoxy-4prenylxanthone⁹⁾ and ring B was similar to that of subelliptinone A.¹⁰⁾ Therefore, four hydroxyl groups were located to the C-1, C-3, C-5 ($\delta_{\rm C}$ 131.9), and C-6 by analysis of the DEPT, HMQC and HMBC data. Thus, compound **1** was determined to be 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2butenyl)xanthone.

Compound **2** was identified as garciniaxanthone E by comparison of its NMR spectral data with the literature values.¹¹

The ability of **1** and **2** to enhance the effects of NGF at stimulating neurite outgrowth in PC12D cells was assessed utilizing methodology previously reported.⁶⁾ In control experiments, the percentage of neurite-bearing cells was 9.9 and 63.1% following incubation with NGF 2 and 30 ng/ml after 48 h, respectively. Compounds **1** (1—3 μ M) and **2** (1—10 μ M) did not induce neurite outgrowth from PC12D cells in the absence of NGF, but as shown in Fig. 3, **1** (3 μ M) and **2** (10 μ M) significantly increased the NGF-induced (2 ng/ml) proportion of neurite-bearing cells by 8.3 and 24.9%, respectively. **1** (10 μ M) and **2** (30 μ M) exhibited cytotoxicity towards PC12D cells.

Although there is a report on 1,3,5,6-tetrahydroxy-4,7,8-

Fig. 3. Enhancement of Effects of NGF at Stimulating Neurite Outgrowth in PC12D Cells with Compounds 1 and 2

Cells were incubated in the presence of NGF (2 or 30 ng/ml) alone and in the presence of compounds 1 and 2 plus NGF (2 ng/ml) for 48 h before being fixed with 2% glutaraldehyde (37 °C, 1 h). The ratio of neurite-bearing cells was determined and expressed as a mean \pm S.E. (n=12). Statistically significant differences (*p<0.01 or **p<0.001) from the control (2 ng/ml NGF) in the absence of compounds 1 and 2 were apparent.

tri(3-methyl-2-butenyl)xanthone (1),¹²⁾ which was isolated from the medicinal plant *G. subelliptica*, the present study is the first to report the isolation and potentiating effects of NGF at stimulating neurite outgrowth in PC12D cells in a scientific journal.

Experimental

General Procedures Melting points were determined on a Yanaco micro-melting point apparatus and were uncorrected. UV spectra were recorded on a Shimadzu UV-260 spectrophotometer. IR spectra were measured on an IR-408 spectrometer. One-dimensional (1D) and 2D NMR spectra were measured on a JEOL-600 spectrometer. Chemical shifts were reported using residual MeOH ($\delta_{\rm H}$ 3.30 and $\delta_{\rm C}$ 49.0) as an internal standard. EI-MS and HR-EI-MS were recorded on a JEOL JMS AX500 and JEOL JMS DX303 spectrometer.

Plant Material The wood of *G. xanthochymus* was collected at Chiangmai, Thailand in July 1999. A voucher specimen has been deposited in the herbarium of Chulalongkorn University, Faculty of Pharmaceutical Sciences (Bangkok, Thailand).

Extraction and Isolation Dried and ground wood of *G. xanthochymus* (10 kg) was extracted with MeOH (4×91) at room temperature and concentrated under vacuum to yield a brown gummy extract (694 g). The extract was suspended in water, and partitioned with EtOAc (3×800 ml) and *n*-BuOH (3×800 ml) to yield EtOAc (380 g), *n*-BuOH (153 g), and water (124 g) fractions. Of these residues, only the EtOAc-soluble materials showed significant enhancement of nerve growth factor-mediated neurite outgrowth from PC12D cells. The EtOAc-soluble residue (24 g) was subjected to vacuum liquid chromatography on silica gel and eluted with *n*-hexane–EtOAc (50:50–0:100) and 100% MeOH to give fr. I–VII. Fr. II (3.1 g) was further chromatographed on a Sephadex LH-20 column (eluted with *MeOH*) to give five subfractions. The fourth subfraction was purified by reverse-phase semipreparative HPLC (YMC-AM 324, ODS, 300×10 mm i.d., 85% MeOH in H₂O, 1 ml/min) to afford compounds **1** (10.3 mg, t_R =137 min) and **2** (15.7 mg, t_R =225 min).

1,3,5,6-Tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (1) Yellow powders (MeOH), mp. 190—192 °C. UV λ_{max} (MeOH) nm (log ε): 256 (5.23), 331 (4.96). IR ν_{max} (neat) cm⁻¹: 3450, 2425, 1645, 1490, 1435, 1270. ¹H- and ¹³C-NMR data see Table 1. EI-MS *m/z* (rel. int.): 464 [M⁺] (43), 449 (14), 421 (96), 409 (33), 393 (31), 367 (100), 352 (58), 337 (32). HR-EI-MS *m/z*: 464.2176 [M⁺] (Calcd for C₂₈H₃₂O₆: 464.2197).

Bioassay Procedure The enhancement of NGF-mediated neurite outgrowth on PC12D cells was examined using a published method.⁶⁾ All test compound stock solutions were prepared at 100 mM in DMSO and diluted to the test concentrations (1, 3, 10, 30 μ M). Neurite processes with a length equal to or greater than the diameter of the neuron cell body were scored as neurite-bearing cells. The ratio of the neurite-bearing cells to total cells

Vol. 51, No. 11

(with at least 100 cells examined/viewing area; three viewing areas/well; six wells/sample) was determined and expressed as a percentage. The data were analyzed using the Student *t*-test.

Acknowledgements This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1) Bennett G. J., Lee H. H., Phytochemistry, 28, 967-998 (1989).
- Rukachaisirikul V., Kaewno W., Koysomboon S., Phongpaichit S., Taylor W. C., *Tetrahedron*, 56, 8539—8543 (2000).
- Likhitwitayawuid K., Chanmahasathien W., Ruangrungsi N., Krungkrai J., *Planta Med.*, 64, 281–282, (1998).
- Asano J., Chiba K., Tada M., Yoshii T., *Phytochemistry*, **41**, 815–820 (1996).
- 5) Nakatani K., Nakahata N., Arakawa T., Yasuda H., Ohizumi Y.,

Biochem. Pharmacol., 63, 73-79 (2002).

- Li Y., Matsunaga K., Kato R., Ohizumi Y., J. Pharm. Pharmacol., 53, 915–919 (2001).
- Li Y., Matsunaga K., Kato R., Ohizumi Y., J. Nat. Prod., 64, 806–808 (2001).
- Li Y., Matsunaga K., Ishibashi M., Ohizumi Y., J. Org. Chem., 66, 2165–2167 (2001).
- Gonda R., Takeda T., Akiyama T., Chem. Pharm. Bull., 48, 1219– 1222 (2000).
- Iinuma M., Tosa H., Tanaka T., Shimano R., Asai F., Yonemori S., *Phytochemistry*, **35**, 1355–1360 (1994).
- Minami H., Takahashi E., Kodama M., Fukuyama Y., *Phytochemistry*, 41, 629–633 (1996).
- 12) Nagafuji S., Abe F., Okabe H., Akahane H., Kinjo K., Yaga S., "Abstract Papers of the 49th Annual Meeting of the Japanese Society of Pharmacognosy," Fukuoka, 2002, p. 213.